
Structure and Interpretation of Computer Programs
JavaScript Edition

Structure and Interpretation of Computer Programs
JavaScript Edition

Harold Abelson and Gerald Jay Sussman

adapted to JavaScript by Martin Henz and Tobias Wrigstad

with Julie Sussman

The MIT Press
Cambridge, Massachusetts
London, England

© 2022 Massachusetts Institute of Technology

This book is published by The MIT Press under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

The text of this book is derived from the book Structure and Interpretation of Computer
Programs, Second Edition, 1996, (SICP) and is subject to a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA). A comparison edition available
at http://sicp.sourceacademy.org indicates the changes that were made to the text. The figures
are derived from figures created by Andres Raba in 2015 and are also subject to CC BY-SA.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

The JavaScript programs in this book are derived from the Scheme programs in SICP and are
subject to the GNU General Public License v3.0. To view a copy of this license, visit
https://www.gnu.org/licenses/gpl-3.0.html.

The original image of MIT founder William Barton Rogers in section 2.2.4 is courtesy MIT
Museum.

The cover image is adapted from Le Moyen Age et la Renaissance, Paris, 1848–1851.

This book was set in Times by the authors using the LATEX typesetting system and ancillary
scripts (see https://github.com/source-academy/sicp), and was printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Names: Abelson, Harold, author. | Sussman, Gerald Jay, author. | Henz, Martin, adapter. |
Wrigstad, Tobias, adapter. | Sussman, Julie, other.

Title: Structure and interpretation of computer programs / Harold Abelson and Gerald Jay
Sussman; adapted to JavaScript by Martin Henz and Tobias Wrigstad; with Julie Sussman.

Description: Javascript edition. | Cambridge : The MIT Press, [2022] | Series: MIT electrical
engineering and computer science series | Includes bibliographical references and index.

Identifiers: LCCN 2021047249 | ISBN 9780262543231 (paperback)
Subjects: LCSH: Computer programming. | JavaScript (Computer program language)
Classification: LCC QA76.6 .A255 2022 | DDC 005.13–dc23
LC record available at https://lccn.loc.gov/2021047249

10 9 8 7 6 5 4 3 2 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://sicp.sourceacademy.org
http://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/source-academy/sicp
https://lccn.loc.gov/2021047249

This book is dedicated, in respect and admiration,

to the spirit that lives in the computer.

“I think it’s extraordinarily important that we in computer science keep fun
in computing. When it started out, it was an awful lot of fun. Of course,
the paying customers got shafted every now and then, and after a while we
began to take their complaints seriously. We began to feel as though we
really were responsible for the successful, error-free, perfect use of these
machines. I don’t think we are. I think we’re responsible for stretching them,
setting them off in new directions, and keeping fun in the house. Fun comes
in many ways. Fun comes in making a discovery, proving a theorem, writing
a program, breaking a code. Whatever form or sense it comes in I hope the
field of computer science never loses its sense of fun. Above all, I hope we
don’t become missionaries. What you know about computing other people
will learn. Don’t feel as though the key to successful computing is only in
your hands. What’s in your hands, I think and hope, is intelligence: the ability
to see the machine as more than when you were first led up to it, that you
can make it more.”

—Alan J. Perlis (April 1, 1922–February 7, 1990)

Contents

Foreword xiii

Foreword to Structure and Interpretation of Computer Programs, 1984 xvii

Preface xxi

Prefaces to Structure and Interpretation of Computer Programs, 1996 & 1984 xxiii

Acknowledgments xxvii

1 Building Abstractions with Functions 1

1.1 The Elements of Programming 3
1.1.1 Expressions 3
1.1.2 Naming and the Environment 5
1.1.3 Evaluating Operator Combinations 6
1.1.4 Compound Functions 8
1.1.5 The Substitution Model for Function Application 11
1.1.6 Conditional Expressions and Predicates 13
1.1.7 Example: Square Roots by Newton’s Method 18
1.1.8 Functions as Black-Box Abstractions 21

1.2 Functions and the Processes They Generate 26
1.2.1 Linear Recursion and Iteration 27
1.2.2 Tree Recursion 32
1.2.3 Orders of Growth 36
1.2.4 Exponentiation 38
1.2.5 Greatest Common Divisors 41
1.2.6 Example: Testing for Primality 43

1.3 Formulating Abstractions with Higher-Order Functions 48
1.3.1 Functions as Arguments 49
1.3.2 Constructing Functions using Lambda Expressions 53
1.3.3 Functions as General Methods 58
1.3.4 Functions as Returned Values 63

2 Building Abstractions with Data 69

2.1 Introduction to Data Abstraction 72
2.1.1 Example: Arithmetic Operations for Rational Numbers 72
2.1.2 Abstraction Barriers 76
2.1.3 What Is Meant by Data? 78
2.1.4 Extended Exercise: Interval Arithmetic 81

x Contents

2.2 Hierarchical Data and the Closure Property 84
2.2.1 Representing Sequences 85
2.2.2 Hierarchical Structures 93
2.2.3 Sequences as Conventional Interfaces 98
2.2.4 Example: A Picture Language 110

2.3 Symbolic Data 124
2.3.1 Strings 124
2.3.2 Example: Symbolic Differentiation 126
2.3.3 Example: Representing Sets 131
2.3.4 Example: Huffman Encoding Trees 140

2.4 Multiple Representations for Abstract Data 148
2.4.1 Representations for Complex Numbers 150
2.4.2 Tagged data 153
2.4.3 Data-Directed Programming and Additivity 157

2.5 Systems with Generic Operations 164
2.5.1 Generic Arithmetic Operations 165
2.5.2 Combining Data of Different Types 170
2.5.3 Example: Symbolic Algebra 177

3 Modularity, Objects, and State 191

3.1 Assignment and Local State 192
3.1.1 Local State Variables 192
3.1.2 The Benefits of Introducing Assignment 199
3.1.3 The Costs of Introducing Assignment 202

3.2 The Environment Model of Evaluation 208
3.2.1 The Rules for Evaluation 209
3.2.2 Applying Simple Functions 212
3.2.3 Frames as the Repository of Local State 215
3.2.4 Internal Declarations 220

3.3 Modeling with Mutable Data 224
3.3.1 Mutable List Structure 224
3.3.2 Representing Queues 233
3.3.3 Representing Tables 237
3.3.4 A Simulator for Digital Circuits 243
3.3.5 Propagation of Constraints 254

3.4 Concurrency: Time Is of the Essence 265
3.4.1 The Nature of Time in Concurrent Systems 266
3.4.2 Mechanisms for Controlling Concurrency 270

3.5 Streams 282
3.5.1 Streams Are Delayed Lists 283
3.5.2 Infinite Streams 290
3.5.3 Exploiting the Stream Paradigm 297
3.5.4 Streams and Delayed Evaluation 307
3.5.5 Modularity of Functional Programs and Modularity of Objects 313

Contents xi

4 Metalinguistic Abstraction 319

4.1 The Metacircular Evaluator 321
4.1.1 The Core of the Evaluator 323
4.1.2 Representing Components 330
4.1.3 Evaluator Data Structures 341
4.1.4 Running the Evaluator as a Program 346
4.1.5 Data as Programs 350
4.1.6 Internal Declarations 353
4.1.7 Separating Syntactic Analysis from Execution 357

4.2 Lazy Evaluation 362
4.2.1 Normal Order and Applicative Order 363
4.2.2 An Interpreter with Lazy Evaluation 364
4.2.3 Streams as Lazy Lists 372

4.3 Nondeterministic Computing 375
4.3.1 Search and amb 376
4.3.2 Examples of Nondeterministic Programs 380
4.3.3 Implementing the amb Evaluator 388

4.4 Logic Programming 400
4.4.1 Deductive Information Retrieval 403
4.4.2 How the Query System Works 413
4.4.3 Is Logic Programming Mathematical Logic? 421
4.4.4 Implementing the Query System 426

5 Computing with Register Machines 451

5.1 Designing Register Machines 452
5.1.1 A Language for Describing Register Machines 454
5.1.2 Abstraction in Machine Design 458
5.1.3 Subroutines 459
5.1.4 Using a Stack to Implement Recursion 464
5.1.5 Instruction Summary 470

5.2 A Register-Machine Simulator 470
5.2.1 The Machine Model 472
5.2.2 The Assembler 476
5.2.3 Instructions and Their Execution Functions 479
5.2.4 Monitoring Machine Performance 486

5.3 Storage Allocation and Garbage Collection 489
5.3.1 Memory as Vectors 490
5.3.2 Maintaining the Illusion of Infinite Memory 495

5.4 The Explicit-Control Evaluator 501
5.4.1 The Dispatcher and Basic Evaluation 502
5.4.2 Evaluating Function Applications 506
5.4.3 Blocks, Assignments, and Declarations 514
5.4.4 Running the Evaluator 515

xii Contents

5.5 Compilation 521
5.5.1 Structure of the Compiler 524
5.5.2 Compiling Components 529
5.5.3 Compiling Applications and Return Statements 537
5.5.4 Combining Instruction Sequences 545
5.5.5 An Example of Compiled Code 548
5.5.6 Lexical Addressing 556
5.5.7 Interfacing Compiled Code to the Evaluator 559

References 567

Index 573

List of Exercises 609

Foreword
I had the pleasure of meeting the amazing Alan Perlis and talking with him a few
times, when I was still a student. He and I had in common a deep love and respect
for two very different programming languages: Lisp and APL. Following in his
footsteps is a daunting task, even though he blazed an excellent trail. Still, I would
like to reexamine one comment he made in the original foreword to this book (and,
please, I suggest that you read his foreword, which immediately follows this one,
before you finish this one). Is it really true that it is better to have 100 functions
operate on one data structure than to have 10 functions operate on 10 data structures?

To answer that question carefully, we first need to ask whether that one data struc-
ture is “universal”: can it conveniently fulfill the roles of those 10 more specialized
data structures?

For that matter, we can also ask: do we really need 100 functions? Is there a
single universal function that can fulfill the roles of all those other functions?

The surprising answer to that last question is “yes”; it is only slightly tricky to
construct a function that accepts (1) a data structure that serves as a description
of some other function, and (2) a list of arguments, and behaves exactly as that
other function would when applied to the given arguments. And it is only slightly
tricky to design a data structure capable of describing any computation whatsoever.
One such data structure (the tagged-list representation of expressions and statements,
paired with environments that associate names with values) and one such universal
function (apply) are described in Chapter 4 of this book. So maybe we need only
one function and one data structure.

That is true in theory. In practice, we find it convenient to draw distinctions that
help us, as human beings constructing descriptions of computations, to organize the
structure of our code so that we can better understand them. I believe that Perlis was
making a remark not about computational capability, but about human abilities and
human limitations.

One thing the human mind seems to do well is to name things; we have powerful
associative memories. Given a name, we can quickly recall some associated thing to
mind. This is why we typically find it easier to work with the lambda calculus than
the combinatory calculus; it is much easier for most people to interpret the Lisp
expression (lambda (x) (lambda (y) (+ x y))) or the JavaScript expression
x => y => x + y than the combinatory expression

((S ((S (K S)) ((S ((S (K S)) ((S (K K)) (K +)))) ((S (K K)) I)))) (K I))

even though there is a direct structural correspondence, easily expressed in five lines
of Lisp code.

So while in principle we could get by with just one universal function, we pre-
fer to modularize our code, to give names to the various pieces, and to mention
the names of function descriptions rather than constantly feeding the descriptions
themselves to the universal function.

xiv Foreword

In my 1998 talk “Growing a Language,” I commented that a good programmer
“does not just write programs. A good programmer builds a working vocabulary.” As
we design and define more and more parts of our programs, we give names to those
parts, and the result is that we have a richer language in which to write the rest.

But we also find it natural to draw distinctions among data structures, and to give
them names.

It may be that nested lists are a universal data structure (and it is worth noting
that many modern and widely used data structures, such as HTML and XML and
JSON, are also parenthetically nested representations, only slightly more elaborate
than Lisp’s bare parentheses). There are also many functions, such as finding the
length of a list or applying a function to every element of a list and getting back a
list of the results, that are useful in a wide variety of situations. And yet, when I am
thinking about a specific computation, I often say to myself, “This list of two things
I expect to be a personal name and a surname, but that list of two things I expect
to be the real and imaginary parts of a complex number, and that other list of two
things I will regard as the numerator and denominator of a fraction.” In other words,
I draw distinctions—and it may be useful to represent those distinctions explicitly in
the data structure, in part to prevent mistakes such as accidentally treating a complex
number as a fraction. (Again, this is a comment about human abilities and human
limitations.)

Since the first edition of this book was written, almost four decades ago, a lot
more ways of organizing data have become relatively standard, in particular the
“object-oriented” approach, and many languages, including JavaScript, support spe-
cialized data structures such as objects and strings and heaps and maps with a variety
of built-in mechanisms and libraries. But in doing so, many languages abandoned
support for more general, universal notions. Java, for example, originally did not sup-
port first-class functions, and has incorporated them only relatively recently, greatly
increasing its expressive power.

APL, likewise, originally did not support first-class functions, and moreover its
original single data structure—arrays of any number of dimensions—was not so
conveniently useful as a universal data structure because arrays could not contain
other arrays as elements. More recent versions of APL do support anonymous
function values and nested arrays, and these have made APL dramatically more
expressive. (The original design of APL did have two very good things going for it:
a comprehensive set of functions applicable to that one data structure, and moreover
an extremely well chosen set of names for those functions. I’m not talking about
the funny symbols and Greek letters, but the spoken words that APL programmers
use when mentioning them, words like shape, reshape, compress, expand, and
laminate; these are names not for the symbols, but for the functions they repre-
sent. Ken Iverson had a real knack for choosing short, memorable, vivid names for
functions on arrays.)

While JavaScript, like Java, was originally designed with objects and methods
in mind, it also incorporated first-class functions from the beginning, and it is not
difficult to use its objects to define a universal data structure. As a result, JavaScript

Foreword xv

is not as distant from Lisp as you would think, and as this edition of Structure and
Interpretation of Computer Programs demonstrates, it is a good alternate framework
for presenting the key ideas. SICP was never about a programming language; it
presents powerful, general ideas for program organization that ought to be useful in
any language.

What do Lisp and JavaScript have in common? The ability to abstract a compu-
tation (code plus some associated data) for later execution as a function; the ability
to embed references to such functions within data structures; the ability to invoke
functions on arguments; the ability to draw a distinction (conditional execution); a
convenient universal data structure; completely automatic storage management for
that data (which seems like a no-brainer, given everything else, until you realize
that many widely used programming languages don’t have it); a large set of useful
functions for operating on that universal data structure; and standard strategies for
using the universal data structure to represent more specialized data structures.

So maybe the truth is somewhere in between the extremes that Perlis so elo-
quently posited. Maybe the sweet spot is something more like 40 functions general
enough to operate usefully on a universal data structure such as lists, but also 10
sets of 6 functions each that are relevant when we take one of 10 specialized views
of that universal data structure. This is manageable if we give good names to these
functions and specialized views.

As you read this book, please pay attention not only to the programming lan-
guage constructs and how they are used, but also to the names given to functions
and variables and data structures. They are not all as short and vivid as the names
Iverson chose for his APL functions, but they have been chosen in a deliberate and
systematic way to enhance your understanding of the overall program structure.

Primitives, means of combination, functional abstraction, naming, and conven-
tions for using a universal data structure in specialized ways by drawing distinctions:
these are the fundamental building blocks of a good programming language. From
there, imagination and good engineering judgment based on experience can do the
rest.

—Guy L. Steele Jr., Lexington, Massachusetts, 2021

Foreword to Structure and Interpretation of
Computer Programs, 1984
Educators, generals, dieticians, psychologists, and parents program. Armies, stu-
dents, and some societies are programmed. An assault on large problems employs
a succession of programs, most of which spring into existence en route. These pro-
grams are rife with issues that appear to be particular to the problem at hand. To
appreciate programming as an intellectual activity in its own right you must turn
to computer programming; you must read and write computer programs—many of
them. It doesn’t matter much what the programs are about or what applications they
serve. What does matter is how well they perform and how smoothly they fit with
other programs in the creation of still greater programs. The programmer must seek
both perfection of part and adequacy of collection. In this book the use of “program”
is focused on the creation, execution, and study of programs written in a dialect of
Lisp for execution on a digital computer. Using Lisp we restrict or limit not what we
may program, but only the notation for our program descriptions.

Our traffic with the subject matter of this book involves us with three foci of
phenomena: the human mind, collections of computer programs, and the computer.
Every computer program is a model, hatched in the mind, of a real or mental process.
These processes, arising from human experience and thought, are huge in number,
intricate in detail, and at any time only partially understood. They are modeled to
our permanent satisfaction rarely by our computer programs. Thus even though our
programs are carefully handcrafted discrete collections of symbols, mosaics of in-
terlocking functions, they continually evolve: we change them as our perception
of the model deepens, enlarges, generalizes until the model ultimately attains a
metastable place within still another model with which we struggle. The source of
the exhilaration associated with computer programming is the continual unfolding
within the mind and on the computer of mechanisms expressed as programs and
the explosion of perception they generate. If art interprets our dreams, the computer
executes them in the guise of programs!

For all its power, the computer is a harsh taskmaster. Its programs must be cor-
rect, and what we wish to say must be said accurately in every detail. As in every
other symbolic activity, we become convinced of program truth through argument.
Lisp itself can be assigned a semantics (another model, by the way), and if a pro-
gram’s function can be specified, say, in the predicate calculus, the proof methods
of logic can be used to make an acceptable correctness argument. Unfortunately, as
programs get large and complicated, as they almost always do, the adequacy, con-
sistency, and correctness of the specifications themselves become open to doubt, so
that complete formal arguments of correctness seldom accompany large programs.
Since large programs grow from small ones, it is crucial that we develop an arsenal
of standard program structures of whose correctness we have become sure—we call
them idioms—and learn to combine them into larger structures using organizational
techniques of proven value. These techniques are treated at length in this book, and
understanding them is essential to participation in the Promethean enterprise called

xviii Foreword to SICP, 1984

programming. More than anything else, the uncovering and mastery of powerful or-
ganizational techniques accelerates our ability to create large, significant programs.
Conversely, since writing large programs is very taxing, we are stimulated to invent
new methods of reducing the mass of function and detail to be fitted into large
programs.

Unlike programs, computers must obey the laws of physics. If they wish to per-
form rapidly—a few nanoseconds per state change—they must transmit electrons
only small distances (at most 1 1

2 feet). The heat generated by the huge number of
devices so concentrated in space has to be removed. An exquisite engineering art has
been developed balancing between multiplicity of function and density of devices.
In any event, hardware always operates at a level more primitive than that at which
we care to program. The processes that transform our Lisp programs to “machine”
programs are themselves abstract models which we program. Their study and cre-
ation give a great deal of insight into the organizational programs associated with
programming arbitrary models. Of course the computer itself can be so modeled.
Think of it: the behavior of the smallest physical switching element is modeled by
quantum mechanics described by differential equations whose detailed behavior is
captured by numerical approximations represented in computer programs executing
on computers composed of . . . !

It is not merely a matter of tactical convenience to separately identify the three
foci. Even though, as they say, it’s all in the head, this logical separation induces
an acceleration of symbolic traffic between these foci whose richness, vitality, and
potential is exceeded in human experience only by the evolution of life itself. At
best, relationships between the foci are metastable. The computers are never large
enough or fast enough. Each breakthrough in hardware technology leads to more
massive programming enterprises, new organizational principles, and an enrichment
of abstract models. Every reader should ask himself periodically “Toward what
end, toward what end?”—but do not ask it too often lest you pass up the fun of
programming for the constipation of bittersweet philosophy.

Among the programs we write, some (but never enough) perform a precise math-
ematical function such as sorting or finding the maximum of a sequence of numbers,
determining primality, or finding the square root. We call such programs algorithms,
and a great deal is known of their optimal behavior, particularly with respect to the
two important parameters of execution time and data storage requirements. A pro-
grammer should acquire good algorithms and idioms. Even though some programs
resist precise specifications, it is the responsibility of the programmer to estimate,
and always to attempt to improve, their performance.

Lisp is a survivor, having been in use for about a quarter of a century. Among the
active programming languages only Fortran has had a longer life. Both languages
have supported the programming needs of important areas of application, Fortran
for scientific and engineering computation and Lisp for artificial intelligence. These
two areas continue to be important, and their programmers are so devoted to these
two languages that Lisp and Fortran may well continue in active use for at least
another quarter-century.

Lisp changes. The Scheme dialect used in this text has evolved from the original
Lisp and differs from the latter in several important ways, including static scoping
for variable binding and permitting functions to yield functions as values. In its

Foreword to SICP, 1984 xix

semantic structure Scheme is as closely akin to Algol 60 as to early Lisps. Algol
60, never to be an active language again, lives on in the genes of Scheme and
Pascal. It would be difficult to find two languages that are the communicating coin of
two more different cultures than those gathered around these two languages. Pascal
is for building pyramids—imposing, breathtaking, static structures built by armies
pushing heavy blocks into place. Lisp is for building organisms—imposing, breath-
taking, dynamic structures built by squads fitting fluctuating myriads of simpler
organisms into place. The organizing principles used are the same in both cases,
except for one extraordinarily important difference: The discretionary exportable
functionality entrusted to the individual Lisp programmer is more than an order
of magnitude greater than that to be found within Pascal enterprises. Lisp programs
inflate libraries with functions whose utility transcends the application that produced
them. The list, Lisp’s native data structure, is largely responsible for such growth of
utility. The simple structure and natural applicability of lists are reflected in func-
tions that are amazingly nonidiosyncratic. In Pascal the plethora of declarable data
structures induces a specialization within functions that inhibits and penalizes casual
cooperation. It is better to have 100 functions operate on one data structure than to
have 10 functions operate on 10 data structures. As a result the pyramid must stand
unchanged for a millennium; the organism must evolve or perish.

To illustrate this difference, compare the treatment of material and exercises
within this book with that in any first-course text using Pascal. Do not labor under
the illusion that this is a text digestible at MIT only, peculiar to the breed found there.
It is precisely what a serious book on programming Lisp must be, no matter who the
student is or where it is used.

Note that this is a text about programming, unlike most Lisp books, which are
used as a preparation for work in artificial intelligence. After all, the critical program-
ming concerns of software engineering and artificial intelligence tend to coalesce
as the systems under investigation become larger. This explains why there is such
growing interest in Lisp outside of artificial intelligence.

As one would expect from its goals, artificial intelligence research generates
many significant programming problems. In other programming cultures this spate
of problems spawns new languages. Indeed, in any very large programming task a
useful organizing principle is to control and isolate traffic within the task modules
via the invention of language. These languages tend to become less primitive as
one approaches the boundaries of the system where we humans interact most often.
As a result, such systems contain complex language-processing functions replicated
many times. Lisp has such a simple syntax and semantics that parsing can be treated
as an elementary task. Thus parsing technology plays almost no role in Lisp pro-
grams, and the construction of language processors is rarely an impediment to the
rate of growth and change of large Lisp systems. Finally, it is this very simplicity
of syntax and semantics that is responsible for the burden and freedom borne by
all Lisp programmers. No Lisp program of any size beyond a few lines can be
written without being saturated with discretionary functions. Invent and fit; have
fits and reinvent! We toast the Lisp programmer who pens his thoughts within nests
of parentheses.

—Alan J. Perlis, New Haven, Connecticut

Preface
The book Structure and Interpretation of Computer Programs (SICP) introduces
the reader to central ideas of computation by establishing a series of mental models
for computation. Chapters 1–3 cover programming concepts that are common to
all modern high-level programming languages. The original first two editions of
SICP use the programming language Scheme in their program examples, whose
minimalist, expression-oriented syntax allows the book to focus on the underlying
ideas rather than the design of the chosen language. Chapters 4 and 5 use Scheme
to formulate language processors for Scheme, deepening the readers’ understanding
of the mental models and exploring language extensions and alternatives.

Since its publication in 1984 and its second edition in 1996, SICP has been
adopted as a textbook by universities and colleges around the world, including the
National University of Singapore (NUS), which introduced the SICP-based introduc-
tory course CS1101S in 1997. In the mid-1990s, the languages Python, JavaScript,
and Ruby emerged, which share central design elements with Scheme, but which em-
ploy a more complex, statement-oriented syntax that uses familiar algebraic (infix)
notation. Their rise in popularity led instructors to adapt their SICP-based courses,
typically by translating the example programs to their language of choice, by adding
material specific to that language, and by omitting the material of chapters 4 and 5.

Adapting SICP to JavaScript
The work on adapting the second edition of SICP to JavaScript (SICP JS) started at
NUS in 2008, and CS1101S switched to JavaScript in 2012. The language standard
ECMAScript 2015 introduced lambda expressions, tail recursion, and block-scoped
variables and constants, which enabled the adaptation to become quite close to the
original. We made substantial changes to SICP only when we felt they were forced
by differences between JavaScript and Scheme. The book covers just a small frac-
tion of JavaScript, so a reader would be ill-advised to use it to learn the language.
For example, the notion of a JavaScript object—considered one of its fundamental
ingredients by any measure—is not even mentioned!

It was straightforward to translate the programs of chapters 1–3 to JavaScript
by adding libraries that mirror Scheme primitives—including support for list struc-
ture—and adapting the text accordingly. However, the switch to JavaScript forced
us to make subtle changes in the interpreters and compiler of chapters 4 and 5 in
order to handle return statements. Scheme’s expression-oriented syntax doesn’t have
return statements, which are a prominent feature of statement-oriented languages.

By using JavaScript, chapters 1–3 introduce the reader to the syntactic style of
most mainstream languages today. However, that same syntactic style gave rise to
significant changes in chapter 4, because the direct representation of programs as
data structures could no longer be taken for granted. This provided us with an op-
portunity to introduce the reader to the notion of program parsing in section 4.1, an
important component of programming-language processors. In section 4.4, the rigid
syntactic structure of JavaScript complicated the implementation of the presented

xxii Preface

logic programming system and exposed the limitations of JavaScript as a tool for
programming language design.

Resources for using SICP JS
The MIT Press web page for SICP JS links to support for users of this book. This
provides all programs from the book and extensive instructor resources, including a
large collection of additional exercises and recommendations on selecting a subset
of SICP JS that can be covered in a typical college semester. The JavaScript pro-
grams in the book run in the recommended strict mode in any JavaScript interpreter
that complies with the ECMAScript 2020 specification of JavaScript (ECMA 2020).
The MIT Press web page includes the JavaScript package sicp, which provides all
JavaScript functions that are considered “primitive” in the book.

To the reader
We sincerely hope that if this book is your first encounter with programming you will
use your newly gained understanding of the structure and interpretation of computer
programs to learn more programming languages, including Scheme and the full
JavaScript language. If you have learned JavaScript prior to picking up SICP JS, you
might gain new insights into the fundamental concepts that underlie the language
and discover how much can be achieved with so little. If you come to SICP JS with
a knowledge of the original SICP, you might enjoy seeing familiar ideas presented
in a new format—and might appreciate the online comparison edition, available at
the book’s web page, where SICP JS and SICP can be viewed side by side.

—Martin Henz and Tobias Wrigstad

https://mitpress.mit.edu/books/structure-and-interpretation-computer-programs-1

Prefaces to Structure and Interpretation of
Computer Programs, 1996 & 1984

Preface to the Second Edition of SICP, 1996
Is it possible that software is not like anything else, that it is meant to be
discarded: that the whole point is to always see it as a soap bubble?

—Alan J. Perlis

The material in this book has been the basis of MIT’s entry-level computer science
subject since 1980. We had been teaching this material for four years when the first
edition was published, and twelve more years have elapsed until the appearance
of this second edition. We are pleased that our work has been widely adopted and
incorporated into other texts. We have seen our students take the ideas and programs
in this book and build them in as the core of new computer systems and languages. In
literal realization of an ancient Talmudic pun, our students have become our builders.
We are lucky to have such capable students and such accomplished builders.

In preparing this edition, we have incorporated hundreds of clarifications sug-
gested by our own teaching experience and the comments of colleagues at MIT
and elsewhere. We have redesigned most of the major programming systems in the
book, including the generic-arithmetic system, the interpreters, the register-machine
simulator, and the compiler; and we have rewritten all the program examples to
ensure that any Scheme implementation conforming to the IEEE Scheme standard
(IEEE 1990) will be able to run the code.

This edition emphasizes several new themes. The most important of these is
the central role played by different approaches to dealing with time in computa-
tional models: objects with state, concurrent programming, functional programming,
lazy evaluation, and nondeterministic programming. We have included new sections
on concurrency and nondeterminism, and we have tried to integrate this theme
throughout the book.

The first edition of the book closely followed the syllabus of our MIT one-
semester subject. With all the new material in the second edition, it will not be
possible to cover everything in a single semester, so the instructor will have to pick
and choose. In our own teaching, we sometimes skip the section on logic program-
ming (section 4.4), we have students use the register-machine simulator but we do
not cover its implementation (section 5.2), and we give only a cursory overview of
the compiler (section 5.5). Even so, this is still an intense course. Some instructors
may wish to cover only the first three or four chapters, leaving the other material for
subsequent courses.

The World Wide Web site of MIT Press provides support for users of this book.
This includes programs from the book, sample programming assignments, supple-
mentary materials, and downloadable implementations of the Scheme dialect of
Lisp.

—Harold Abelson and Gerald Jay Sussman

https://mitpress.mit.edu/sites/default/files/sicp/index.html

xxiv Prefaces to SICP, 1996 & 1984

Preface to the First Edition of SICP, 1984
A computer is like a violin. You can imagine a novice trying first a
phonograph and then a violin. The latter, he says, sounds terrible. That is the
argument we have heard from our humanists and most of our computer
scientists. Computer programs are good, they say, for particular purposes, but
they aren’t flexible. Neither is a violin, or a typewriter, until you learn how to
use it.

—Marvin Minsky, “Why Programming Is a Good Medium for Expressing
Poorly-Understood and Sloppily-Formulated Ideas”

“The Structure and Interpretation of Computer Programs” is the entry-level subject
in computer science at the Massachusetts Institute of Technology. It is required of
all students at MIT who major in electrical engineering or in computer science, as
one-fourth of the “common core curriculum,” which also includes two subjects on
circuits and linear systems and a subject on the design of digital systems. We have
been involved in the development of this subject since 1978, and we have taught
this material in its present form since the fall of 1980 to between 600 and 700
students each year. Most of these students have had little or no prior formal training
in computation, although many have played with computers a bit and a few have
had extensive programming or hardware-design experience.

Our design of this introductory computer-science subject reflects two major con-
cerns. First, we want to establish the idea that a computer language is not just a
way of getting a computer to perform operations but rather that it is a novel formal
medium for expressing ideas about methodology. Thus, programs must be written
for people to read, and only incidentally for machines to execute. Second, we believe
that the essential material to be addressed by a subject at this level is not the syntax of
particular programming-language constructs, nor clever algorithms for computing
particular functions efficiently, nor even the mathematical analysis of algorithms
and the foundations of computing, but rather the techniques used to control the
intellectual complexity of large software systems.

Our goal is that students who complete this subject should have a good feel
for the elements of style and the aesthetics of programming. They should have
command of the major techniques for controlling complexity in a large system. They
should be capable of reading a 50-page-long program, if it is written in an exemplary
style. They should know what not to read, and what they need not understand at any
moment. They should feel secure about modifying a program, retaining the spirit
and style of the original author.

These skills are by no means unique to computer programming. The techniques
we teach and draw upon are common to all of engineering design. We control
complexity by building abstractions that hide details when appropriate. We control
complexity by establishing conventional interfaces that enable us to construct sys-
tems by combining standard, well-understood pieces in a “mix and match” way. We
control complexity by establishing new languages for describing a design, each of
which emphasizes particular aspects of the design and deemphasizes others.

Underlying our approach to this subject is our conviction that “computer sci-
ence” is not a science and that its significance has little to do with computers. The

Prefaces to SICP, 1996 & 1984 xxv

computer revolution is a revolution in the way we think and in the way we express
what we think. The essence of this change is the emergence of what might best be
called procedural epistemology—the study of the structure of knowledge from an
imperative point of view, as opposed to the more declarative point of view taken
by classical mathematical subjects. Mathematics provides a framework for dealing
precisely with notions of “what is.” Computation provides a framework for dealing
precisely with notions of “how to.”

In teaching our material we use a dialect of the programming language Lisp.
We never formally teach the language, because we don’t have to. We just use it,
and students pick it up in a few days. This is one great advantage of Lisp-like
languages: They have very few ways of forming compound expressions, and almost
no syntactic structure. All of the formal properties can be covered in an hour, like the
rules of chess. After a short time we forget about syntactic details of the language
(because there are none) and get on with the real issues—figuring out what we want
to compute, how we will decompose problems into manageable parts, and how we
will work on the parts. Another advantage of Lisp is that it supports (but does not
enforce) more of the large-scale strategies for modular decomposition of programs
than any other language we know. We can make procedural and data abstractions, we
can use higher-order functions to capture common patterns of usage, we can model
local state using assignment and data mutation, we can link parts of a program with
streams and delayed evaluation, and we can easily implement embedded languages.
All of this is embedded in an interactive environment with excellent support for
incremental program design, construction, testing, and debugging. We thank all the
generations of Lisp wizards, starting with John McCarthy, who have fashioned a
fine tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together the
power and elegance of Lisp and Algol. From Lisp we take the metalinguistic power
that derives from the simple syntax, the uniform representation of programs as data
objects, and the garbage-collected heap-allocated data. From Algol we take lexical
scoping and block structure, which are gifts from the pioneers of programming-
language design who were on the Algol committee. We wish to cite John Reynolds
and Peter Landin for their insights into the relationship of Church’s lambda calculus
to the structure of programming languages. We also recognize our debt to the math-
ematicians who scouted out this territory decades before computers appeared on the
scene. These pioneers include Alonzo Church, Barkley Rosser, Stephen Kleene, and
Haskell Curry.

—Harold Abelson and Gerald Jay Sussman

Acknowledgments
The JavaScript adaptation of Structure and Interpretation of Computer Programs
(SICP JS) was developed at the National University of Singapore (NUS) for the
course CS1101S. The course was co-taught for six years and counting by Low Kok
Lim, whose sound pedagogical judgment was crucial for the success of the course
and this project. The CS1101S teaching team has included many NUS colleagues
and more than 300 undergraduate student assistants. Their continuous feedback over
the past nine years allowed us to resolve countless JavaScript-specific issues and
remove unnecessary complications and yet retain the essential features of both SICP
and JavaScript.

SICP JS is a software project in addition to a book project. We obtained the LATEX
book sources from the original authors in 2008. An early SICP JS tool chain was
developed by Liu Hang and refined by Feng Piaopiao. Chan Ger Hean developed
the first tools for the print edition, based on which Jolyn Tan developed the tools
for the first e-book edition and He Xinyue and Wang Qian repurposed these tools
for the current comparison edition. Samuel Fang designed and developed the online
edition of SICP JS.

The online edition of SICP JS and CS1101S rely heavily on a software sys-
tem called Source Academy, and the JavaScript sublanguages it supports are called
Source. Many dozens of students have contributed to the Source Academy during
the preparation of SICP JS, and the system lists them prominently as “Contribu-
tors.” Since 2020, the students of the NUS course CS4215, Programming Language
Implementation, contributed several programming language implementations that
are used in SICP JS: The concurrent version of Source used in section 3.4 was
developed by Zhengqun Koo and Jonathan Chan; the lazy implementation used in
section 4.2 was developed by Jellouli Ahmed, Ian Kendall Duncan, Cruz Jomari
Evangelista, and Alden Tan; the nondeterministic implementation used in section
4.3 was developed by Arsalan Cheema and Anubhav; and Daryl Tan helped integrate
these implementations into the Academy.

We are grateful to STINT, The Swedish Foundation for International Coopera-
tion in Research and Higher Education, whose sabbatical program connected Martin
and Tobias and allowed Tobias to work as a co-teacher of CS1101S and join the
SICP JS project.

We would like to acknowledge the courageous work of the committee of ECMA-
Script 2015, led by Allen Wirfs-Brock. SICP JS relies heavily on constant and let
declarations and lambda expressions, all of which were added to JavaScript with
ECMAScript 2015. Those additions allowed us to stay close to the original in the
presentation of the most important ideas of SICP. Guy Lewis Steele Jr., who led the
first ECMAScript standardization, provided detailed and useful feedback on some
exercises of chapter 4.

—Martin Henz and Tobias Wrigstad

xxviii Acknowledgements

Acknowledgments from the Second Edition of SICP, 1996
We would like to thank the many people who have helped us develop this book and
this curriculum.

Our subject is a clear intellectual descendant of “6.231,” a wonderful subject on
programming linguistics and the lambda calculus taught at MIT in the late 1960s by
Jack Wozencraft and Arthur Evans, Jr.

We owe a great debt to Robert Fano, who reorganized MIT’s introductory cur-
riculum in electrical engineering and computer science to emphasize the principles
of engineering design. He led us in starting out on this enterprise and wrote the first
set of subject notes from which this book evolved.

Much of the style and aesthetics of programming that we try to teach were de-
veloped in conjunction with Guy Lewis Steele Jr., who collaborated with Gerald
Jay Sussman in the initial development of the Scheme language. In addition, David
Turner, Peter Henderson, Dan Friedman, David Wise, and Will Clinger have taught
us many of the techniques of the functional programming community that appear in
this book.

Joel Moses taught us about structuring large systems. His experience with the
Macsyma system for symbolic computation provided the insight that one should
avoid complexities of control and concentrate on organizing the data to reflect the
real structure of the world being modeled.

Marvin Minsky and Seymour Papert formed many of our attitudes about pro-
gramming and its place in our intellectual lives. To them we owe the understanding
that computation provides a means of expression for exploring ideas that would oth-
erwise be too complex to deal with precisely. They emphasize that a student’s ability
to write and modify programs provides a powerful medium in which exploring
becomes a natural activity.

We also strongly agree with Alan Perlis that programming is lots of fun and we
had better be careful to support the joy of programming. Part of this joy derives
from observing great masters at work. We are fortunate to have been apprentice
programmers at the feet of Bill Gosper and Richard Greenblatt.

It is difficult to identify all the people who have contributed to the development
of our curriculum. We thank all the lecturers, recitation instructors, and tutors who
have worked with us over the past fifteen years and put in many extra hours on
our subject, especially Bill Siebert, Albert Meyer, Joe Stoy, Randy Davis, Louis
Braida, Eric Grimson, Rod Brooks, Lynn Stein, and Peter Szolovits. We would like
to specially acknowledge the outstanding teaching contributions of Franklyn Turbak,
now at Wellesley; his work in undergraduate instruction set a standard that we can
all aspire to. We are grateful to Jerry Saltzer and Jim Miller for helping us grapple
with the mysteries of concurrency, and to Peter Szolovits and David McAllester for
their contributions to the exposition of nondeterministic evaluation in chapter 4.

Many people have put in significant effort presenting this material at other uni-
versities. Some of the people we have worked closely with are Jacob Katzenelson
at the Technion, Hardy Mayer at the University of California at Irvine, Joe Stoy at
Oxford, Elisha Sacks at Purdue, and Jan Komorowski at the Norwegian University
of Science and Technology. We are exceptionally proud of our colleagues who have

Acknowledgements xxix

received major teaching awards for their adaptations of this subject at other univer-
sities, including Kenneth Yip at Yale, Brian Harvey at the University of California
at Berkeley, and Dan Huttenlocher at Cornell.

Al Moyé arranged for us to teach this material to engineers at Hewlett-Packard,
and for the production of videotapes of these lectures. We would like to thank the tal-
ented instructors—in particular Jim Miller, Bill Siebert, and Mike Eisenberg—who
have designed continuing education courses incorporating these tapes and taught
them at universities and industry all over the world.

Many educators in other countries have put in significant work translating the
first edition. Michel Briand, Pierre Chamard, and André Pic produced a French
edition; Susanne Daniels-Herold produced a German edition; and Fumio Motoyoshi
produced a Japanese edition. We do not know who produced the Chinese edition,
but we consider it an honor to have been selected as the subject of an “unauthorized”
translation.

It is hard to enumerate all the people who have made technical contributions
to the development of the Scheme systems we use for instructional purposes.
In addition to Guy Steele, principal wizards have included Chris Hanson, Joe
Bowbeer, Jim Miller, Guillermo Rozas, and Stephen Adams. Others who have
put in significant time are Richard Stallman, Alan Bawden, Kent Pitman, Jon
Taft, Neil Mayle, John Lamping, Gwyn Osnos, Tracy Larrabee, George Carrette,
Soma Chaudhuri, Bill Chiarchiaro, Steven Kirsch, Leigh Klotz, Wayne Noss, Todd
Cass, Patrick O’Donnell, Kevin Theobald, Daniel Weise, Kenneth Sinclair, Anthony
Courtemanche, Henry M. Wu, Andrew Berlin, and Ruth Shyu.

Beyond the MIT implementation, we would like to thank the many people who
worked on the IEEE Scheme standard, including William Clinger and Jonathan Rees,
who edited the R4RS, and Chris Haynes, David Bartley, Chris Hanson, and Jim
Miller, who prepared the IEEE standard.

Dan Friedman has been a long-time leader of the Scheme community. The
community’s broader work goes beyond issues of language design to encompass
significant educational innovations, such as the high-school curriculum based on
EdScheme by Schemer’s Inc., and the wonderful books by Mike Eisenberg and by
Brian Harvey and Matthew Wright.

We appreciate the work of those who contributed to making this a real book,
especially Terry Ehling, Larry Cohen, and Paul Bethge at the MIT Press. Ella Mazel
found the wonderful cover image. For the second edition we are particularly grate-
ful to Bernard and Ella Mazel for help with the book design, and to David Jones,
TEX wizard extraordinaire. We also are indebted to those readers who made pene-
trating comments on the new draft: Jacob Katzenelson, Hardy Mayer, Jim Miller,
and especially Brian Harvey, who did unto this book as Julie did unto his book
Simply Scheme.

Finally, we would like to acknowledge the support of the organizations that
have encouraged this work over the years, including support from Hewlett-Packard,
made possible by Ira Goldstein and Joel Birnbaum, and support from DARPA, made
possible by Bob Kahn.

—Harold Abelson and Gerald Jay Sussman

Structure and Interpretation of Computer Programs
JavaScript Edition

1 Building Abstractions with Functions

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly
these three: 1. Combining several simple ideas into one compound one, and
thus all complex ideas are made. 2. The second is bringing two ideas, whether
simple or complex, together, and setting them by one another so as to take a
view of them at once, without uniting them into one, by which it gets all its
ideas of relations. 3. The third is separating them from all other ideas that
accompany them in their real existence: this is called abstraction, and thus all
its general ideas are made.

—John Locke, An Essay Concerning Human Understanding (1690)

We are about to study the idea of a computational process. Computational processes
are abstract beings that inhabit computers. As they evolve, processes manipulate
other abstract things called data. The evolution of a process is directed by a pattern
of rules called a program. People create programs to direct processes. In effect, we
conjure the spirits of the computer with our spells.

A computational process is indeed much like a sorcerer’s idea of a spirit. It
cannot be seen or touched. It is not composed of matter at all. However, it is very
real. It can perform intellectual work. It can answer questions. It can affect the
world by disbursing money at a bank or by controlling a robot arm in a factory.
The programs we use to conjure processes are like a sorcerer’s spells. They are
carefully composed from symbolic expressions in arcane and esoteric programming
languages that prescribe the tasks we want our processes to perform.

A computational process, in a correctly working computer, executes programs
precisely and accurately. Thus, like the sorcerer’s apprentice, novice programmers
must learn to understand and to anticipate the consequences of their conjuring. Even
small errors (usually called bugs) in programs can have complex and unanticipated
consequences.

Fortunately, learning to program is considerably less dangerous than learning
sorcery, because the spirits we deal with are conveniently contained in a secure way.
Real-world programming, however, requires care, expertise, and wisdom. A small
bug in a computer-aided design program, for example, can lead to the catastrophic
collapse of an airplane or a dam or the self-destruction of an industrial robot.

Master software engineers have the ability to organize programs so that they can
be reasonably sure that the resulting processes will perform the tasks intended. They
can visualize the behavior of their systems in advance. They know how to structure
programs so that unanticipated problems do not lead to catastrophic consequences,
and when problems do arise, they can debug their programs. Well-designed compu-
tational systems, like well-designed automobiles or nuclear reactors, are designed
in a modular manner, so that the parts can be constructed, replaced, and debugged
separately.

2 Chapter 1 Building Abstractions with Functions

Programming in JavaScript
We need an appropriate language for describing processes, and we will use for this
purpose the programming language JavaScript. Just as our everyday thoughts are
usually expressed in our natural language (such as English, Swedish, or Chinese),
and descriptions of quantitative phenomena are expressed with mathematical no-
tations, our procedural thoughts will be expressed in JavaScript. JavaScript was
developed in 1995 as a programming language for controlling the behavior of World
Wide Web browsers through scripts that are embedded in web pages. The language
was conceived by Brendan Eich, originally under the name Mocha, which was
later renamed to LiveScript, and finally to JavaScript. The name “JavaScript” is a
trademark of Oracle Corporation.

Despite its inception as a language for scripting the web, JavaScript is a general-
purpose programming language. A JavaScript interpreter is a machine that car-
ries out processes described in the JavaScript language. The first JavaScript inter-
preter was implemented by Eich at Netscape Communications Corporation for the
Netscape Navigator web browser. JavaScript inherited its core features from the
Scheme and Self programming languages. Scheme is a dialect of Lisp, and was used
as the programming language for the original version of this book. From Scheme,
JavaScript inherited its most fundamental design principles, such as lexically scoped
first-class functions and dynamic typing.

JavaScript bears only superficial resemblance to the language Java, after which
it was (eventually) named; both Java and JavaScript use the block structure of the
language C. In contrast with Java and C, which usually employ compilation to lower-
level languages, JavaScript programs were initially interpreted by web browsers.
After Netscape Navigator, other web browsers provided interpreters for the language,
including Microsoft’s Internet Explorer, whose JavaScript version is called JScript.
The popularity of JavaScript for controlling web browsers gave rise to a standard-
ization effort, culminating in ECMAScript. The first edition of the ECMAScript
standard was led by Guy Lewis Steele Jr. and completed in June 1997 (ECMA 1997).
The sixth edition, known as ECMAScript 2015, was led by Allen Wirfs-Brock and
adopted by the General Assembly of ECMA in June 2015 (ECMA 2015).

The practice of embedding JavaScript programs in web pages encouraged the
developers of web browsers to implement JavaScript interpreters. As these programs
became more complex, the interpreters became more efficient in executing them,
eventually using sophisticated implementation techniques such as Just-In-Time (JIT)
compilation. The majority of JavaScript programs as of this writing (2021) are em-
bedded in web pages and interpreted by browsers, but JavaScript is increasingly
used as a general-purpose programming language, using systems such as Node.js.

ECMAScript 2015 possesses a set of features that make it an excellent medium
for studying important programming constructs and data structures and for relat-
ing them to the linguistic features that support them. Its lexically scoped first-class
functions and their syntactic support through lambda expressions provide direct and
concise access to functional abstraction, and dynamic typing allows the adaptation
to remain close to the Scheme original throughout the book. Above and beyond
these considerations, programming in JavaScript is great fun.

1.1 The Elements of Programming 3

1.1 The Elements of Programming
A powerful programming language is more than just a means for instructing a
computer to perform tasks. The language also serves as a framework within which
we organize our ideas about processes. Thus, when we describe a language, we
should pay particular attention to the means that the language provides for combin-
ing simple ideas to form more complex ideas. Every powerful language has three
mechanisms for accomplishing this:

• primitive expressions, which represent the simplest entities the language is con-
cerned with,

• means of combination, by which compound elements are built from simpler ones,
and

• means of abstraction, by which compound elements can be named and manipu-
lated as units.

In programming, we deal with two kinds of elements: functions and data. (Later
we will discover that they are really not so distinct.) Informally, data is “stuff” that
we want to manipulate, and functions are descriptions of the rules for manipulating
the data. Thus, any powerful programming language should be able to describe
primitive data and primitive functions and should have methods for combining and
abstracting functions and data.

In this chapter we will deal only with simple numerical data so that we can focus
on the rules for building functions.1 In later chapters we will see that these same
rules allow us to build functions to manipulate compound data as well.

1.1.1 Expressions
One easy way to get started at programming is to examine some typical interac-
tions with an interpreter for the JavaScript language. You type a statement, and the
interpreter responds by displaying the result of its evaluating that statement.

One kind of statement you might type is an expression statement, which consists
of an expression followed by a semicolon. One kind of primitive expression is a
number. (More precisely, the expression that you type consists of the numerals that
represent the number in base 10.) If you present JavaScript with the program

1. The characterization of numbers as “simple data” is a barefaced bluff. In fact, the treatment
of numbers is one of the trickiest and most confusing aspects of any programming language.
Some typical issues involved are these: Some computer systems distinguish integers, such as 2,
from real numbers, such as 2.71. Is the real number 2.00 different from the integer 2? Are the
arithmetic operations used for integers the same as the operations used for real numbers? Does
6 divided by 2 produce 3, or 3.0? How large a number can we represent? How many decimal
places of accuracy can we represent? Is the range of integers the same as the range of real
numbers? Above and beyond these questions, of course, lies a collection of issues concerning
roundoff and truncation errors—the entire science of numerical analysis. Since our focus in this
book is on large-scale program design rather than on numerical techniques, we are going to
ignore these problems. The numerical examples in this chapter will exhibit the usual roundoff
behavior that one observes when using arithmetic operations that preserve a limited number of
decimal places of accuracy in noninteger operations.

4 Chapter 1 Building Abstractions with Functions

486;

the interpreter will respond by printing2

486

Expressions representing numbers may be combined with operators (such as +
or *) to form a compound expression that represents the application of a correspond-
ing primitive function to those numbers. For example,

137 + 349;
486

1000 - 334;
666

5 * 99;
495

10 / 4;
2.5

2.7 + 10;
12.7

Expressions such as these, which contain other expressions as components, are
called combinations. Combinations that are formed by an operator symbol in the
middle, and operand expressions to the left and right of it, are called operator com-
binations. The value of an operator combination is obtained by applying the function
specified by the operator to the arguments that are the values of the operands.

The convention of placing the operator between the operands is known as infix
notation. It follows the mathematical notation that you are most likely familiar with
from school and everyday life. As in mathematics, operator combinations can be
nested, that is, they can have operands that themselves are operator combinations:

(3 * 5) + (10 - 6);
19

As usual, parentheses are used to group operator combinations in order to avoid am-
biguities. JavaScript also follows the usual conventions when parentheses are omit-
ted: multiplication and division bind more strongly than addition and subtraction.
For example,

3 * 5 + 10 / 2;

stands for

(3 * 5) + (10 / 2);

2. Throughout this book, we distinguish between the input typed by the user and any text
printed by the interpreter by showing the latter in slanted characters.

1.1.2 Naming and the Environment 5

We say that * and / have higher precedence than + and -. Sequences of additions
and subtractions are read from left to right, as are sequences of multiplications and
divisions. Thus,

1 - 5 / 2 * 4 + 3;

stands for

(1 - ((5 / 2) * 4)) + 3;

We say that the operators +, -, * and / are left-associative.
There is no limit (in principle) to the depth of such nesting and to the overall

complexity of the expressions that the JavaScript interpreter can evaluate. It is we
humans who might get confused by still relatively simple expressions such as

3 * 2 * (3 - 5 + 4) + 27 / 6 * 10;

which the interpreter would readily evaluate to be 57. We can help ourselves by
writing such an expression in the form

3 * 2 * (3 - 5 + 4)
+
27 / 6 * 10;

to visually separate the major components of the expression.
Even with complex expressions, the interpreter always operates in the same basic

cycle: It reads a statement typed by the user, evaluates the statement, and prints
the result. This mode of operation is often expressed by saying that the interpreter
runs in a read-evaluate-print loop. Observe in particular that it is not necessary to
explicitly instruct the interpreter to print the value of the statement.3

1.1.2 Naming and the Environment
A critical aspect of a programming language is the means it provides for using names
to refer to computational objects, and our first such means are constants. We say that
the name identifies a constant whose value is the object.

In JavaScript, we name constants with constant declarations.

const size = 2;

causes the interpreter to associate the value 2 with the name size.4 Once the name
size has been associated with the number 2, we can refer to the value 2 by name:

3. JavaScript obeys the convention that every statement has a value (see exercise 4.8). This
convention, together with the reputation of JavaScript programmers as not caring about effi-
ciency, leads us to paraphrase a quip on Lisp programmers by Alan Perlis (who was himself
paraphrasing Oscar Wilde): JavaScript programmers know the value of everything but the cost
of nothing.

4. In this book, we do not show the interpreter’s response to evaluating programs that end with
declarations, since this might depend on previous statements. See exercise 4.8 for details.

6 Chapter 1 Building Abstractions with Functions

size;
2

5 * size;
10

Here are further examples of the use of const:

const pi = 3.14159;

const radius = 10;

pi * radius * radius;
314.159

const circumference = 2 * pi * radius;

circumference;
62.8318

Constant declaration is our language’s simplest means of abstraction, for it al-
lows us to use simple names to refer to the results of compound operations, such
as the circumference computed above. In general, computational objects may
have very complex structures, and it would be extremely inconvenient to have to
remember and repeat their details each time we want to use them. Indeed, com-
plex programs are constructed by building, step by step, computational objects
of increasing complexity. The interpreter makes this step-by-step program con-
struction particularly convenient because name-object associations can be created
incrementally in successive interactions. This feature encourages the incremental
development and testing of programs and is largely responsible for the fact that a
JavaScript program usually consists of a large number of relatively simple functions.

It should be clear that the possibility of associating values with names and later
retrieving them means that the interpreter must maintain some sort of memory that
keeps track of the name-object pairs. This memory is called the environment (more
precisely the program environment, since we will see later that a computation may
involve a number of different environments).5

1.1.3 Evaluating Operator Combinations
One of our goals in this chapter is to isolate issues about thinking procedurally.
As a case in point, let us consider that, in evaluating operator combinations, the
interpreter is itself following a procedure.

• To evaluate an operator combination, do the following:
1. Evaluate the operand expressions of the combination.
2. Apply the function that is denoted by the operator to the arguments that are

the values of the operands.

5. Chapter 3 will show that this notion of environment is crucial for understanding how the
interpreter works. Chapter 4 will use environments for implementing interpreters.

1.1.3 Evaluating Operator Combinations 7

1526

242

390

123

64

+

*

*

+

Figure 1.1 Tree representation, showing the value of each subexpression.

Even this simple rule illustrates some important points about processes in general.
First, observe that the first step dictates that in order to accomplish the evaluation
process for a combination we must first perform the evaluation process on each
operand of the combination. Thus, the evaluation rule is recursive in nature; that is,
it includes, as one of its steps, the need to invoke the rule itself.

Notice how succinctly the idea of recursion can be used to express what, in
the case of a deeply nested combination, would otherwise be viewed as a rather
complicated process. For example, evaluating

(2 + 4 * 6) * (3 + 12);

requires that the evaluation rule be applied to four different combinations. We can
obtain a picture of this process by representing the combination in the form of a tree,
as shown in figure 1.1. Each combination is represented by a node with branches
corresponding to the operator and the operands of the combination stemming from
it. The terminal nodes (that is, nodes with no branches stemming from them) rep-
resent either operators or numbers. Viewing evaluation in terms of the tree, we can
imagine that the values of the operands percolate upward, starting from the terminal
nodes and then combining at higher and higher levels. In general, we shall see that
recursion is a very powerful technique for dealing with hierarchical, treelike objects.
In fact, the “percolate values upward” form of the evaluation rule is an example of a
general kind of process known as tree accumulation.

Next, observe that the repeated application of the first step brings us to the point
where we need to evaluate, not combinations, but primitive expressions such as
numerals or names. We take care of the primitive cases by stipulating that

• the values of numerals are the numbers that they name, and
• the values of names are the objects associated with those names in the environ-

ment.

The key point to notice is the role of the environment in determining the meaning
of the names in expressions. In an interactive language such as JavaScript, it is
meaningless to speak of the value of an expression such as x + 1 without speci-
fying any information about the environment that would provide a meaning for the
name x. As we shall see in chapter 3, the general notion of the environment as

8 Chapter 1 Building Abstractions with Functions

providing a context in which evaluation takes place will play an important role in
our understanding of program execution.

Notice that the evaluation rule given above does not handle declarations. For
instance, evaluating const x = 3; does not apply an equality operator = to two
arguments, one of which is the value of the name x and the other of which is 3,
since the purpose of the declaration is precisely to associate x with a value. (That is,
const x = 3; is not a combination.)

The letters in const are rendered in bold to indicate that it is a keyword in
JavaScript. Keywords carry a particular meaning, and thus cannot be used as names.
A keyword or a combination of keywords in a statement instructs the JavaScript
interpreter to treat the statement in a special way. Each such syntactic form has its
own evaluation rule. The various kinds of statements and expressions (each with its
associated evaluation rule) constitute the syntax of the programming language.

1.1.4 Compound Functions
We have identified in JavaScript some of the elements that must appear in any
powerful programming language:

• Numbers and arithmetic operations are primitive data and functions.
• Nesting of combinations provides a means of combining operations.
• Constant declarations that associate names with values provide a limited means

of abstraction.

Now we will learn about function declarations, a much more powerful abstraction
technique by which a compound operation can be given a name and then referred to
as a unit.

We begin by examining how to express the idea of “squaring.” We might say,
“To square something, take it times itself.” This is expressed in our language as

function square(x) {
return x * x;

}

We can understand this in the following way:

function square(x) { return x * x ; }x x x x x x
To square something, take it times itself.

We have here a compound function, which has been given the name square. The
function represents the operation of multiplying something by itself. The thing to be
multiplied is given a local name, x, which plays the same role that a pronoun plays
in natural language. Evaluating the declaration creates this compound function and
associates it with the name square.6

6. Observe that there are two different operations being combined here: we are creating the
function, and we are giving it the name square. It is possible, indeed important, to be able
to separate these two notions—to create functions without naming them, and to give names to
functions that have already been created. We will see how to do this in section 1.3.2.

1.1.4 Compound Functions 9

The simplest form of a function declaration is

function name(parameters) { return expression; }

The name is a symbol to be associated with the function definition in the envi-
ronment.7 The parameters are the names used within the body of the function to
refer to the corresponding arguments of the function. The parameters are grouped
within parentheses and separated by commas, as they will be in an application of
the function being declared. In the simplest form, the body of a function declaration
is a single return statement,8 which consists of the keyword return followed by
the return expression that will yield the value of the function application, when the
parameters are replaced by the actual arguments to which the function is applied.
Like constant declarations and expression statements, return statements end with a
semicolon.

Having declared square, we can now use it in a function application expression,
which we turn into a statement using a semicolon:

square(21);
441

Function applications are—after operator combinations—the second kind of combi-
nation of expressions into larger expressions that we encounter. The general form of
a function application is

function-expression(argument-expressions)

where the function-expression of the application specifies the function to be applied
to the comma-separated argument-expressions. To evaluate a function application,
the interpreter follows a procedure quite similar to the procedure for operator
combinations described in section 1.1.3.

• To evaluate a function application, do the following:
1. Evaluate the subexpressions of the application, namely the function expression

and the argument expressions.
2. Apply the function that is the value of the function expression to the values of

the argument expressions.

square(2 + 5);
49

Here, the argument expression is itself a compound expression, the operator combi-
nation 2 + 5.

7. Throughout this book, we will describe the general syntax of expressions by using italic
symbols—e.g., name—to denote the “slots” in the expression to be filled in when such an
expression is actually used.

8. More generally, the body of the function can be a sequence of statements. In this case, the
interpreter evaluates each statement in the sequence in turn until a return statement determines
the value of the function application.

10 Chapter 1 Building Abstractions with Functions

square(square(3));
81

Of course function application expressions can also serve as argument expressions.
We can also use square as a building block in defining other functions. For

example, x2 + y2 can be expressed as

square(x) + square(y)

We can easily declare a function sum_of_squares9 that, given any two numbers as
arguments, produces the sum of their squares:

function sum_of_squares(x, y) {
return square(x) + square(y);

}

sum_of_squares(3, 4);
25

Now we can use sum_of_squares as a building block in constructing further
functions:

function f(a) {
return sum_of_squares(a + 1, a * 2);

}

f(5);
136

In addition to compound functions, any JavaScript environment provides prim-
itive functions that are built into the interpreter or loaded from libraries. Besides
the primitive functions provided by the operators, the JavaScript environment used
in this book includes additional primitive functions such as the function math_log,
which computes the natural logarithm of its argument.10 These additional primitive
functions are used in exactly the same way as compound functions; evaluating the
application math_log(1) results in the number 0. Indeed, one could not tell by
looking at the definition of sum_of_squares given above whether square was built
into the interpreter, loaded from a library, or defined as a compound function.

9. The way multi-part names such as sum_of_squares are written affects the readability of
programs, and programming communities differ on this. According to the common JavaScript
convention, called camel case, the name would be sumOfSquares. The convention used in this
book is called snake case, and was chosen for its closer resemblance to the convention used in
the Scheme version of this book, where hyphens play the role of our underscores.

10. Our JavaScript environment includes all functions and constants of ECMAScript’s Math
object, under the names math_. . .. For example, ECMAScript’s Math.log is available as
math_log. The MIT Press web page for this book includes the JavaScript package sicp that
provides these and all other JavaScript functions that are considered primitive in the book.

https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object

1.1.5 The Substitution Model for Function Application 11

1.1.5 The Substitution Model for Function Application
To evaluate a function application, the interpreter follows the process described in
section 1.1.4. That is, the interpreter evaluates the elements of the application and ap-
plies the function (which is the value of the function expression of the application) to
the arguments (which are the values of the argument expressions of the application).

We can assume that the application of primitive functions is handled by the in-
terpreter or libraries. For compound functions, the application process is as follows:

• To apply a compound function to arguments, evaluate the return expression of the
function with each parameter replaced by the corresponding argument.11

To illustrate this process, let’s evaluate the application

f(5)

where f is the function declared in section 1.1.4. We begin by retrieving the return
expression of f:

sum_of_squares(a + 1, a * 2)

Then we replace the parameter a by the argument 5:

sum_of_squares(5 + 1, 5 * 2)

Thus the problem reduces to the evaluation of an application with two arguments and
a function expression sum_of_squares. Evaluating this application involves three
subproblems. We must evaluate the function expression to get the function to be
applied, and we must evaluate the argument expressions to get the arguments. Now
5 + 1 produces 6 and 5 * 2 produces 10, so we must apply the sum_of_squares
function to 6 and 10. These values are substituted for the parameters x and y in the
body of sum_of_squares, reducing the expression to

square(6) + square(10)

If we use the declaration of square, this reduces to

(6 * 6) + (10 * 10)

which reduces by multiplication to

36 + 100

and finally to

136

11. If the body of the function is a sequence of statements, the body is evaluated with the
parameters replaced, and the value of the application is the value of the return expression of the
first return statement encountered.

12 Chapter 1 Building Abstractions with Functions

The process we have just described is called the substitution model for function
application. It can be taken as a model that determines the “meaning” of function
application, insofar as the functions in this chapter are concerned. However, there
are two points that should be stressed:

• The purpose of the substitution is to help us think about function application, not
to provide a description of how the interpreter really works. Typical interpreters
do not evaluate function applications by manipulating the text of a function to sub-
stitute values for the parameters. In practice, the “substitution” is accomplished
by using a local environment for the parameters. We will discuss this more fully in
chapters 3 and 4 when we examine the implementation of an interpreter in detail.

• Over the course of this book, we will present a sequence of increasingly elaborate
models of how interpreters work, culminating with a complete implementation
of an interpreter and compiler in chapter 5. The substitution model is only the
first of these models—a way to get started thinking formally about the evaluation
process. In general, when modeling phenomena in science and engineering, we
begin with simplified, incomplete models. As we examine things in greater detail,
these simple models become inadequate and must be replaced by more refined
models. The substitution model is no exception. In particular, when we address in
chapter 3 the use of functions with “mutable data,” we will see that the substitu-
tion model breaks down and must be replaced by a more complicated model of
function application.12

Applicative order versus normal order
According to the description of evaluation given in section 1.1.4, the interpreter
first evaluates the function and argument expressions and then applies the resulting
function to the resulting arguments. This is not the only way to perform evaluation.
An alternative evaluation model would not evaluate the arguments until their values
were needed. Instead it would first substitute argument expressions for parameters
until it obtained an expression involving only operators and primitive functions, and
would then perform the evaluation. If we used this method, the evaluation of

f(5)

would proceed according to the sequence of expansions

sum_of_squares(5 + 1, 5 * 2)

square(5 + 1) + square(5 * 2)

(5 + 1) * (5 + 1) + (5 * 2) * (5 * 2)

12. Despite the simplicity of the substitution idea, it turns out to be surprisingly complicated
to give a rigorous mathematical definition of the substitution process. The problem arises from
the possibility of confusion between the names used for the parameters of a function and the
(possibly identical) names used in the expressions to which the function may be applied. Indeed,
there is a long history of erroneous definitions of substitution in the literature of logic and
programming semantics. See Stoy 1977 for a careful discussion of substitution.

1.1.6 Conditional Expressions and Predicates 13

followed by the reductions

6 * 6 + 10 * 10

36 + 100

136

This gives the same answer as our previous evaluation model, but the process is
different. In particular, the evaluations of 5 + 1 and 5 * 2 are each performed
twice here, corresponding to the reduction of the expression

x * x

with x replaced respectively by 5 + 1 and 5 * 2.
This alternative “fully expand and then reduce” evaluation method is known

as normal-order evaluation, in contrast to the “evaluate the arguments and then
apply” method that the interpreter actually uses, which is called applicative-order
evaluation. It can be shown that, for function applications that can be modeled using
substitution (including all the functions in the first two chapters of this book) and
that yield legitimate values, normal-order and applicative-order evaluation produce
the same value. (See exercise 1.5 for an instance of an “illegitimate” value where
normal-order and applicative-order evaluation do not give the same result.)

JavaScript uses applicative-order evaluation, partly because of the additional ef-
ficiency obtained from avoiding multiple evaluations of expressions such as those
illustrated with 5 + 1 and 5 * 2 above and, more significantly, because normal-
order evaluation becomes much more complicated to deal with when we leave the
realm of functions that can be modeled by substitution. On the other hand, normal-
order evaluation can be an extremely valuable tool, and we will investigate some of
its implications in chapters 3 and 4.13

1.1.6 Conditional Expressions and Predicates
The expressive power of the class of functions that we can define at this point is very
limited, because we have no way to make tests and to perform different operations
depending on the result of a test. For instance, we cannot declare a function that com-
putes the absolute value of a number by testing whether the number is nonnegative
and taking different actions in each case according to the rule

|x| =
{

x if x≥ 0
–x otherwise

This construct is a case analysis and can be written in JavaScript using a conditional
expression as

13. In chapter 3 we will introduce stream processing, which is a way of handling apparently “in-
finite” data structures by incorporating a limited form of normal-order evaluation. In section 4.2
we will modify the JavaScript interpreter to produce a normal-order variant of JavaScript.

14 Chapter 1 Building Abstractions with Functions

function abs(x) {
return x >= 0 ? x : - x;

}

which could be expressed in English as “If x is greater than or equal to zero, return x;
otherwise return –x.” The general form of a conditional expression is

predicate ? consequent-expression : alternative-expression

Conditional expressions begin with a predicate—that is, an expression whose value
is either true or false, two distinguished boolean values in JavaScript. The primi-
tive boolean expressions true and false trivially evaluate to the boolean values
true and false, respectively. The predicate is followed by a question mark, the
consequent-expression, a colon, and finally the alternative-expression.

To evaluate a conditional expression, the interpreter starts by evaluating the
predicate of the expression. If the predicate evaluates to true, the interpreter eval-
uates the consequent-expression and returns its value as the value of the conditional.
If the predicate evaluates to false, it evaluates the alternative-expression and returns
its value as the value of the conditional.14

The word predicate is used for operators and functions that return true or false,
as well as for expressions that evaluate to true or false. The absolute-value function
abs makes use of the primitive predicate >=, an operator that takes two numbers as
arguments and tests whether the first number is greater than or equal to the second
number, returning true or false accordingly.

If we prefer to handle the zero case separately, we can specify the function that
computes the absolute value of a number by writing

|x| =

 x if x > 0
0 if x = 0

–x otherwise

In JavaScript, we express a case analysis with multiple cases by nesting conditional
expressions as alternative expressions inside other conditional expressions:

function abs(x) {
return x > 0

? x
: x === 0
? 0
: - x;

}

Parentheses are not needed around the alternative expression x === 0 ? 0 : - x,
because the conditional-expression syntactic form is right-associative. The inter-
preter ignores spaces and line breaks, here inserted for readability to align the ?’s
and :’s under the first predicate of the case analysis. The general form of a case
analysis is

14. Conditionals in full JavaScript accept any value, not just a boolean, as the result of evaluat-
ing the predicate expression (see footnote 14 in section 4.1.3 for details). The programs in this
book use only boolean values as predicates of conditionals.

1.1.6 Conditional Expressions and Predicates 15

p1
? e1
: p2
? e2
...
: pn
? en
: final-alternative-expression

We call a predicate pi together with its consequent expression ei a clause. A case
analysis can be seen as a sequence of clauses, followed by a final alternative ex-
pression. According to the evaluation of conditional expressions, a case analysis
is evaluated by first evaluating the predicate p1. If its value is false, then p2 is
evaluated. If p2’s value is also false, then p3 is evaluated. This process continues
until a predicate is found whose value is true, in which case the interpreter returns
the value of the corresponding consequent expression e of the clause as the value of
the case analysis. If none of the p’s is found to be true, the value of the case analysis
is the value of the final alternative expression.

In addition to primitive predicates such as >=, >, <, <=, ===, and !== that are
applied to numbers,15 there are logical composition operations, which enable us to
construct compound predicates. The three most frequently used are these:

• expression1 && expression2
This operation expresses logical conjunction, meaning roughly the same as the
English word “and.” This syntactic form is syntactic sugar16 for
expression1 ? expression2 : false.

• expression1 || expression2
This operation expresses logical disjunction, meaning roughly the same as the
English word “or.” This syntactic form is syntactic sugar for
expression1 ? true : expression2.

• ! expression
This operation expresses logical negation, meaning roughly the same as the En-
glish word “not.” The value of the expression is true when expression evaluates to
false, and false when expression evaluates to true.

Notice that && and || are syntactic forms, not operators; their right-hand expression
is not always evaluated. The operator !, on the other hand, follows the evaluation
rule of section 1.1.3. It is a unary operator, which means that it takes only one
argument, whereas the arithmetic operators and primitive predicates discussed so
far are binary, taking two arguments. The operator ! precedes its argument; we call
it a prefix operator. Another prefix operator is the numeric negation operator, an
example of which is the expression - x in the abs functions above.

15. For now, we restrict these operators to number arguments. In sections 2.3.1 and 3.3.1, we
shall generalize the equality and inequality predicates === and !==.

16. Syntactic forms that are simply convenient alternative surface structures for things that can
be written in more uniform ways are sometimes called syntactic sugar, to use a phrase coined
by Peter Landin.

16 Chapter 1 Building Abstractions with Functions

As an example of how these predicates are used, the condition that a number x
be in the range 5 < x < 10 may be expressed as

x > 5 && x < 10

The syntactic form && has lower precedence than the comparison operators > and <,
and the conditional-expression syntactic form · · · ?· · · :· · · has lower precedence
than any other operator we have encountered so far, a property we used in the abs
functions above.

As another example, we can declare a predicate to test whether one number is
greater than or equal to another as

function greater_or_equal(x, y) {
return x > y || x === y;

}

or alternatively as

function greater_or_equal(x, y) {
return ! (x < y);

}

The function greater_or_equal, when applied to two numbers, behaves the same
as the operator >=. Unary operators have higher precedence than binary operators,
which makes the parentheses in this example necessary.

Exercise 1.1
Below is a sequence of statements. What is the result printed by the interpreter in response
to each statement? Assume that the sequence is to be evaluated in the order in which it is
presented.

10;

5 + 3 + 4;

9 - 1;

6 / 2;

2 * 4 + (4 - 6);

const a = 3;

const b = a + 1;

a + b + a * b;

a === b;

b > a && b < a * b ? b : a;

a === 4
? 6
: b === 4
? 6 + 7 + a
: 25;

1.1.6 Conditional Expressions and Predicates 17

2 + (b > a ? b : a);

(a > b
? a
: a < b
? b
: -1)

*
(a + 1);

The parentheses around the conditional expressions in the last two statements are necessary
because the conditional-expression syntactic form has lower precedence than the arithmetic
operators + and *.

Exercise 1.2
Translate the following expression into JavaScript

5 + 4 +
(
2 –
(
3 – (6 + 4

5)
))

3(6 – 2)(2 – 7)

Exercise 1.3
Declare a function that takes three numbers as arguments and returns the sum of the squares
of the two larger numbers.

Exercise 1.4
Observe that our model of evaluation allows for applications whose function expressions
are compound expressions. Use this observation to describe the behavior of a_plus_abs_b:

function plus(a, b) { return a + b; }
function minus(a, b) { return a - b; }
function a_plus_abs_b(a, b) {

return (b >= 0 ? plus : minus)(a, b);
}

Exercise 1.5
Ben Bitdiddle has invented a test to determine whether the interpreter he is faced with is
using applicative-order evaluation or normal-order evaluation. He declares the following
two functions:

function p() { return p(); }

function test(x, y) {
return x === 0 ? 0 : y;

}

Then he evaluates the statement

test(0, p());

What behavior will Ben observe with an interpreter that uses applicative-order evaluation?
What behavior will he observe with an interpreter that uses normal-order evaluation? Ex-
plain your answer. (Assume that the evaluation rule for conditional expressions is the

18 Chapter 1 Building Abstractions with Functions

same whether the interpreter is using normal or applicative order: The predicate expres-
sion is evaluated first, and the result determines whether to evaluate the consequent or the
alternative expression.)

1.1.7 Example: Square Roots by Newton’s Method
Functions, as introduced above, are much like ordinary mathematical functions.
They specify a value that is determined by one or more parameters. But there is
an important difference between mathematical functions and computer functions.
Computer functions must be effective.

As a case in point, consider the problem of computing square roots. We can
define the square-root function as

√
x = the y such that y≥ 0 and y2 = x

This describes a perfectly legitimate mathematical function. We could use it to
recognize whether one number is the square root of another, or to derive facts
about square roots in general. On the other hand, the definition does not describe
a computer function. Indeed, it tells us almost nothing about how to actually find the
square root of a given number. It will not help matters to rephrase this definition in
pseudo-JavaScript:

function sqrt(x) {
return the y with y >= 0 && square(y) === x;

}

This only begs the question.
The contrast between mathematical function and computer function is a reflec-

tion of the general distinction between describing properties of things and describing
how to do things, or, as it is sometimes referred to, the distinction between declara-
tive knowledge and imperative knowledge. In mathematics we are usually concerned
with declarative (what is) descriptions, whereas in computer science we are usually
concerned with imperative (how to) descriptions.17

How does one compute square roots? The most common way is to use Newton’s
method of successive approximations, which says that whenever we have a guess y

17. Declarative and imperative descriptions are intimately related, as indeed are mathematics
and computer science. For instance, to say that the answer produced by a program is “correct”
is to make a declarative statement about the program. There is a large amount of research aimed
at establishing techniques for proving that programs are correct, and much of the technical
difficulty of this subject has to do with negotiating the transition between imperative statements
(from which programs are constructed) and declarative statements (which can be used to deduce
things). In a related vein, programming language designers have explored so-called very high-
level languages, in which one actually programs in terms of declarative statements. The idea
is to make interpreters sophisticated enough so that, given “what is” knowledge specified by
the programmer, they can generate “how to” knowledge automatically. This cannot be done in
general, but there are important areas where progress has been made. We shall revisit this idea
in chapter 4.

1.1.7 Example: Square Roots by Newton’s Method 19

for the value of the square root of a number x, we can perform a simple manipulation
to get a better guess (one closer to the actual square root) by averaging y with x/y.18

For example, we can compute the square root of 2 as follows. Suppose our initial
guess is 1:

Guess Quotient Average

1
2
1

= 2
(2 + 1)

2
= 1.5

1.5
2

1.5
= 1.3333

(1.3333 + 1.5)
2

= 1.4167

1.4167
2

1.4167
= 1.4118

(1.4167 + 1.4118)
2

= 1.4142

1.4142

Continuing this process, we obtain better and better approximations to the square
root.

Now let’s formalize the process in terms of functions. We start with a value for
the radicand (the number whose square root we are trying to compute) and a value
for the guess. If the guess is good enough for our purposes, we are done; if not, we
must repeat the process with an improved guess. We write this basic strategy as a
function:

function sqrt_iter(guess, x) {
return is_good_enough(guess, x)

? guess
: sqrt_iter(improve(guess, x), x);

}

A guess is improved by averaging it with the quotient of the radicand and the old
guess:

function improve(guess, x) {
return average(guess, x / guess);

}

where

function average(x, y) {
return (x + y) / 2;

}

We also have to say what we mean by “good enough.” The following will do for
illustration, but it is not really a very good test. (See exercise 1.7.) The idea is

18. This square-root algorithm is actually a special case of Newton’s method, which is a general
technique for finding roots of equations. The square-root algorithm itself was developed by
Heron of Alexandria in the first century CE. We will see how to express the general Newton’s
method as a JavaScript function in section 1.3.4.

20 Chapter 1 Building Abstractions with Functions

to improve the answer until it is close enough so that its square differs from the
radicand by less than a predetermined tolerance (here 0.001):19

function is_good_enough(guess, x) {
return abs(square(guess) - x) < 0.001;

}

Finally, we need a way to get started. For instance, we can always guess that the
square root of any number is 1:

function sqrt(x) {
return sqrt_iter(1, x);

}

If we type these declarations to the interpreter, we can use sqrt just as we can use
any function:

sqrt(9);
3.00009155413138

sqrt(100 + 37);
11.704699917758145

sqrt(sqrt(2) + sqrt(3));
1.7739279023207892

square(sqrt(1000));
1000.000369924366

The sqrt program also illustrates that the simple functional language we have
introduced so far is sufficient for writing any purely numerical program that one
could write in, say, C or Pascal. This might seem surprising, since we have not
included in our language any iterative (looping) constructs that direct the computer
to do something over and over again. The function sqrt_iter, on the other hand,
demonstrates how iteration can be accomplished using no special construct other
than the ordinary ability to call a function.20

Exercise 1.6
Alyssa P. Hacker doesn’t like the syntax of conditional expressions, involving the charac-
ters ? and :. “Why can’t I just declare an ordinary conditional function whose application
works just like conditional expressions?” she asks.21 Alyssa’s friend Eva Lu Ator claims
this can indeed be done, and she declares a conditional function as follows:

19. We will usually give predicates names starting with is_, to help us remember that they are
predicates.

20. Readers who are worried about the efficiency issues involved in using function calls to
implement iteration should note the remarks on “tail recursion” in section 1.2.1.

21. As a Lisp hacker from the original Structure and Interpretation of Computer Programs,
Alyssa prefers a simpler, more uniform syntax.

1.1.8 Functions as Black-Box Abstractions 21

function conditional(predicate, then_clause, else_clause) {
return predicate ? then_clause : else_clause;

}

Eva demonstrates the program for Alyssa:

conditional(2 === 3, 0, 5);
5

conditional(1 === 1, 0, 5);
0

Delighted, Alyssa uses conditional to rewrite the square-root program:

function sqrt_iter(guess, x) {
return conditional(is_good_enough(guess, x),

guess,
sqrt_iter(improve(guess, x),

x));
}

What happens when Alyssa attempts to use this to compute square roots? Explain.

Exercise 1.7
The is_good_enough test used in computing square roots will not be very effective for
finding the square roots of very small numbers. Also, in real computers, arithmetic opera-
tions are almost always performed with limited precision. This makes our test inadequate
for very large numbers. Explain these statements, with examples showing how the test fails
for small and large numbers. An alternative strategy for implementing is_good_enough is
to watch how guess changes from one iteration to the next and to stop when the change is
a very small fraction of the guess. Design a square-root function that uses this kind of end
test. Does this work better for small and large numbers?

Exercise 1.8
Newton’s method for cube roots is based on the fact that if y is an approximation to the
cube root of x, then a better approximation is given by the value

x/y2 + 2y
3

Use this formula to implement a cube-root function analogous to the square-root func-
tion. (In section 1.3.4 we will see how to implement Newton’s method in general as an
abstraction of these square-root and cube-root functions.)

1.1.8 Functions as Black-Box Abstractions
The function sqrt is our first example of a process defined by a set of mutually
defined functions. Notice that the declaration of sqrt_iter is recursive; that is, the
function is defined in terms of itself. The idea of being able to define a function
in terms of itself may be disturbing; it may seem unclear how such a “circular”
definition could make sense at all, much less specify a well-defined process to be

22 Chapter 1 Building Abstractions with Functions

square

is_good_enough

abs average

improve

sqrt_iter

sqrt

Figure 1.2 Functional decomposition of the sqrt program.

carried out by a computer. This will be addressed more carefully in section 1.2. But
first let’s consider some other important points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks up naturally into a
number of subproblems: how to tell whether a guess is good enough, how to improve
a guess, and so on. Each of these tasks is accomplished by a separate function. The
entire sqrt program can be viewed as a cluster of functions (shown in figure 1.2)
that mirrors the decomposition of the problem into subproblems.

The importance of this decomposition strategy is not simply that one is divid-
ing the program into parts. After all, we could take any large program and divide
it into parts—the first ten lines, the next ten lines, the next ten lines, and so on.
Rather, it is crucial that each function accomplishes an identifiable task that can
be used as a module in defining other functions. For example, when we define the
is_good_enough function in terms of square, we are able to regard the square
function as a “black box.” We are not at that moment concerned with how the func-
tion computes its result, only with the fact that it computes the square. The details
of how the square is computed can be suppressed, to be considered at a later time.
Indeed, as far as the is_good_enough function is concerned, square is not quite
a function but rather an abstraction of a function, a so-called functional abstraction.
At this level of abstraction, any function that computes the square is equally good.

Thus, considering only the values they return, the following two functions squar-
ing a number should be indistinguishable. Each takes a numerical argument and
produces the square of that number as the value.22

function square(x) {
return x * x;

}

function square(x) {
return math_exp(double(math_log(x)));

}
function double(x) {

return x + x;
}

22. It is not even clear which of these functions is a more efficient implementation. This
depends upon the hardware available. There are machines for which the “obvious” implemen-
tation is the less efficient one. Consider a machine that has extensive tables of logarithms and
antilogarithms stored in a very efficient manner.

1.1.8 Functions as Black-Box Abstractions 23

So a function should be able to suppress detail. The users of the function may
not have written the function themselves, but may have obtained it from another
programmer as a black box. A user should not need to know how the function is
implemented in order to use it.

Local names
One detail of a function’s implementation that should not matter to the user of the
function is the implementer’s choice of names for the function’s parameters. Thus,
the following functions should not be distinguishable:

function square(x) {
return x * x;

}

function square(y) {
return y * y;

}

This principle—that the meaning of a function should be independent of the pa-
rameter names used by its author—seems on the surface to be self-evident, but its
consequences are profound. The simplest consequence is that the parameter names
of a function must be local to the body of the function. For example, we used square
in the declaration of is_good_enough in our square-root function:

function is_good_enough(guess, x) {
return abs(square(guess) - x) < 0.001;

}

The intention of the author of is_good_enough is to determine if the square of the
first argument is within a given tolerance of the second argument. We see that the
author of is_good_enough used the name guess to refer to the first argument and
x to refer to the second argument. The argument of square is guess. If the author
of square used x (as above) to refer to that argument, we see that the x in is_good_
enough must be a different x than the one in square. Running the function square
must not affect the value of x that is used by is_good_enough, because that value
of x may be needed by is_good_enough after square is done computing.

If the parameters were not local to the bodies of their respective functions, then
the parameter x in square could be confused with the parameter x in is_good_
enough, and the behavior of is_good_enough would depend upon which version
of square we used. Thus, square would not be the black box we desired.

A parameter of a function has a very special role in the function declaration, in
that it doesn’t matter what name the parameter has. Such a name is called bound, and
we say that the function declaration binds its parameters. The meaning of a function
declaration is unchanged if a bound name is consistently renamed throughout the
declaration.23 If a name is not bound, we say that it is free. The set of statements
for which a binding declares a name is called the scope of that name. In a function

23. The concept of consistent renaming is actually subtle and difficult to define formally.
Famous logicians have made embarrassing errors here.

24 Chapter 1 Building Abstractions with Functions

declaration, the bound names declared as the parameters of the function have the
body of the function as their scope.

In the declaration of is_good_enough above, guess and x are bound names but
abs and square are free. The meaning of is_good_enough should be independent
of the names we choose for guess and x so long as they are distinct and different
from abs and square. (If we renamed guess to abs we would have introduced a
bug by capturing the name abs. It would have changed from free to bound.) The
meaning of is_good_enough is not independent of the choice of its free names,
however. It surely depends upon the fact (external to this declaration) that the name
abs refers to a function for computing the absolute value of a number. The function
is_good_enough will compute a different function if we substitute math_cos (the
primitive cosine function) for abs in its declaration.

Internal declarations and block structure
We have one kind of name isolation available to us so far: The parameters of a
function are local to the body of the function. The square-root program illustrates
another way in which we would like to control the use of names. The existing
program consists of separate functions:

function sqrt(x) {
return sqrt_iter(1, x);

}
function sqrt_iter(guess, x) {

return is_good_enough(guess, x)
? guess
: sqrt_iter(improve(guess, x), x);

}
function is_good_enough(guess, x) {

return abs(square(guess) - x) < 0.001;
}
function improve(guess, x) {

return average(guess, x / guess);
}

The problem with this program is that the only function that is important to
users of sqrt is sqrt. The other functions (sqrt_iter, is_good_enough, and
improve) only clutter up their minds. They may not declare any other function
called is_good_enough as part of another program to work together with the
square-root program, because sqrt needs it. The problem is especially severe in
the construction of large systems by many separate programmers. For example, in
the construction of a large library of numerical functions, many numerical functions
are computed as successive approximations and thus might have functions named
is_good_enough and improve as auxiliary functions. We would like to localize
the subfunctions, hiding them inside sqrt so that sqrt could coexist with other
successive approximations, each having its own private is_good_enough function.

1.1.8 Functions as Black-Box Abstractions 25

To make this possible, we allow a function to have internal declarations that are local
to that function. For example, in the square-root problem we can write

function sqrt(x) {
function is_good_enough(guess, x) {

return abs(square(guess) - x) < 0.001;
}
function improve(guess, x) {

return average(guess, x / guess);
}
function sqrt_iter(guess, x) {

return is_good_enough(guess, x)
? guess
: sqrt_iter(improve(guess, x), x);

}
return sqrt_iter(1, x);

}

Any matching pair of braces designates a block, and declarations inside the
block are local to the block. Such nesting of declarations, called block structure, is
basically the right solution to the simplest name-packaging problem. But there is a
better idea lurking here. In addition to internalizing the declarations of the auxiliary
functions, we can simplify them. Since x is bound in the declaration of sqrt, the
functions is_good_enough, improve, and sqrt_iter, which are declared inter-
nally to sqrt, are in the scope of x. Thus, it is not necessary to pass x explicitly
to each of these functions. Instead, we allow x to be a free name in the internal
declarations, as shown below. Then x gets its value from the argument with which
the enclosing function sqrt is called. This discipline is called lexical scoping.24

function sqrt(x) {
function is_good_enough(guess) {

return abs(square(guess) - x) < 0.001;
}
function improve(guess) {

return average(guess, x / guess);
}
function sqrt_iter(guess) {

return is_good_enough(guess)
? guess
: sqrt_iter(improve(guess));

}
return sqrt_iter(1);

}

24. Lexical scoping dictates that free names in a function are taken to refer to bindings made
by enclosing function declarations; that is, they are looked up in the environment in which
the function was declared. We will see how this works in detail in chapter 3 when we study
environments and the detailed behavior of the interpreter.

26 Chapter 1 Building Abstractions with Functions

We will use block structure extensively to help us break up large programs into
tractable pieces.25 The idea of block structure originated with the programming
language Algol 60. It appears in most advanced programming languages and is an
important tool for helping to organize the construction of large programs.

1.2 Functions and the Processes They Generate
We have now considered the elements of programming: We have used primitive
arithmetic operations, we have combined these operations, and we have abstracted
these composite operations by declaring them as compound functions. But that is not
enough to enable us to say that we know how to program. Our situation is analogous
to that of someone who has learned the rules for how the pieces move in chess
but knows nothing of typical openings, tactics, or strategy. Like the novice chess
player, we don’t yet know the common patterns of usage in the domain. We lack the
knowledge of which moves are worth making (which functions are worth declaring).
We lack the experience to predict the consequences of making a move (executing a
function).

The ability to visualize the consequences of the actions under consideration is
crucial to becoming an expert programmer, just as it is in any synthetic, creative
activity. In becoming an expert photographer, for example, one must learn how to
look at a scene and know how dark each region will appear on a print for each
possible choice of exposure and processing options. Only then can one reason back-
ward, planning framing, lighting, exposure, and processing to obtain the desired
effects. So it is with programming, where we are planning the course of action to
be taken by a process and where we control the process by means of a program.
To become experts, we must learn to visualize the processes generated by various
types of functions. Only after we have developed such a skill can we learn to reliably
construct programs that exhibit the desired behavior.

A function is a pattern for the local evolution of a computational process. It
specifies how each stage of the process is built upon the previous stage. We would
like to be able to make statements about the overall, or global, behavior of a process
whose local evolution has been specified by a function. This is very difficult to do in
general, but we can at least try to describe some typical patterns of process evolution.

25. Embedded declarations must come first in a function body. The management is not respon-
sible for the consequences of running programs that intertwine declaration and use; see also
footnotes 54 and 56 in section 1.3.2.

1.2.1 Linear Recursion and Iteration 27

In this section we will examine some common “shapes” for processes generated
by simple functions. We will also investigate the rates at which these processes
consume the important computational resources of time and space. The functions
we will consider are very simple. Their role is like that played by test patterns in
photography: as oversimplified prototypical patterns, rather than practical examples
in their own right.

1.2.1 Linear Recursion and Iteration
We begin by considering the factorial function, defined by

n! = n · (n – 1) · (n – 2) · · · 3 · 2 · 1

There are many ways to compute factorials. One way is to make use of the
observation that n! is equal to n times (n – 1)! for any positive integer n:

n! = n · [(n – 1) · (n – 2) · · · 3 · 2 · 1] = n · (n – 1)!

Thus, we can compute n! by computing (n – 1)! and multiplying the result by n. If
we add the stipulation that 1! is equal to 1, this observation translates directly into a
computer function:

function factorial(n) {
return n === 1

? 1
: n * factorial(n - 1);

}

We can use the substitution model of section 1.1.5 to watch this function in action
computing 6!, as shown in figure 1.3.

Now let’s take a different perspective on computing factorials. We could describe
a rule for computing n! by specifying that we first multiply 1 by 2, then multiply the
result by 3, then by 4, and so on until we reach n. More formally, we maintain a
running product, together with a counter that counts from 1 up to n. We can describe
the computation by saying that the counter and the product simultaneously change
from one step to the next according to the rule

product ← counter · product
counter ← counter + 1

and stipulating that n! is the value of the product when the counter exceeds n.

28 Chapter 1 Building Abstractions with Functions

factorial(6)
6 * factorial(5)
6 * (5 * factorial(4))
6 * (5 * (4 * factorial(3)))
6 * (5 * (4 * (3 * factorial(2))))
6 * (5 * (4 * (3 * (2 * factorial(1)))))
6 * (5 * (4 * (3 * (2 * 1))))
6 * (5 * (4 * (3 * 2)))
6 * (5 * (4 * 6))
6 * (5 * 24)
6 * 120
720

Figure 1.3 A linear recursive process for computing 6!.

Once again, we can recast our description as a function for computing factori-
als:26

function factorial(n) {
return fact_iter(1, 1, n);

}
function fact_iter(product, counter, max_count) {

return counter > max_count
? product
: fact_iter(counter * product,

counter + 1,
max_count);

}

As before, we can use the substitution model to visualize the process of computing
6!, as shown in figure 1.4.

Compare the two processes. From one point of view, they seem hardly different
at all. Both compute the same mathematical function on the same domain, and each
requires a number of steps proportional to n to compute n!. Indeed, both processes
even carry out the same sequence of multiplications, obtaining the same sequence
of partial products. On the other hand, when we consider the “shapes” of the two
processes, we find that they evolve quite differently.

26. In a real program we would probably use the block structure introduced in the last section
to hide the declaration of fact_iter:
function factorial(n) {

function iter(product, counter) {
return counter > n

? product
: iter(counter * product,

counter + 1);
}
return iter(1, 1);

}

We avoided doing this here so as to minimize the number of things to think about at once.

1.2.1 Linear Recursion and Iteration 29

factorial(6)
fact_iter(1, 1, 6)
fact_iter(1, 2, 6)
fact_iter(2, 3, 6)
fact_iter(6, 4, 6)
fact_iter(24, 5, 6)
fact_iter(120, 6, 6)
fact_iter(720, 7, 6)
720

Figure 1.4 A linear iterative process for computing 6!.

Consider the first process. The substitution model reveals a shape of expansion
followed by contraction, indicated by the arrow in figure 1.3. The expansion occurs
as the process builds up a chain of deferred operations (in this case, a chain of
multiplications). The contraction occurs as the operations are actually performed.
This type of process, characterized by a chain of deferred operations, is called a
recursive process. Carrying out this process requires that the interpreter keep track
of the operations to be performed later on. In the computation of n!, the length of
the chain of deferred multiplications, and hence the amount of information needed
to keep track of it, grows linearly with n (is proportional to n), just like the number
of steps. Such a process is called a linear recursive process.

By contrast, the second process does not grow and shrink. At each step, all
we need to keep track of, for any n, are the current values of the names product,
counter, and max_count. We call this an iterative process. In general, an iterative
process is one whose state can be summarized by a fixed number of state variables,
together with a fixed rule that describes how the state variables should be updated
as the process moves from state to state and an (optional) end test that specifies
conditions under which the process should terminate. In computing n!, the number
of steps required grows linearly with n. Such a process is called a linear iterative
process.

The contrast between the two processes can be seen in another way. In the it-
erative case, the state variables provide a complete description of the state of the
process at any point. If we stopped the computation between steps, all we would
need to do to resume the computation is to supply the interpreter with the values of
the three state variables. Not so with the recursive process. In this case there is some
additional “hidden” information, maintained by the interpreter and not contained
in the state variables, which indicates “where the process is” in negotiating the
chain of deferred operations. The longer the chain, the more information must be
maintained.27

27. When we discuss the implementation of functions on register machines in chapter 5, we
will see that any iterative process can be realized “in hardware” as a machine that has a fixed
set of registers and no auxiliary memory. In contrast, realizing a recursive process requires a
machine that uses an auxiliary data structure known as a stack.

30 Chapter 1 Building Abstractions with Functions

In contrasting iteration and recursion, we must be careful not to confuse the
notion of a recursive process with the notion of a recursive function. When we de-
scribe a function as recursive, we are referring to the syntactic fact that the function
declaration refers (either directly or indirectly) to the function itself. But when we
describe a process as following a pattern that is, say, linearly recursive, we are speak-
ing about how the process evolves, not about the syntax of how a function is written.
It may seem disturbing that we refer to a recursive function such as fact_iter as
generating an iterative process. However, the process really is iterative: Its state is
captured completely by its three state variables, and an interpreter need keep track
of only three names in order to execute the process.

One reason that the distinction between process and function may be confusing
is that most implementations of common languages (including C, Java, and Python)
are designed in such a way that the interpretation of any recursive function consumes
an amount of memory that grows with the number of function calls, even when the
process described is, in principle, iterative. As a consequence, these languages can
describe iterative processes only by resorting to special-purpose “looping constructs”
such as do, repeat, until, for, and while. The implementation of JavaScript we
shall consider in chapter 5 does not share this defect. It will execute an iterative
process in constant space, even if the iterative process is described by a recursive
function. An implementation with this property is called tail-recursive.28 With a tail-
recursive implementation, iteration can be expressed using the ordinary function call
mechanism, so that special iteration constructs are useful only as syntactic sugar.29

Exercise 1.9
Each of the following two functions defines a method for adding two positive integers in
terms of the functions inc, which increments its argument by 1, and dec, which decrements
its argument by 1.

28. Tail recursion has long been known as a compiler optimization trick. A coherent semantic
basis for tail recursion was provided by Carl Hewitt (1977), who explained it in terms of the
“message-passing” model of computation that we shall discuss in chapter 3. Inspired by this,
Gerald Jay Sussman and Guy Lewis Steele Jr. (see Steele 1975) constructed a tail-recursive in-
terpreter for Scheme. Steele later showed how tail recursion is a consequence of the natural way
to compile function calls (Steele 1977). The IEEE standard for Scheme requires that Scheme
implementations be tail-recursive. The ECMA standard for JavaScript eventually followed suit
with ECMAScript 2015 (ECMA 2015). Note, however, that as of this writing (2021), most
implementations of JavaScript do not comply with this standard with respect to tail recursion.

29. Exercise 4.7 explores JavaScript’s while loops as syntactic sugar for functions that give rise
to iterative processes. The full language JavaScript, like other conventional languages, features
a plethora of syntactic forms, all of which can be expressed more uniformly in the language Lisp.
This, together with the fact that these constructs typically involve semicolons whose placement
rules are sometimes not obvious, led Alan Perlis to quip: “Syntactic sugar causes cancer of the
semicolon.”

1.2.1 Linear Recursion and Iteration 31

function plus(a, b) {
return a === 0 ? b : inc(plus(dec(a), b));

}

function plus(a, b) {
return a === 0 ? b : plus(dec(a), inc(b));

}

Using the substitution model, illustrate the process generated by each function in evaluating
plus(4, 5);. Are these processes iterative or recursive?

Exercise 1.10
The following function computes a mathematical function called Ackermann’s function.

function A(x, y) {
return y === 0

? 0
: x === 0
? 2 * y
: y === 1
? 2
: A(x - 1, A(x, y - 1));

}

What are the values of the following statements?

A(1, 10);

A(2, 4);

A(3, 3);

Consider the following functions, where A is the function declared above:

function f(n) {
return A(0, n);

}
function g(n) {

return A(1, n);
}
function h(n) {

return A(2, n);
}
function k(n) {

return 5 * n * n;
}

Give concise mathematical definitions for the functions computed by the functions f, g,
and h for positive integer values of n. For example, k(n) computes 5n2.

32 Chapter 1 Building Abstractions with Functions

 fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

1 1 10 0

01

fib(1) fib(0)

1

Figure 1.5 The tree-recursive process generated in computing fib(5).

1.2.2 Tree Recursion
Another common pattern of computation is called tree recursion. As an example,
consider computing the sequence of Fibonacci numbers, in which each number is
the sum of the preceding two:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

In general, the Fibonacci numbers can be defined by the rule

Fib(n) =

 0 if n = 0
1 if n = 1
Fib(n – 1) + Fib(n – 2) otherwise

We can immediately translate this definition into a recursive function for computing
Fibonacci numbers:

function fib(n) {
return n === 0

? 0
: n === 1
? 1
: fib(n - 1) + fib(n - 2);

}

Consider the pattern of this computation. To compute fib(5), we compute
fib(4) and fib(3). To compute fib(4), we compute fib(3) and fib(2). In
general, the evolved process looks like a tree, as shown in figure 1.5. Notice that the
branches split into two at each level (except at the bottom); this reflects the fact that
the fib function calls itself twice each time it is invoked.

1.2.2 Tree Recursion 33

This function is instructive as a prototypical tree recursion, but it is a terrible way
to compute Fibonacci numbers because it does so much redundant computation. No-
tice in figure 1.5 that the entire computation of fib(3)—almost half the work—is
duplicated. In fact, it is not hard to show that the number of times the function will
compute fib(1) or fib(0) (the number of leaves in the above tree, in general) is
precisely Fib(n + 1). To get an idea of how bad this is, one can show that the value
of Fib(n) grows exponentially with n. More precisely (see exercise 1.13), Fib(n) is
the closest integer to φ n/

√
5, where

φ = (1 +
√

5)/2 ≈ 1.6180

is the golden ratio, which satisfies the equation

φ 2 = φ + 1

Thus, the process uses a number of steps that grows exponentially with the input.
On the other hand, the space required grows only linearly with the input, because
we need keep track only of which nodes are above us in the tree at any point in the
computation. In general, the number of steps required by a tree-recursive process
will be proportional to the number of nodes in the tree, while the space required will
be proportional to the maximum depth of the tree.

We can also formulate an iterative process for computing the Fibonacci numbers.
The idea is to use a pair of integers a and b, initialized to Fib(1) = 1 and Fib(0) = 0,
and to repeatedly apply the simultaneous transformations

a ← a + b
b ← a

It is not hard to show that, after applying this transformation n times, a and b will
be equal, respectively, to Fib(n + 1) and Fib(n). Thus, we can compute Fibonacci
numbers iteratively using the function

function fib(n) {
return fib_iter(1, 0, n);

}
function fib_iter(a, b, count) {

return count === 0
? b
: fib_iter(a + b, a, count - 1);

}

This second method for computing Fib(n) is a linear iteration. The difference in
number of steps required by the two methods—one linear in n, one growing as fast
as Fib(n) itself—is enormous, even for small inputs.

One should not conclude from this that tree-recursive processes are useless.
When we consider processes that operate on hierarchically structured data rather
than numbers, we will find that tree recursion is a natural and powerful tool.30 But

30. An example of this was hinted at in section 1.1.3: The interpreter itself evaluates
expressions using a tree-recursive process.

34 Chapter 1 Building Abstractions with Functions

even in numerical operations, tree-recursive processes can be useful in helping us
to understand and design programs. For instance, although the first fib function
is much less efficient than the second one, it is more straightforward, being little
more than a translation into JavaScript of the definition of the Fibonacci sequence.
To formulate the iterative algorithm required noticing that the computation could be
recast as an iteration with three state variables.

Example: Counting change
It takes only a bit of cleverness to come up with the iterative Fibonacci algorithm.
In contrast, consider the following problem: How many different ways can we make
change of $1.00 (100 cents), given half-dollars, quarters, dimes, nickels, and pennies
(50 cents, 25 cents, 10 cents, 5 cents, and 1 cent, respectively)? More generally, can
we write a function to compute the number of ways to change any given amount of
money?

This problem has a simple solution as a recursive function. Suppose we think of
the types of coins available as arranged in some order. Then the following relation
holds:

The number of ways to change amount a using n kinds of coins equals
• the number of ways to change amount a using all but the first kind of coin,

plus
• the number of ways to change amount a – d using all n kinds of coins,

where d is the denomination of the first kind of coin.

To see why this is true, observe that the ways to make change can be divided
into two groups: those that do not use any of the first kind of coin, and those that do.
Therefore, the total number of ways to make change for some amount is equal to the
number of ways to make change for the amount without using any of the first kind
of coin, plus the number of ways to make change assuming that we do use the first
kind of coin. But the latter number is equal to the number of ways to make change
for the amount that remains after using a coin of the first kind.

Thus, we can recursively reduce the problem of changing a given amount to
problems of changing smaller amounts or using fewer kinds of coins. Consider this
reduction rule carefully, and convince yourself that we can use it to describe an
algorithm if we specify the following degenerate cases:31

• If a is exactly 0, we should count that as 1 way to make change.
• If a is less than 0, we should count that as 0 ways to make change.
• If n is 0, we should count that as 0 ways to make change.

We can easily translate this description into a recursive function:

31. For example, work through in detail how the reduction rule applies to the problem of
making change for 10 cents using pennies and nickels.

1.2.2 Tree Recursion 35

function count_change(amount) {
return cc(amount, 5);

}
function cc(amount, kinds_of_coins) {

return amount === 0
? 1
: amount < 0 || kinds_of_coins === 0
? 0
: cc(amount, kinds_of_coins - 1)
+
cc(amount - first_denomination(kinds_of_coins),

kinds_of_coins);
}
function first_denomination(kinds_of_coins) {

return kinds_of_coins === 1 ? 1
: kinds_of_coins === 2 ? 5
: kinds_of_coins === 3 ? 10
: kinds_of_coins === 4 ? 25
: kinds_of_coins === 5 ? 50
: 0;

}

(The first_denomination function takes as input the number of kinds of coins
available and returns the denomination of the first kind. Here we are thinking of the
coins as arranged in order from largest to smallest, but any order would do as well.)
We can now answer our original question about changing a dollar:

count_change(100);
292

The function count_change generates a tree-recursive process with redundan-
cies similar to those in our first implementation of fib. On the other hand, it is not
obvious how to design a better algorithm for computing the result, and we leave
this problem as a challenge. The observation that a tree-recursive process may be
highly inefficient but often easy to specify and understand has led people to propose
that one could get the best of both worlds by designing a “smart compiler” that
could transform tree-recursive functions into more efficient functions that compute
the same result.32

32. One approach to coping with redundant computations is to arrange matters so that we
automatically construct a table of values as they are computed. Each time we are asked to
apply the function to some argument, we first look to see if the value is already stored in the
table, in which case we avoid performing the redundant computation. This strategy, known
as tabulation or memoization, can be implemented in a straightforward way. Tabulation can
sometimes be used to transform processes that require an exponential number of steps (such as
count_change) into processes whose space and time requirements grow linearly with the input.
See exercise 3.27.

36 Chapter 1 Building Abstractions with Functions

Exercise 1.11
A function f is defined by the rules f (n) = n if n < 3 and f (n) = f (n – 1) + 2f (n – 2) + 3f (n – 3)
if n≥ 3. Write a JavaScript function that computes f by means of a recursive process. Write
a function that computes f by means of an iterative process.

Exercise 1.12
The following pattern of numbers is called Pascal’s triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
. . .

The numbers at the edge of the triangle are all 1, and each number inside the triangle is the
sum of the two numbers above it.33 Write a function that computes elements of Pascal’s
triangle by means of a recursive process.

Exercise 1.13
Prove that Fib(n) is the closest integer to φ n/

√
5, where φ = (1 +

√
5)/2. Hint: Use induction

and the definition of the Fibonacci numbers to prove that Fib(n) = (φ n – ψn)/
√

5, where
ψ = (1 –

√
5)/2.

1.2.3 Orders of Growth
The previous examples illustrate that processes can differ considerably in the rates
at which they consume computational resources. One convenient way to describe
this difference is to use the notion of order of growth to obtain a gross measure of
the resources required by a process as the inputs become larger.

Let n be a parameter that measures the size of the problem, and let R(n) be the
amount of resources the process requires for a problem of size n. In our previous
examples we took n to be the number for which a given function is to be computed,
but there are other possibilities. For instance, if our goal is to compute an approxi-
mation to the square root of a number, we might take n to be the number of digits
accuracy required. For matrix multiplication we might take n to be the number of
rows in the matrices. In general there are a number of properties of the problem with
respect to which it will be desirable to analyze a given process. Similarly, R(n) might
measure the number of internal storage registers used, the number of elementary
machine operations performed, and so on. In computers that do only a fixed number

33. The elements of Pascal’s triangle are called the binomial coefficients, because the nth row
consists of the coefficients of the terms in the expansion of (x + y)n. This pattern for com-
puting the coefficients appeared in Blaise Pascal’s 1653 seminal work on probability theory,
Traité du triangle arithmétique. According to Edwards (2019), the same pattern appears in the
works of the eleventh-century Persian mathematician Al-Karaji, in the works of the twelfth-
century Hindu mathematician Bhaskara, and in the works of the thirteenth-century Chinese
mathematician Yang Hui.

1.2.3 Orders of Growth 37

of operations at a time, the time required will be proportional to the number of
elementary machine operations performed.

We say that R(n) has order of growth Θ(f (n)), written R(n) = Θ(f (n)) (pronounced
“theta of f (n)”), if there are positive constants k1 and k2 independent of n such that

k1 f (n) ≤ R(n) ≤ k2 f (n)

for any sufficiently large value of n. (In other words, for large n, the value R(n) is
sandwiched between k1f (n) and k2f (n).)

For instance, with the linear recursive process for computing factorial described
in section 1.2.1 the number of steps grows proportionally to the input n. Thus, the
steps required for this process grows as Θ(n). We also saw that the space required
grows as Θ(n). For the iterative factorial, the number of steps is still Θ(n) but
the space is Θ(1)—that is, constant.34 The tree-recursive Fibonacci computation
requires Θ(φ n) steps and space Θ(n), where φ is the golden ratio described in
section 1.2.2.

Orders of growth provide only a crude description of the behavior of a process.
For example, a process requiring n2 steps and a process requiring 1000n2 steps
and a process requiring 3n2 + 10n + 17 steps all have Θ(n2) order of growth. On
the other hand, order of growth provides a useful indication of how we may expect
the behavior of the process to change as we change the size of the problem. For a
Θ(n) (linear) process, doubling the size will roughly double the amount of resources
used. For an exponential process, each increment in problem size will multiply the
resource utilization by a constant factor. In the remainder of section 1.2 we will
examine two algorithms whose order of growth is logarithmic, so that doubling the
problem size increases the resource requirement by a constant amount.

Exercise 1.14
Draw the tree illustrating the process generated by the count_change function of sec-
tion 1.2.2 in making change for 11 cents. What are the orders of growth of the space and
number of steps used by this process as the amount to be changed increases?

Exercise 1.15
The sine of an angle (specified in radians) can be computed by making use of the
approximation sin x≈ x if x is sufficiently small, and the trigonometric identity

sin x = 3 sin
x
3

– 4 sin3 x
3

to reduce the size of the argument of sin. (For purposes of this exercise an angle is consid-
ered “sufficiently small” if its magnitude is not greater than 0.1 radians.) These ideas are
incorporated in the following functions:

34. These statements mask a great deal of oversimplification. For instance, if we count process
steps as “machine operations” we are making the assumption that the number of machine op-
erations needed to perform, say, a multiplication is independent of the size of the numbers to
be multiplied, which is false if the numbers are sufficiently large. Similar remarks hold for the
estimates of space. Like the design and description of a process, the analysis of a process can
be carried out at various levels of abstraction.

38 Chapter 1 Building Abstractions with Functions

function cube(x) {
return x * x * x;

}
function p(x) {

return 3 * x - 4 * cube(x);
}
function sine(angle) {

return ! (abs(angle) > 0.1)
? angle
: p(sine(angle / 3));

}

a. How many times is the function p applied when sine(12.15) is evaluated?

b. What is the order of growth in space and number of steps (as a function of a) used by
the process generated by the sine function when sine(a) is evaluated?

1.2.4 Exponentiation
Consider the problem of computing the exponential of a given number. We would
like a function that takes as arguments a base b and a positive integer exponent n
and computes bn. One way to do this is via the recursive definition

bn = b · bn–1

b0 = 1

which translates readily into the function

function expt(b, n) {
return n === 0

? 1
: b * expt(b, n - 1);

}

This is a linear recursive process, which requires Θ(n) steps and Θ(n) space. Just as
with factorial, we can readily formulate an equivalent linear iteration:

function expt(b, n) {
return expt_iter(b, n, 1);

}
function expt_iter(b, counter, product) {

return counter === 0
? product
: expt_iter(b, counter - 1, b * product);

}

This version requires Θ(n) steps and Θ(1) space.
We can compute exponentials in fewer steps by using successive squaring. For

instance, rather than computing b8 as

b · (b · (b · (b · (b · (b · (b · b))))))

1.2.4 Exponentiation 39

we can compute it using three multiplications:

b2 = b · b
b4 = b2 · b2

b8 = b4 · b4

This method works fine for exponents that are powers of 2. We can also take
advantage of successive squaring in computing exponentials in general if we use the
rule

bn = (bn/2)2 if n is even
bn = b · bn–1 if n is odd

We can express this method as a function:

function fast_expt(b, n) {
return n === 0

? 1
: is_even(n)
? square(fast_expt(b, n / 2))
: b * fast_expt(b, n - 1);

}

where the predicate to test whether an integer is even is defined in terms of the
operator %, which computes the remainder after integer division, by

function is_even(n) {
return n % 2 === 0;

}

The process evolved by fast_expt grows logarithmically with n in both space and
number of steps. To see this, observe that computing b2n using fast_expt requires
only one more multiplication than computing bn. The size of the exponent we can
compute therefore doubles (approximately) with every new multiplication we are
allowed. Thus, the number of multiplications required for an exponent of n grows
about as fast as the logarithm of n to the base 2. The process has Θ(log n) growth.35

The difference between Θ(log n) growth and Θ(n) growth becomes striking as
n becomes large. For example, fast_expt for n = 1000 requires only 14 multipli-
cations.36 It is also possible to use the idea of successive squaring to devise an
iterative algorithm that computes exponentials with a logarithmic number of steps

35. More precisely, the number of multiplications required is equal to 1 less than the log base
2 of n, plus the number of ones in the binary representation of n. This total is always less than
twice the log base 2 of n. The arbitrary constants k1 and k2 in the definition of order notation
imply that, for a logarithmic process, the base to which logarithms are taken does not matter, so
all such processes are described as Θ(log n).

36. You may wonder why anyone would care about raising numbers to the 1000th power. See
section 1.2.6.

40 Chapter 1 Building Abstractions with Functions

(see exercise 1.16), although, as is often the case with iterative algorithms, this is
not written down so straightforwardly as the recursive algorithm.37

Exercise 1.16
Design a function that evolves an iterative exponentiation process that uses successive
squaring and uses a logarithmic number of steps, as does fast_expt. (Hint: Using the ob-
servation that (bn/2)2 = (b2)n/2, keep, along with the exponent n and the base b, an additional
state variable a, and define the state transformation in such a way that the product abn is
unchanged from state to state. At the beginning of the process a is taken to be 1, and the
answer is given by the value of a at the end of the process. In general, the technique of
defining an invariant quantity that remains unchanged from state to state is a powerful way
to think about the design of iterative algorithms.)

Exercise 1.17
The exponentiation algorithms in this section are based on performing exponentiation by
means of repeated multiplication. In a similar way, one can perform integer multiplica-
tion by means of repeated addition. The following multiplication function (in which it is
assumed that our language can only add, not multiply) is analogous to the expt function:

function times(a, b) {
return b === 0

? 0
: a + times(a, b - 1);

}

This algorithm takes a number of steps that is linear in b. Now suppose we include, together
with addition, the functions double, which doubles an integer, and halve, which divides an
(even) integer by 2. Using these, design a multiplication function analogous to fast_expt
that uses a logarithmic number of steps.

Exercise 1.18
Using the results of exercises 1.16 and 1.17, devise a function that generates an iterative
process for multiplying two integers in terms of adding, doubling, and halving and uses a
logarithmic number of steps.38

Exercise 1.19
There is a clever algorithm for computing the Fibonacci numbers in a logarithmic number
of steps. Recall the transformation of the state variables a and b in the fib_iter process of
section 1.2.2: a← a + b and b← a. Call this transformation T , and observe that applying T
over and over again n times, starting with 1 and 0, produces the pair Fib(n + 1) and Fib(n).

37. This iterative algorithm is ancient. It appears in the Chandah-sutra by Áchárya, written
before 200 BCE. See Knuth 1997b, section 4.6.3, for a full discussion and analysis of this and
other methods of exponentiation.

38. This algorithm, which is sometimes known as the “Russian peasant method” of multipli-
cation, is ancient. Examples of its use are found in the Rhind Papyrus, one of the two oldest
mathematical documents in existence, written about 1700 BCE (and copied from an even older
document) by an Egyptian scribe named A’h-mose.

1.2.5 Greatest Common Divisors 41

In other words, the Fibonacci numbers are produced by applying Tn, the nth power of the
transformation T , starting with the pair (1, 0). Now consider T to be the special case of p = 0
and q = 1 in a family of transformations Tpq, where Tpq transforms the pair (a, b) according
to a← bq + aq + ap and b← bp + aq. Show that if we apply such a transformation Tpq twice,
the effect is the same as using a single transformation Tp′q′ of the same form, and compute
p′ and q′ in terms of p and q. This gives us an explicit way to square these transformations,
and thus we can compute Tn using successive squaring, as in the fast_expt function. Put
this all together to complete the following function, which runs in a logarithmic number of
steps:39

function fib(n) {
return fib_iter(1, 0, 0, 1, n);

}
function fib_iter(a, b, p, q, count) {

return count === 0
? b
: is_even(count)
? fib_iter(a,

b,
〈??〉, // compute p'
〈??〉, // compute q'
count / 2)

: fib_iter(b * q + a * q + a * p,
b * p + a * q,
p,
q,
count - 1);

}

1.2.5 Greatest Common Divisors
The greatest common divisor (GCD) of two integers a and b is defined to be the
largest integer that divides both a and b with no remainder. For example, the GCD
of 16 and 28 is 4. In chapter 2, when we investigate how to implement rational-
number arithmetic, we will need to be able to compute GCDs in order to reduce
rational numbers to lowest terms. (To reduce a rational number to lowest terms, we
must divide both the numerator and the denominator by their GCD. For example,
16/28 reduces to 4/7.) One way to find the GCD of two integers is to factor them
and search for common factors, but there is a famous algorithm that is much more
efficient.

The idea of the algorithm is based on the observation that, if r is the remainder
when a is divided by b, then the common divisors of a and b are precisely the same
as the common divisors of b and r. Thus, we can use the equation

GCD(a, b) = GCD(b, r)

to successively reduce the problem of computing a GCD to the problem of comput-
ing the GCD of smaller and smaller pairs of integers. For example,

39. This exercise was suggested by Joe Stoy, based on an example in Kaldewaij 1990.

42 Chapter 1 Building Abstractions with Functions

GCD(206, 40) = GCD(40, 6)
= GCD(6, 4)
= GCD(4, 2)
= GCD(2, 0)
= 2

reduces GCD(206, 40) to GCD(2, 0), which is 2. It is possible to show that starting
with any two positive integers and performing repeated reductions will always even-
tually produce a pair where the second number is 0. Then the GCD is the other
number in the pair. This method for computing the GCD is known as Euclid’s
Algorithm.40

It is easy to express Euclid’s Algorithm as a function:

function gcd(a, b) {
return b === 0 ? a : gcd(b, a % b);

}

This generates an iterative process, whose number of steps grows as the logarithm
of the numbers involved.

The fact that the number of steps required by Euclid’s Algorithm has logarithmic
growth bears an interesting relation to the Fibonacci numbers:

Lamé’s Theorem: If Euclid’s Algorithm requires k steps to compute the
GCD of some pair, then the smaller number in the pair must be greater than
or equal to the kth Fibonacci number.41

We can use this theorem to get an order-of-growth estimate for Euclid’s Algo-
rithm. Let n be the smaller of the two inputs to the function. If the process takes
k steps, then we must have n≥Fib(k)≈ φ k/

√
5. Therefore the number of steps k

grows as the logarithm (to the base φ) of n. Hence, the order of growth is Θ(log n).

40. Euclid’s Algorithm is so called because it appears in Euclid’s Elements (Book 7, ca. 300
BCE). According to Knuth (1997a), it can be considered the oldest known nontrivial algorithm.
The ancient Egyptian method of multiplication (exercise 1.18) is surely older, but, as Knuth
explains, Euclid’s Algorithm is the oldest known to have been presented as a general algorithm,
rather than as a set of illustrative examples.

41. This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and engi-
neer known chiefly for his contributions to mathematical physics. To prove the theorem, we
consider pairs (ak, bk), where ak≥ bk, for which Euclid’s Algorithm terminates in k steps.
The proof is based on the claim that, if (ak+1, bk+1)→ (ak, bk)→ (ak–1, bk–1) are three
successive pairs in the reduction process, then we must have bk+1≥ bk + bk–1. To verify the
claim, consider that a reduction step is defined by applying the transformation ak–1 = bk,
bk–1 = remainder of ak divided by bk. The second equation means that ak = qbk + bk–1 for some
positive integer q. And since q must be at least 1 we have ak = qbk + bk–1≥ bk + bk–1. But in
the previous reduction step we have bk+1 = ak. Therefore, bk+1 = ak≥ bk + bk–1. This verifies the
claim. Now we can prove the theorem by induction on k, the number of steps that the algorithm
requires to terminate. The result is true for k = 1, since this merely requires that b be at least as
large as Fib(1) = 1. Now, assume that the result is true for all integers less than or equal to k and
establish the result for k + 1. Let (ak+1, bk+1)→ (ak, bk)→ (ak–1, bk–1) be successive pairs in
the reduction process. By our induction hypotheses, we have bk–1≥Fib(k – 1) and bk≥Fib(k).
Thus, applying the claim we just proved together with the definition of the Fibonacci numbers
gives bk+1≥ bk + bk–1≥Fib(k) + Fib(k – 1) = Fib(k + 1), which completes the proof of Lamé’s
Theorem.

1.2.6 Example: Testing for Primality 43

Exercise 1.20
The process that a function generates is of course dependent on the rules used by the
interpreter. As an example, consider the iterative gcd function given above. Suppose we
were to interpret this function using normal-order evaluation, as discussed in section 1.1.5.
(The normal-order-evaluation rule for conditional expressions is described in exercise 1.5.)
Using the substitution method (for normal order), illustrate the process generated in eval-
uating gcd(206, 40) and indicate the remainder operations that are actually performed.
How many remainder operations are actually performed in the normal-order evaluation of
gcd(206, 40)? In the applicative-order evaluation?

1.2.6 Example: Testing for Primality
This section describes two methods for checking the primality of an integer n, one
with order of growth Θ(

√
n), and a “probabilistic” algorithm with order of growth

Θ(log n). The exercises at the end of this section suggest programming projects
based on these algorithms.

Searching for divisors
Since ancient times, mathematicians have been fascinated by problems concerning
prime numbers, and many people have worked on the problem of determining ways
to test if numbers are prime. One way to test if a number is prime is to find the
number’s divisors. The following program finds the smallest integral divisor (greater
than 1) of a given number n. It does this in a straightforward way, by testing n for
divisibility by successive integers starting with 2.

function smallest_divisor(n) {
return find_divisor(n, 2);

}
function find_divisor(n, test_divisor) {

return square(test_divisor) > n
? n
: divides(test_divisor, n)
? test_divisor
: find_divisor(n, test_divisor + 1);

}
function divides(a, b) {

return b % a === 0;
}

We can test whether a number is prime as follows: n is prime if and only if n is
its own smallest divisor.

function is_prime(n) {
return n === smallest_divisor(n);

}

The end test for find_divisor is based on the fact that if n is not prime it
must have a divisor less than or equal to

√
n.42 This means that the algorithm need

only test divisors between 1 and
√

n. Consequently, the number of steps required to
identify n as prime will have order of growth Θ(

√
n).

42. If d is a divisor of n, then so is n/d. But d and n/d cannot both be greater than
√

n.

44 Chapter 1 Building Abstractions with Functions

The Fermat test
The Θ(log n) primality test is based on a result from number theory known as
Fermat’s Little Theorem.43

Fermat’s Little Theorem: If n is a prime number and a is any positive
integer less than n, then a raised to the nth power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the same remain-
der when divided by n. The remainder of a number a when divided by n is also
referred to as the remainder of a modulo n, or simply as a modulo n.)

If n is not prime, then, in general, most of the numbers a < n will not satisfy the
above relation. This leads to the following algorithm for testing primality: Given a
number n, pick a random number a < n and compute the remainder of an modulo n.
If the result is not equal to a, then n is certainly not prime. If it is a, then chances are
good that n is prime. Now pick another random number a and test it with the same
method. If it also satisfies the equation, then we can be even more confident that n is
prime. By trying more and more values of a, we can increase our confidence in the
result. This algorithm is known as the Fermat test.

To implement the Fermat test, we need a function that computes the exponential
of a number modulo another number:

function expmod(base, exp, m) {
return exp === 0

? 1
: is_even(exp)
? square(expmod(base, exp / 2, m)) % m
: (base * expmod(base, exp - 1, m)) % m;

}

This is very similar to the fast_expt function of section 1.2.4. It uses successive
squaring, so that the number of steps grows logarithmically with the exponent.44

The Fermat test is performed by choosing at random a number a between 1
and n – 1 inclusive and checking whether the remainder modulo n of the nth power
of a is equal to a. The random number a is chosen using the primitive function
math_random, which returns a nonnegative number less than 1. Hence, to obtain a

43. Pierre de Fermat (1601–1665) is considered to be the founder of modern number theory.
He obtained many important number-theoretic results, but he usually announced just the results,
without providing his proofs. Fermat’s Little Theorem was stated in a letter he wrote in 1640.
The first published proof was given by Euler in 1736 (and an earlier, identical proof was discov-
ered in the unpublished manuscripts of Leibniz). The most famous of Fermat’s results—known
as Fermat’s Last Theorem—was jotted down in 1637 in his copy of the book Arithmetic (by
the third-century Greek mathematician Diophantus) with the remark “I have discovered a truly
remarkable proof, but this margin is too small to contain it.” Finding a proof of Fermat’s Last
Theorem became one of the most famous challenges in number theory. A complete solution
was finally given in 1995 by Andrew Wiles of Princeton University.

44. The reduction steps in the cases where the exponent e is greater than 1 are based on the fact
that, for any integers x, y, and m, we can find the remainder of x times y modulo m by computing
separately the remainders of x modulo m and y modulo m, multiplying these, and then taking
the remainder of the result modulo m. For instance, in the case where e is even, we compute
the remainder of be/2 modulo m, square this, and take the remainder modulo m. This technique
is useful because it means we can perform our computation without ever having to deal with
numbers much larger than m. (Compare exercise 1.25.)

1.2.6 Example: Testing for Primality 45

random number between 1 and n – 1, we multiply the return value of math_random
by n – 1, round down the result with the primitive function math_floor, and add 1:

function fermat_test(n) {
function try_it(a) {

return expmod(a, n, n) === a;
}
return try_it(1 + math_floor(math_random() * (n - 1)));

}

The following function runs the test a given number of times, as specified by a
parameter. Its value is true if the test succeeds every time, and false otherwise.

function fast_is_prime(n, times) {
return times === 0

? true
: fermat_test(n)
? fast_is_prime(n, times - 1)
: false;

}

Probabilistic methods
The Fermat test differs in character from most familiar algorithms, in which one
computes an answer that is guaranteed to be correct. Here, the answer obtained is
only probably correct. More precisely, if n ever fails the Fermat test, we can be
certain that n is not prime. But the fact that n passes the test, while an extremely
strong indication, is still not a guarantee that n is prime. What we would like to say
is that for any number n, if we perform the test enough times and find that n always
passes the test, then the probability of error in our primality test can be made as
small as we like.

Unfortunately, this assertion is not quite correct. There do exist numbers that
fool the Fermat test: numbers n that are not prime and yet have the property that an

is congruent to a modulo n for all integers a < n. Such numbers are extremely rare,
so the Fermat test is quite reliable in practice.45 There are variations of the Fermat
test that cannot be fooled. In these tests, as with the Fermat method, one tests the
primality of an integer n by choosing a random integer a < n and checking some
condition that depends upon n and a. (See exercise 1.28 for an example of such a
test.) On the other hand, in contrast to the Fermat test, one can prove that, for any n,
the condition does not hold for most of the integers a < n unless n is prime. Thus, if
n passes the test for some random choice of a, the chances are better than even that
n is prime. If n passes the test for two random choices of a, the chances are better
than 3 out of 4 that n is prime. By running the test with more and more randomly
chosen values of a we can make the probability of error as small as we like.

45. Numbers that fool the Fermat test are called Carmichael numbers, and little is known
about them other than that they are extremely rare. There are 255 Carmichael numbers below
100,000,000. The smallest few are 561, 1105, 1729, 2465, 2821, and 6601. In testing primality
of very large numbers chosen at random, the chance of stumbling upon a value that fools the
Fermat test is less than the chance that cosmic radiation will cause the computer to make an error
in carrying out a “correct” algorithm. Considering an algorithm to be inadequate for the first
reason but not for the second illustrates the difference between mathematics and engineering.

46 Chapter 1 Building Abstractions with Functions

The existence of tests for which one can prove that the chance of error becomes
arbitrarily small has sparked interest in algorithms of this type, which have come to
be known as probabilistic algorithms. There is a great deal of research activity in
this area, and probabilistic algorithms have been fruitfully applied to many fields.46

Exercise 1.21
Use the smallest_divisor function to find the smallest divisor of each of the following
numbers: 199, 1999, 19999.

Exercise 1.22
Assume a primitive function get_time of no arguments that returns the number of millisec-
onds that have passed since 00:00:00 UTC on Thursday, 1 January, 1970.47 The following
timed_prime_test function, when called with an integer n, prints n and checks to see if n
is prime. If n is prime, the function prints three asterisks48 followed by the amount of time
used in performing the test.

function timed_prime_test(n) {
display(n);
return start_prime_test(n, get_time());

}
function start_prime_test(n, start_time) {

return is_prime(n)
? report_prime(get_time() - start_time)
: true;

}
function report_prime(elapsed_time) {

display(" *** ");
display(elapsed_time);

}

Using this function, write a function search_for_primes that checks the primality of
consecutive odd integers in a specified range. Use your function to find the three smallest
primes larger than 1000; larger than 10,000; larger than 100,000; larger than 1,000,000.
Note the time needed to test each prime. Since the testing algorithm has order of growth
of Θ(

√
n), you should expect that testing for primes around 10,000 should take about

√
10

times as long as testing for primes around 1000. Do your timing data bear this out? How

46. One of the most striking applications of probabilistic prime testing has been to the field of
cryptography. Although it is computationally infeasible to factor an arbitrary 300-digit number
as of this writing (2021), the primality of such a number can be checked in a few seconds with
the Fermat test. This fact forms the basis of a technique for constructing “unbreakable codes”
suggested by Rivest, Shamir, and Adleman (1977). The resulting RSA algorithm has become
a widely used technique for enhancing the security of electronic communications. Because of
this and related developments, the study of prime numbers, once considered the epitome of a
topic in “pure” mathematics to be studied only for its own sake, now turns out to have important
practical applications to cryptography, electronic funds transfer, and information retrieval.

47. This date is called the UNIX epoch and is part of the specification of functions that deal
with time in the UNIXTM operating system.

48. The primitive function display returns its argument, but also prints it. Here " *** " is a
string, a sequence of characters that we pass as argument to the display function. Section 2.3.1
introduces strings more thoroughly.

1.2.6 Example: Testing for Primality 47

well do the data for 100,000 and 1,000,000 support the
√

n prediction? Is your result
compatible with the notion that programs on your machine run in time proportional to
the number of steps required for the computation?

Exercise 1.23
The smallest_divisor function shown at the start of this section does lots of needless
testing: After it checks to see if the number is divisible by 2 there is no point in checking
to see if it is divisible by any larger even numbers. This suggests that the values used for
test_divisor should not be 2, 3, 4, 5, 6, . . . but rather 2, 3, 5, 7, 9, To implement this
change, declare a function next that returns 3 if its input is equal to 2 and otherwise returns
its input plus 2. Modify the smallest_divisor function to use next(test_divisor) in-
stead of test_divisor + 1. With timed_prime_test incorporating this modified version
of smallest_divisor, run the test for each of the 12 primes found in exercise 1.22. Since
this modification halves the number of test steps, you should expect it to run about twice
as fast. Is this expectation confirmed? If not, what is the observed ratio of the speeds of the
two algorithms, and how do you explain the fact that it is different from 2?

Exercise 1.24
Modify the timed_prime_test function of exercise 1.22 to use fast_is_prime (the Fer-
mat method), and test each of the 12 primes you found in that exercise. Since the Fermat
test has Θ(log n) growth, how would you expect the time to test primes near 1,000,000 to
compare with the time needed to test primes near 1000? Do your data bear this out? Can
you explain any discrepancy you find?

Exercise 1.25
Alyssa P. Hacker complains that we went to a lot of extra work in writing expmod. After
all, she says, since we already know how to compute exponentials, we could have simply
written

function expmod(base, exp, m) {
return fast_expt(base, exp) % m;

}

Is she correct? Would this function serve as well for our fast prime tester? Explain.

Exercise 1.26
Louis Reasoner is having great difficulty doing exercise 1.24. His fast_is_prime test
seems to run more slowly than his is_prime test. Louis calls his friend Eva Lu Ator over to
help. When they examine Louis’s code, they find that he has rewritten the expmod function
to use an explicit multiplication, rather than calling square:

function expmod(base, exp, m) {
return exp === 0

? 1
: is_even(exp)
? (expmod(base, exp / 2, m)

* expmod(base, exp / 2, m)) % m
: (base * expmod(base, exp - 1, m)) % m;

}

“I don’t see what difference that could make,” says Louis. “I do.” says Eva. “By writing the
function like that, you have transformed the Θ(log n) process into a Θ(n) process.” Explain.

48 Chapter 1 Building Abstractions with Functions

Exercise 1.27
Demonstrate that the Carmichael numbers listed in footnote 45 really do fool the Fermat
test. That is, write a function that takes an integer n and tests whether an is congruent to a
modulo n for every a < n, and try your function on the given Carmichael numbers.

Exercise 1.28
One variant of the Fermat test that cannot be fooled is called the Miller–Rabin test (Miller
1976; Rabin 1980). This starts from an alternate form of Fermat’s Little Theorem, which
states that if n is a prime number and a is any positive integer less than n, then a raised
to the (n – 1)st power is congruent to 1 modulo n. To test the primality of a number n by
the Miller–Rabin test, we pick a random number a < n and raise a to the (n – 1)st power
modulo n using the expmod function. However, whenever we perform the squaring step in
expmod, we check to see if we have discovered a “nontrivial square root of 1 modulo n,”
that is, a number not equal to 1 or n – 1 whose square is equal to 1 modulo n. It is possible to
prove that if such a nontrivial square root of 1 exists, then n is not prime. It is also possible
to prove that if n is an odd number that is not prime, then, for at least half the numbers
a < n, computing an–1 in this way will reveal a nontrivial square root of 1 modulo n. (This
is why the Miller–Rabin test cannot be fooled.) Modify the expmod function to signal if
it discovers a nontrivial square root of 1, and use this to implement the Miller–Rabin test
with a function analogous to fermat_test. Check your function by testing various known
primes and non-primes. Hint: One convenient way to make expmod signal is to have it
return 0.

1.3 Formulating Abstractions with Higher-Order Functions
We have seen that functions are, in effect, abstractions that describe compound op-
erations on numbers independent of the particular numbers. For example, when we
declare

function cube(x) {
return x * x * x;

}

we are not talking about the cube of a particular number, but rather about a method
for obtaining the cube of any number. Of course we could get along without ever
declaring this function, by always writing expressions such as

3 * 3 * 3
x * x * x
y * y * y

and never mentioning cube explicitly. This would place us at a serious disadvantage,
forcing us to work always at the level of the particular operations that happen to
be primitives in the language (multiplication, in this case) rather than in terms of
higher-level operations. Our programs would be able to compute cubes, but our
language would lack the ability to express the concept of cubing. One of the things
we should demand from a powerful programming language is the ability to build
abstractions by assigning names to common patterns and then to work in terms of
the abstractions directly. Functions provide this ability. This is why all but the most
primitive programming languages include mechanisms for declaring functions.

1.3.1 Functions as Arguments 49

Yet even in numerical processing we will be severely limited in our ability to
create abstractions if we are restricted to functions whose parameters must be num-
bers. Often the same programming pattern will be used with a number of different
functions. To express such patterns as concepts, we will need to construct functions
that can accept functions as arguments or return functions as values. Functions
that manipulate functions are called higher-order functions. This section shows
how higher-order functions can serve as powerful abstraction mechanisms, vastly
increasing the expressive power of our language.

1.3.1 Functions as Arguments
Consider the following three functions. The first computes the sum of the integers
from a through b:

function sum_integers(a, b) {
return a > b

? 0
: a + sum_integers(a + 1, b);

}

The second computes the sum of the cubes of the integers in the given range:

function sum_cubes(a, b) {
return a > b

? 0
: cube(a) + sum_cubes(a + 1, b);

}

The third computes the sum of a sequence of terms in the series

1
1 · 3

+
1

5 · 7
+

1
9 · 11

+ · · ·

which converges to π/8 (very slowly):49

function pi_sum(a, b) {
return a > b

? 0
: 1 / (a * (a + 2)) + pi_sum(a + 4, b);

}

These three functions clearly share a common underlying pattern. They are for
the most part identical, differing only in the name of the function, the function of a
used to compute the term to be added, and the function that provides the next value
of a. We could generate each of the functions by filling in slots in the same template:

function name(a, b) {
return a > b

? 0
: term(a) + name(next(a), b);

}

49. This series, usually written in the equivalent form π

4 = 1 – 1
3 + 1

5 – 1
7 + · · · , is due to Leibniz.

We’ll see how to use this as the basis for some fancy numerical tricks in section 3.5.3.

50 Chapter 1 Building Abstractions with Functions

The presence of such a common pattern is strong evidence that there is a useful
abstraction waiting to be brought to the surface. Indeed, mathematicians long ago
identified the abstraction of summation of a series and invented “sigma notation,”
for example

b

∑
n=a

f (n) = f (a) + · · ·+ f (b)

to express this concept. The power of sigma notation is that it allows mathemati-
cians to deal with the concept of summation itself rather than only with particular
sums—for example, to formulate general results about sums that are independent of
the particular series being summed.

Similarly, as program designers, we would like our language to be powerful
enough so that we can write a function that expresses the concept of summation itself
rather than only functions that compute particular sums. We can do so readily in our
functional language by taking the common template shown above and transforming
the “slots” into parameters:

function sum(term, a, next, b) {
return a > b

? 0
: term(a) + sum(term, next(a), next, b);

}

Notice that sum takes as its arguments the lower and upper bounds a and b together
with the functions term and next. We can use sum just as we would any function.
For example, we can use it (along with a function inc that increments its argument
by 1) to define sum_cubes:

function inc(n) {
return n + 1;

}
function sum_cubes(a, b) {

return sum(cube, a, inc, b);
}

Using this, we can compute the sum of the cubes of the integers from 1 to 10:

sum_cubes(1, 10);
3025

With the aid of an identity function to compute the term, we can define sum_
integers in terms of sum:

function identity(x) {
return x;

}

function sum_integers(a, b) {
return sum(identity, a, inc, b);

}

1.3.1 Functions as Arguments 51

Then we can add up the integers from 1 to 10:

sum_integers(1, 10);
55

We can also define pi_sum in the same way:50

function pi_sum(a, b) {
function pi_term(x) {

return 1 / (x * (x + 2));
}
function pi_next(x) {

return x + 4;
}
return sum(pi_term, a, pi_next, b);

}

Using these functions, we can compute an approximation to π:

8 * pi_sum(1, 1000);
3.139592655589783

Once we have sum, we can use it as a building block in formulating further
concepts. For instance, the definite integral of a function f between the limits a and
b can be approximated numerically using the formula∫ b

a
f =

[
f
(

a +
dx
2

)
+ f
(

a + dx +
dx
2

)
+ f
(

a + 2dx +
dx
2

)
+ · · ·

]
dx

for small values of dx. We can express this directly as a function:

function integral(f, a, b, dx) {
function add_dx(x) {

return x + dx;
}
return sum(f, a + dx / 2, add_dx, b) * dx;

}

integral(cube, 0, 1, 0.01);
0.24998750000000042

integral(cube, 0, 1, 0.001);
0.249999875000001

(The exact value of the integral of cube between 0 and 1 is 1/4.)

50. Notice that we have used block structure (section 1.1.8) to embed the declarations of
pi_next and pi_term within pi_sum, since these functions are unlikely to be useful for any
other purpose. We will see how to get rid of them altogether in section 1.3.2.

52 Chapter 1 Building Abstractions with Functions

Exercise 1.29
Simpson’s Rule is a more accurate method of numerical integration than the method il-
lustrated above. Using Simpson’s Rule, the integral of a function f between a and b is
approximated as

h
3

[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn–2 + 4yn–1 + yn]

where h = (b – a)/n, for some even integer n, and yk = f (a + kh). (Increasing n increases the
accuracy of the approximation.) Declare a function that takes as arguments f , a, b, and n
and returns the value of the integral, computed using Simpson’s Rule. Use your function
to integrate cube between 0 and 1 (with n = 100 and n = 1000), and compare the results to
those of the integral function shown above.

Exercise 1.30
The sum function above generates a linear recursion. The function can be rewritten so that
the sum is performed iteratively. Show how to do this by filling in the missing expressions
in the following declaration:

function sum(term, a, next, b) {
function iter(a, result) {

return 〈??〉
? 〈??〉
: iter(〈??〉, 〈??〉);

}
return iter(〈??〉, 〈??〉);

}

Exercise 1.31
a. The sum function is only the simplest of a vast number of similar abstractions that can

be captured as higher-order functions.51 Write an analogous function called product
that returns the product of the values of a function at points over a given range.
Show how to define factorial in terms of product. Also use product to compute
approximations to π using the formula52

π

4
=

2 · 4 · 4 · 6 · 6 · 8 · · ·
3 · 3 · 5 · 5 · 7 · 7 · · ·

b. If your product function generates a recursive process, write one that generates an
iterative process. If it generates an iterative process, write one that generates a recursive
process.

51. The intent of exercises 1.31–1.33 is to demonstrate the expressive power that is attained by
using an appropriate abstraction to consolidate many seemingly disparate operations. However,
though accumulation and filtering are elegant ideas, our hands are somewhat tied in using them
at this point since we do not yet have data structures to provide suitable means of combination
for these abstractions. We will return to these ideas in section 2.2.3 when we show how to use
sequences as interfaces for combining filters and accumulators to build even more powerful
abstractions. We will see there how these methods really come into their own as a powerful and
elegant approach to designing programs.

52. This formula was discovered by the seventeenth-century English mathematician John
Wallis.

1.3.2 Constructing Functions using Lambda Expressions 53

Exercise 1.32
a. Show that sum and product (exercise 1.31) are both special cases of a still more general

notion called accumulate that combines a collection of terms, using some general
accumulation function:

accumulate(combiner, null_value, term, a, next, b);

The function accumulate takes as arguments the same term and range specifications as
sum and product, together with a combiner function (of two arguments) that specifies
how the current term is to be combined with the accumulation of the preceding terms
and a null_value that specifies what base value to use when the terms run out. Write
accumulate and show how sum and product can both be declared as simple calls to
accumulate.

b. If your accumulate function generates a recursive process, write one that generates an
iterative process. If it generates an iterative process, write one that generates a recursive
process.

Exercise 1.33
You can obtain an even more general version of accumulate (exercise 1.32) by introducing
the notion of a filter on the terms to be combined. That is, combine only those terms
derived from values in the range that satisfy a specified condition. The resulting filtered_
accumulate abstraction takes the same arguments as accumulate, together with an addi-
tional predicate of one argument that specifies the filter. Write filtered_accumulate as
a function. Show how to express the following using filtered_accumulate:

a. the sum of the squares of the prime numbers in the interval a to b (assuming that you
have an is_prime predicate already written)

b. the product of all the positive integers less than n that are relatively prime to n (i.e., all
positive integers i < n such that GCD(i, n) = 1).

1.3.2 Constructing Functions using Lambda Expressions
In using sum as in section 1.3.1, it seems terribly awkward to have to declare trivial
functions such as pi_term and pi_next just so we can use them as arguments to
our higher-order function. Rather than declare pi_next and pi_term, it would be
more convenient to have a way to directly specify “the function that returns its input
incremented by 4” and “the function that returns the reciprocal of its input times its
input plus 2.” We can do this by introducing the lambda expression as a syntactic
form for creating functions. Using lambda expressions, we can describe what we
want as

x => x + 4

and

x => 1 / (x * (x + 2))

Then we can express our pi_sum function without declaring any auxiliary functions:

54 Chapter 1 Building Abstractions with Functions

function pi_sum(a, b) {
return sum(x => 1 / (x * (x + 2)),

a,
x => x + 4,
b);

}

Again using a lambda expression, we can write the integral function without
having to declare the auxiliary function add_dx:

function integral(f, a, b, dx) {
return sum(f,

a + dx / 2,
x => x + dx,
b)

*
dx;

}

In general, lambda expressions are used to create functions in the same way
as function declarations, except that no name is specified for the function and the
return keyword and braces are omitted (if there is only one parameter, the paren-
theses around the parameter list can also be omitted, as in the examples we have
seen).53

(parameters) => expression

The resulting function is just as much a function as one that is created using a
function declaration statement. The only difference is that it has not been associated
with any name in the environment. We consider

function plus4(x) {
return x + 4;

}

to be equivalent to54

const plus4 = x => x + 4;

We can read a lambda expression as follows:

x => x + 4x x x x x
The function of an argument x that results in the value plus 4.

53. In section 2.2.4, we will extend the syntax of lambda expressions to allow a block as the
body rather than just an expression, as in function declaration statements.

54. In JavaScript, there are subtle differences between the two versions: A function declaration
statement is automatically “hoisted” (moved) to the beginning of the surrounding block or to
the beginning of the program if it occurs outside of any block, whereas a constant declaration
is not moved. Names declared with function declaration can be reassigned using assignment
(section 3.1.1), whereas names declared with constant declarations can’t. In this book, we
avoid these features and treat a function declaration as equivalent to the corresponding constant
declaration.

1.3.2 Constructing Functions using Lambda Expressions 55

Like any expression that has a function as its value, a lambda expression can be
used as the function expression in an application such as

((x, y, z) => x + y + square(z))(1, 2, 3);
12

or, more generally, in any context where we would normally use a function name.55

Note that => has lower precedence than function application and thus the parentheses
around the lambda expression are necessary here.

Using const to create local names
Another use of lambda expressions is in creating local names. We often need local
names in our functions other than those that have been bound as parameters. For
example, suppose we wish to compute the function

f (x, y) = x(1 + xy)2 + y(1 – y) + (1 + xy)(1 – y)

which we could also express as

a = 1 + xy
b = 1 – y

f (x, y) = xa2 + yb + ab

In writing a function to compute f , we would like to include as local names not
only x and y but also the names of intermediate quantities like a and b. One way to
accomplish this is to use an auxiliary function to bind the local names:

function f(x, y) {
function f_helper(a, b) {

return x * square(a) + y * b + a * b;
}
return f_helper(1 + x * y, 1 - y);

}

Of course, we could use a lambda expression to specify an anonymous function
for binding our local names. The function body then becomes a single call to that
function:

function f_2(x, y) {
return ((a, b) => x * square(a) + y * b + a * b

)(1 + x * y, 1 - y);
}

55. It would be clearer and less intimidating to people learning JavaScript if a term more
obvious than lambda expression, such as function definition, were used. But the convention
is very firmly entrenched, not just for Lisp and Scheme but also for JavaScript, Java and other
languages, no doubt partly due to the influence of the Scheme editions of this book. The notation
is adopted from the λ calculus, a mathematical formalism introduced by the mathematical logi-
cian Alonzo Church (1941). Church developed the λ calculus to provide a rigorous foundation
for studying the notions of function and function application. The λ calculus has become a
basic tool for mathematical investigations of the semantics of programming languages.

56 Chapter 1 Building Abstractions with Functions

A more convenient way to declare local names is by using constant declarations
within the body of the function. Using const, the function can be written as

function f_3(x, y) {
const a = 1 + x * y;
const b = 1 - y;
return x * square(a) + y * b + a * b;

}

Names that are declared with const inside a block have the body of the immediately
surrounding block as their scope.56,57

Conditional statements
We have seen that it is often useful to declare names that are local to function dec-
larations. When functions become big, we should keep the scope of the names as
narrow as possible. Consider for example expmod in exercise 1.26.

function expmod(base, exp, m) {
return exp === 0

? 1
: is_even(exp)
? (expmod(base, exp / 2, m)

* expmod(base, exp / 2, m)) % m
: (base * expmod(base, exp - 1, m)) % m;

}

This function is unnecessarily inefficient, because it contains two identical calls:

expmod(base, exp / 2, m);

56. Note that a name declared in a block cannot be used before the declaration is fully evaluated,
regardless of whether the same name is declared outside the block. Thus in the program below,
the attempt to use the a declared at the top level to provide a value for the calculation of the b
declared in f cannot work.
const a = 1;
function f(x) {

const b = a + x;
const a = 5;
return a + b;

}
f(10);

The program leads to an error, because the a in a + x is used before its declaration is evalu-
ated. We will return to this program in section 4.1.6 (exercise 4.19), after we learn more about
evaluation.

57. The substitution model can be expanded to say that for a constant declaration, the value of
the expression after = is substituted for the name before = in the rest of the block body (after
the declaration), similar to the substitution of arguments for parameters in the evaluation of a
function application.

1.3.2 Constructing Functions using Lambda Expressions 57

While this can be easily fixed in this example using the square function, this is not
so easy in general. Without using square, we would be tempted to introduce a local
name for the expression as follows:

function expmod(base, exp, m) {
const half_exp = expmod(base, exp / 2, m);
return exp === 0

? 1
: is_even(exp)
? (half_exp * half_exp) % m
: (base * expmod(base, exp - 1, m)) % m;

}

This would make the function not just inefficient, but actually nonterminating! The
problem is that the constant declaration appears outside the conditional expression,
which means that it is executed even when the base case exp === 0 is met. To avoid
this situation, we provide for conditional statements, and allow return statements to
appear in the branches of the statement. Using a conditional statement, we can write
the function expmod as follows:

function expmod(base, exp, m) {
if (exp === 0) {

return 1;
} else {

if (is_even(exp)) {
const half_exp = expmod(base, exp / 2, m);
return (half_exp * half_exp) % m;

} else {
return (base * expmod(base, exp - 1, m)) % m;

}
}

}

The general form of a conditional statement is

if (predicate) { consequent-statements } else { alternative-statements }

As for a conditional expression, the interpreter first evaluates the predicate. If it eval-
uates to true, the interpreter evaluates the consequent-statements in sequence, and if
it evaluates to false, the interpreter evaluates the alternative-statements in sequence.
Evaluation of a return statement returns from the surrounding function, ignoring
any statements in the sequence after the return statement and any statements after
the conditional statement. Note that any constant declarations occurring in either
part are local to that part, because each part is enclosed in braces and thus forms its
own block.

58 Chapter 1 Building Abstractions with Functions

Exercise 1.34
Suppose we declare

function f(g) {
return g(2);

}

Then we have

f(square);
4

f(z => z * (z + 1));
6

What happens if we (perversely) ask the interpreter to evaluate the application f(f)?
Explain.

1.3.3 Functions as General Methods
We introduced compound functions in section 1.1.4 as a mechanism for abstracting
patterns of numerical operations so as to make them independent of the particular
numbers involved. With higher-order functions, such as the integral function of
section 1.3.1, we began to see a more powerful kind of abstraction: functions used
to express general methods of computation, independent of the particular functions
involved. In this section we discuss two more elaborate examples—general methods
for finding zeros and fixed points of functions—and show how these methods can
be expressed directly as functions.

Finding roots of equations by the half-interval method
The half-interval method is a simple but powerful technique for finding roots of an
equation f (x) = 0, where f is a continuous function. The idea is that, if we are given
points a and b such that f (a) < 0 < f (b), then f must have at least one zero between a
and b. To locate a zero, let x be the average of a and b and compute f (x). If f (x) > 0,
then f must have a zero between a and x. If f (x) < 0, then f must have a zero between
x and b. Continuing in this way, we can identify smaller and smaller intervals on
which f must have a zero. When we reach a point where the interval is small enough,
the process stops. Since the interval of uncertainty is reduced by half at each step of
the process, the maximal number of steps required grows as Θ(log(L/T)), where L is
the length of the original interval and T is the error tolerance (that is, the size of the
interval we will consider “small enough”). Here is a function that implements this
strategy:

1.3.3 Functions as General Methods 59

function search(f, neg_point, pos_point) {
const midpoint = average(neg_point, pos_point);
if (close_enough(neg_point, pos_point)) {

return midpoint;
} else {

const test_value = f(midpoint);
return positive(test_value)

? search(f, neg_point, midpoint)
: negative(test_value)
? search(f, midpoint, pos_point)
: midpoint;

}
}

We assume that we are initially given the function f together with points at which
its values are negative and positive. We first compute the midpoint of the two given
points. Next we check to see if the given interval is small enough, and if so we
simply return the midpoint as our answer. Otherwise, we compute as a test value
the value of f at the midpoint. If the test value is positive, then we continue the
process with a new interval running from the original negative point to the midpoint.
If the test value is negative, we continue with the interval from the midpoint to the
positive point. Finally, there is the possibility that the test value is 0, in which case
the midpoint is itself the root we are searching for. To test whether the endpoints
are “close enough” we can use a function similar to the one used in section 1.1.7 for
computing square roots:58

function close_enough(x, y) {
return abs(x - y) < 0.001;

}

The function search is awkward to use directly, because we can accidentally
give it points at which f ’s values do not have the required sign, in which case we
get a wrong answer. Instead we will use search via the following function, which
checks to see which of the endpoints has a negative function value and which has
a positive value, and calls the search function accordingly. If the function has the

58. We have used 0.001 as a representative “small” number to indicate a tolerance for the
acceptable error in a calculation. The appropriate tolerance for a real calculation depends upon
the problem to be solved and the limitations of the computer and the algorithm. This is often
a very subtle consideration, requiring help from a numerical analyst or some other kind of
magician.

60 Chapter 1 Building Abstractions with Functions

same sign on the two given points, the half-interval method cannot be used, in which
case the function signals an error.59

function half_interval_method(f, a, b) {
const a_value = f(a);
const b_value = f(b);
return negative(a_value) && positive(b_value)

? search(f, a, b)
: negative(b_value) && positive(a_value)
? search(f, b, a)
: error("values are not of opposite sign");

}

The following example uses the half-interval method to approximate π as the
root between 2 and 4 of sin x = 0:

half_interval_method(math_sin, 2, 4);
3.14111328125

Here is another example, using the half-interval method to search for a root of
the equation x3 – 2x – 3 = 0 between 1 and 2:

half_interval_method(x => x * x * x - 2 * x - 3, 1, 2);
1.89306640625

Finding fixed points of functions
A number x is called a fixed point of a function f if x satisfies the equation f (x) = x.
For some functions f we can locate a fixed point by beginning with an initial guess
and applying f repeatedly,

f (x), f (f (x)), f (f (f (x))), . . .

until the value does not change very much. Using this idea, we can devise a function
fixed_point that takes as inputs a function and an initial guess and produces an
approximation to a fixed point of the function. We apply the function repeatedly
until we find two successive values whose difference is less than some prescribed
tolerance:

const tolerance = 0.00001;
function fixed_point(f, first_guess) {

function close_enough(x, y) {
return abs(x - y) < tolerance;

}
function try_with(guess) {

const next = f(guess);
return close_enough(guess, next)

? next
: try_with(next);

}
return try_with(first_guess);

}

59. This can be accomplished using error, which takes as argument a string that is printed as
error message along with the number of the program line that gave rise to the call of error.

1.3.3 Functions as General Methods 61

For example, we can use this method to approximate the fixed point of the cosine
function, starting with 1 as an initial approximation:60

fixed_point(math_cos, 1);
0.7390822985224023

Similarly, we can find a solution to the equation y = sin y + cos y:

fixed_point(y => math_sin(y) + math_cos(y), 1);
1.2587315962971173

The fixed-point process is reminiscent of the process we used for finding square
roots in section 1.1.7. Both are based on the idea of repeatedly improving a guess
until the result satisfies some criterion. In fact, we can readily formulate the square-
root computation as a fixed-point search. Computing the square root of some number
x requires finding a y such that y2 = x. Putting this equation into the equivalent form
y = x/y, we recognize that we are looking for a fixed point of the function61 y 7→ x/y,
and we can therefore try to compute square roots as

function sqrt(x) {
return fixed_point(y => x / y, 1);

}

Unfortunately, this fixed-point search does not converge. Consider an initial guess y1.
The next guess is y2 = x/y1 and the next guess is y3 = x/y2 = x/(x/y1) = y1. This results
in an infinite loop in which the two guesses y1 and y2 repeat over and over, oscillating
about the answer.

One way to control such oscillations is to prevent the guesses from changing so
much. Since the answer is always between our guess y and x/y, we can make a new
guess that is not as far from y as x/y by averaging y with x/y, so that the next guess
after y is 1

2 (y + x/y) instead of x/y. The process of making such a sequence of guesses
is simply the process of looking for a fixed point of y 7→ 1

2 (y + x/y):

function sqrt(x) {
return fixed_point(y => average(y, x / y), 1);

}

(Note that y = 1
2 (y + x/y) is a simple transformation of the equation y = x/y; to derive

it, add y to both sides of the equation and divide by 2.)
With this modification, the square-root function works. In fact, if we unravel

the definitions, we can see that the sequence of approximations to the square root
generated here is precisely the same as the one generated by our original square-root
function of section 1.1.7. This approach of averaging successive approximations
to a solution, a technique we call average damping, often aids the convergence of
fixed-point searches.

60. To obtain a fixed point of cosine on a calculator, set it to radians mode and then repeatedly
press the cos button until the value does not change any longer.

61. 7→ (pronounced “maps to”) is the mathematician’s way of writing lambda expressions. y 7→
x/y means y => x / y, that is, the function whose value at y is x/y.

62 Chapter 1 Building Abstractions with Functions

Exercise 1.35
Show that the golden ratio φ (section 1.2.2) is a fixed point of the transformation x 7→
1 + 1/x, and use this fact to compute φ by means of the fixed_point function.

Exercise 1.36
Modify fixed_point so that it prints the sequence of approximations it generates, using
the primitive function display shown in exercise 1.22. Then find a solution to xx = 1000
by finding a fixed point of x 7→ log(1000)/ log(x). (Use the primitive function math_log,
which computes natural logarithms.) Compare the number of steps this takes with and
without average damping. (Note that you cannot start fixed_point with a guess of 1, as
this would cause division by log(1) = 0.)

Exercise 1.37
An infinite continued fraction is an expression of the form

f =
N1

D1 +
N2

D2 +
N3

D3 + · · ·

As an example, one can show that the infinite continued fraction expansion with the
Ni and the Di all equal to 1 produces 1/φ , where φ is the golden ratio (described in
section 1.2.2). One way to approximate an infinite continued fraction is to truncate the
expansion after a given number of terms. Such a truncation—a so-called k-term finite
continued fraction—has the form

N1

D1 +
N2

. . . +
NK

DK

a. Suppose that n and d are functions of one argument (the term index i) that return the
Ni and Di of the terms of the continued fraction. Declare a function cont_frac such
that evaluating cont_frac(n, d, k) computes the value of the k-term finite continued
fraction. Check your function by approximating 1/φ using

cont_frac(i => 1, i => 1, k);

for successive values of k. How large must you make k in order to get an approximation
that is accurate to 4 decimal places?

b. If your cont_frac function generates a recursive process, write one that generates an
iterative process. If it generates an iterative process, write one that generates a recursive
process.

Exercise 1.38
In 1737, the Swiss mathematician Leonhard Euler published a memoir De Fractionibus
Continuis, which included a continued fraction expansion for e – 2, where e is the base
of the natural logarithms. In this fraction, the Ni are all 1, and the Di are successively
1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, Write a program that uses your cont_frac function from
exercise 1.37 to approximate e, based on Euler’s expansion.

1.3.4 Functions as Returned Values 63

Exercise 1.39
A continued fraction representation of the tangent function was published in 1770 by the
German mathematician J.H. Lambert:

tan x =
x

1 –
x2

3 –
x2

5 –
x2

. . .

where x is in radians. Declare a function tan_cf(x, k) that computes an approximation
to the tangent function based on Lambert’s formula. As in exercise 1.37, k specifies the
number of terms to compute.

1.3.4 Functions as Returned Values
The above examples demonstrate how the ability to pass functions as arguments
significantly enhances the expressive power of our programming language. We can
achieve even more expressive power by creating functions whose returned values
are themselves functions.

We can illustrate this idea by looking again at the fixed-point example described
at the end of section 1.3.3. We formulated a new version of the square-root function
as a fixed-point search, starting with the observation that

√
x is a fixed-point of

the function y 7→ x/y. Then we used average damping to make the approximations
converge. Average damping is a useful general technique in itself. Namely, given a
function f , we consider the function whose value at x is equal to the average of x
and f (x).

We can express the idea of average damping by means of the following function:

function average_damp(f) {
return x => average(x, f(x));

}

The function average_damp takes as its argument a function f and returns as its
value a function (produced by the lambda expression) that, when applied to a num-
ber x, produces the average of x and f(x). For example, applying average_damp
to the square function produces a function whose value at some number x is the
average of x and x2. Applying this resulting function to 10 returns the average of 10
and 100, or 55:62

average_damp(square)(10);
55

Using average_damp, we can reformulate the square-root function as follows:

62. Observe that this is an application whose function expression is itself an application. Ex-
ercise 1.4 already demonstrated the ability to form such applications, but that was only a toy
example. Here we begin to see the real need for such applications—when applying a function
that is obtained as the value returned by a higher-order function.

64 Chapter 1 Building Abstractions with Functions

function sqrt(x) {
return fixed_point(average_damp(y => x / y), 1);

}

Notice how this formulation makes explicit the three ideas in the method: fixed-
point search, average damping, and the function y 7→ x/y. It is instructive to compare
this formulation of the square-root method with the original version given in sec-
tion 1.1.7. Bear in mind that these functions express the same process, and notice
how much clearer the idea becomes when we express the process in terms of these
abstractions. In general, there are many ways to formulate a process as a function.
Experienced programmers know how to choose process formulations that are partic-
ularly perspicuous, and where useful elements of the process are exposed as separate
entities that can be reused in other applications. As a simple example of reuse, notice
that the cube root of x is a fixed point of the function y 7→ x/y2, so we can immediately
generalize our square-root function to one that extracts cube roots:63

function cube_root(x) {
return fixed_point(average_damp(y => x / square(y)), 1);

}

Newton’s method
When we first introduced the square-root function, in section 1.1.7, we mentioned
that this was a special case of Newton’s method. If x 7→ g(x) is a differentiable func-
tion, then a solution of the equation g(x) = 0 is a fixed point of the function x 7→ f (x)
where

f (x) = x –
g(x)

Dg(x)

and Dg(x) is the derivative of g evaluated at x. Newton’s method is the use of the
fixed-point method we saw above to approximate a solution of the equation by
finding a fixed point of the function f .64 For many functions g and for sufficiently
good initial guesses for x, Newton’s method converges very rapidly to a solution of
g(x) = 0.65

In order to implement Newton’s method as a function, we must first express
the idea of derivative. Note that “derivative,” like average damping, is something

63. See exercise 1.45 for a further generalization.

64. Elementary calculus books usually describe Newton’s method in terms of the sequence of
approximations xn+1 = xn – g(xn)/Dg(xn). Having language for talking about processes and using
the idea of fixed points simplifies the description of the method.

65. Newton’s method does not always converge to an answer, but it can be shown that in
favorable cases each iteration doubles the number-of-digits accuracy of the approximation
to the solution. In such cases, Newton’s method will converge much more rapidly than the
half-interval method.

1.3.4 Functions as Returned Values 65

that transforms a function into another function. For instance, the derivative of the
function x 7→ x3 is the function x 7→ 3x2. In general, if g is a function and dx is a small
number, then the derivative Dg of g is the function whose value at any number x is
given (in the limit of small dx) by

Dg(x) =
g(x + dx) – g(x)

dx

Thus, we can express the idea of derivative (taking dx to be, say, 0.00001) as the
function

function deriv(g) {
return x => (g(x + dx) - g(x)) / dx;

}

along with the declaration

const dx = 0.00001;

Like average_damp, deriv is a function that takes a function as argument and
returns a function as value. For example, to approximate the derivative of x 7→ x3 at
5 (whose exact value is 75) we can evaluate

function cube(x) { return x * x * x; }

deriv(cube)(5);
75.00014999664018

With the aid of deriv, we can express Newton’s method as a fixed-point process:

function newton_transform(g) {
return x => x - g(x) / deriv(g)(x);

}
function newtons_method(g, guess) {

return fixed_point(newton_transform(g), guess);
}

The newton_transform function expresses the formula at the beginning of this sec-
tion, and newtons_method is readily defined in terms of this. It takes as arguments
a function that computes the function for which we want to find a zero, together
with an initial guess. For instance, to find the square root of x, we can use Newton’s
method to find a zero of the function y 7→ y2 – x starting with an initial guess of 1.66

This provides yet another form of the square-root function:

function sqrt(x) {
return newtons_method(y => square(y) - x, 1);

}

66. For finding square roots, Newton’s method converges rapidly to the correct solution from
any starting point.

66 Chapter 1 Building Abstractions with Functions

Abstractions and first-class functions
We’ve seen two ways to express the square-root computation as an instance of a
more general method, once as a fixed-point search and once using Newton’s method.
Since Newton’s method was itself expressed as a fixed-point process, we actually
saw two ways to compute square roots as fixed points. Each method begins with
a function and finds a fixed point of some transformation of the function. We can
express this general idea itself as a function:

function fixed_point_of_transform(g, transform, guess) {
return fixed_point(transform(g), guess);

}

This very general function takes as its arguments a function g that computes some
function, a function that transforms g, and an initial guess. The returned result is a
fixed point of the transformed function.

Using this abstraction, we can recast the first square-root computation from this
section (where we look for a fixed point of the average-damped version of y 7→ x/y)
as an instance of this general method:

function sqrt(x) {
return fixed_point_of_transform(

y => x / y,
average_damp,
1);

}

Similarly, we can express the second square-root computation from this section (an
instance of Newton’s method that finds a fixed point of the Newton transform of
y 7→ y2 – x) as

function sqrt(x) {
return fixed_point_of_transform(

y => square(y) - x,
newton_transform,
1);

}

We began section 1.3 with the observation that compound functions are a cru-
cial abstraction mechanism, because they permit us to express general methods
of computing as explicit elements in our programming language. Now we’ve seen
how higher-order functions permit us to manipulate these general methods to create
further abstractions.

As programmers, we should be alert to opportunities to identify the underlying
abstractions in our programs and to build upon them and generalize them to create
more powerful abstractions. This is not to say that one should always write programs
in the most abstract way possible; expert programmers know how to choose the level
of abstraction appropriate to their task. But it is important to be able to think in
terms of these abstractions, so that we can be ready to apply them in new contexts.
The significance of higher-order functions is that they enable us to represent these
abstractions explicitly as elements in our programming language, so that they can
be handled just like other computational elements.

1.3.4 Functions as Returned Values 67

In general, programming languages impose restrictions on the ways in which
computational elements can be manipulated. Elements with the fewest restrictions
are said to have first-class status. Some of the “rights and privileges” of first-class
elements are:67

• They may be referred to using names.
• They may be passed as arguments to functions.
• They may be returned as the results of functions.
• They may be included in data structures.68

JavaScript, like other high-level programming languages, awards functions full first-
class status. This poses challenges for efficient implementation, but the resulting
gain in expressive power is enormous.69

Exercise 1.40
Declare a function cubic that can be used together with the newtons_method function in
expressions of the form

newtons_method(cubic(a, b, c), 1)

to approximate zeros of the cubic x3 + ax2 + bx + c.

Exercise 1.41
Declare a function double that takes a function of one argument as argument and returns
a function that applies the original function twice. For example, if inc is a function that
adds 1 to its argument, then double(inc) should be a function that adds 2. What value is
returned by

double(double(double))(inc)(5);

Exercise 1.42
Let f and g be two one-argument functions. The composition f after g is defined to be
the function x 7→ f (g(x)). Declare a function compose that implements composition. For
example, if inc is a function that adds 1 to its argument,

compose(square, inc)(6);
49

67. The notion of first-class status of programming-language elements is due to the British
computer scientist Christopher Strachey (1916–1975).

68. We’ll see examples of this after we introduce data structures in chapter 2.

69. The major implementation cost of first-class functions is that allowing functions to be re-
turned as values requires reserving storage for a function’s free names even while the function
is not executing. In the JavaScript implementation we will study in section 4.1, these names are
stored in the function’s environment.

68 Chapter 1 Building Abstractions with Functions

Exercise 1.43
If f is a numerical function and n is a positive integer, then we can form the nth repeated
application of f , which is defined to be the function whose value at x is f (f (. . . (f (x)) . . .)).
For example, if f is the function x 7→ x + 1, then the nth repeated application of f is the
function x 7→ x + n. If f is the operation of squaring a number, then the nth repeated appli-
cation of f is the function that raises its argument to the 2nth power. Write a function that
takes as inputs a function that computes f and a positive integer n and returns the function
that computes the nth repeated application of f . Your function should be able to be used as
follows:

repeated(square, 2)(5);
625

Hint: You may find it convenient to use compose from exercise 1.42.

Exercise 1.44
The idea of smoothing a function is an important concept in signal processing. If f is a
function and dx is some small number, then the smoothed version of f is the function
whose value at a point x is the average of f (x – dx), f (x), and f (x + dx). Write a function
smooth that takes as input a function that computes f and returns a function that computes
the smoothed f . It is sometimes valuable to repeatedly smooth a function (that is, smooth
the smoothed function, and so on) to obtained the n-fold smoothed function. Show how to
generate the n-fold smoothed function of any given function using smooth and repeated
from exercise 1.43.

Exercise 1.45
We saw in section 1.3.3 that attempting to compute square roots by naively finding a fixed
point of y 7→ x/y does not converge, and that this can be fixed by average damping. The
same method works for finding cube roots as fixed points of the average-damped y 7→
x/y2. Unfortunately, the process does not work for fourth roots—a single average damp is
not enough to make a fixed-point search for y 7→ x/y3 converge. On the other hand, if we
average-damp twice (i.e., use the average damp of the average damp of y 7→ x/y3) the fixed-
point search does converge. Do some experiments to determine how many average damps
are required to compute nth roots as a fixed-point search based upon repeated average
damping of y 7→ x/yn–1. Use this to implement a simple function for computing nth roots
using fixed_point, average_damp, and the repeated function of exercise 1.43. Assume
that any arithmetic operations you need are available as primitives.

Exercise 1.46
Several of the numerical methods described in this chapter are instances of an extremely
general computational strategy known as iterative improvement. Iterative improvement
says that, to compute something, we start with an initial guess for the answer, test if the
guess is good enough, and otherwise improve the guess and continue the process using
the improved guess as the new guess. Write a function iterative_improve that takes
two functions as arguments: a method for telling whether a guess is good enough and
a method for improving a guess. The function iterative_improve should return as its
value a function that takes a guess as argument and keeps improving the guess until it is
good enough. Rewrite the sqrt function of section 1.1.7 and the fixed_point function of
section 1.3.3 in terms of iterative_improve.

2 Building Abstractions with Data

We now come to the decisive step of mathematical abstraction: we forget
about what the symbols stand for. . . . [The mathematician] need not be idle;
there are many operations which he may carry out with these symbols,
without ever having to look at the things they stand for.

—Hermann Weyl, The Mathematical Way of Thinking

We concentrated in chapter 1 on computational processes and on the role of func-
tions in program design. We saw how to use primitive data (numbers) and primitive
operations (arithmetic operations), how to combine functions to form compound
functions through composition, conditionals, and the use of parameters, and how
to abstract processes by using function declarations. We saw that a function can be
regarded as a pattern for the local evolution of a process, and we classified, rea-
soned about, and performed simple algorithmic analyses of some common patterns
for processes as embodied in functions. We also saw that higher-order functions
enhance the power of our language by enabling us to manipulate, and thereby to
reason in terms of, general methods of computation. This is much of the essence of
programming.

In this chapter we are going to look at more complex data. All the functions
in chapter 1 operate on simple numerical data, and simple data are not sufficient
for many of the problems we wish to address using computation. Programs are
typically designed to model complex phenomena, and more often than not one must
construct computational objects that have several parts in order to model real-world
phenomena that have several aspects. Thus, whereas our focus in chapter 1 was
on building abstractions by combining functions to form compound functions, we
turn in this chapter to another key aspect of any programming language: the means
it provides for building abstractions by combining data objects to form compound
data.

Why do we want compound data in a programming language? For the same rea-
sons that we want compound functions: to elevate the conceptual level at which we
can design our programs, to increase the modularity of our designs, and to enhance
the expressive power of our language. Just as the ability to declare functions enables
us to deal with processes at a higher conceptual level than that of the primitive
operations of the language, the ability to construct compound data objects enables
us to deal with data at a higher conceptual level than that of the primitive data objects
of the language.

Consider the task of designing a system to perform arithmetic with rational num-
bers. We could imagine an operation add_rat that takes two rational numbers and
produces their sum. In terms of simple data, a rational number can be thought of as
two integers: a numerator and a denominator. Thus, we could design a program in
which each rational number would be represented by two integers (a numerator and

70 Chapter 2 Building Abstractions with Data

a denominator) and where add_rat would be implemented by two functions (one
producing the numerator of the sum and one producing the denominator). But this
would be awkward, because we would then need to explicitly keep track of which
numerators corresponded to which denominators. In a system intended to perform
many operations on many rational numbers, such bookkeeping details would clutter
the programs substantially, to say nothing of what they would do to our minds. It
would be much better if we could “glue together” a numerator and denominator
to form a pair—a compound data object—that our programs could manipulate in a
way that would be consistent with regarding a rational number as a single conceptual
unit.

The use of compound data also enables us to increase the modularity of our
programs. If we can manipulate rational numbers directly as objects in their own
right, then we can separate the part of our program that deals with rational numbers
per se from the details of how rational numbers may be represented as pairs of
integers. The general technique of isolating the parts of a program that deal with
how data objects are represented from the parts of a program that deal with how
data objects are used is a powerful design methodology called data abstraction. We
will see how data abstraction makes programs much easier to design, maintain, and
modify.

The use of compound data leads to a real increase in the expressive power of our
programming language. Consider the idea of forming a “linear combination” ax + by.
We might like to write a function that would accept a, b, x, and y as arguments and
return the value of ax + by. This presents no difficulty if the arguments are to be
numbers, because we can readily declare the function

function linear_combination(a, b, x, y) {
return a * x + b * y;

}

But suppose we are not concerned only with numbers. Suppose we would like to
describe a process that forms linear combinations whenever addition and multiplica-
tion are defined—for rational numbers, complex numbers, polynomials, or whatever.
We could express this as a function of the form

function linear_combination(a, b, x, y) {
return add(mul(a, x), mul(b, y));

}

where add and mul are not the primitive functions + and * but rather more com-
plex things that will perform the appropriate operations for whatever kinds of data
we pass in as the arguments a, b, x, and y. The key point is that the only thing
linear_combination should need to know about a, b, x, and y is that the functions
add and mul will perform the appropriate manipulations. From the perspective of
the function linear_combination, it is irrelevant what a, b, x, and y are and even
more irrelevant how they might happen to be represented in terms of more primitive
data. This same example shows why it is important that our programming language
provide the ability to manipulate compound objects directly: Without this, there is

71

no way for a function such as linear_combination to pass its arguments along to
add and mul without having to know their detailed structure.1

We begin this chapter by implementing the rational-number arithmetic system
mentioned above. This will form the background for our discussion of compound
data and data abstraction. As with compound functions, the main issue to be ad-
dressed is that of abstraction as a technique for coping with complexity, and we will
see how data abstraction enables us to erect suitable abstraction barriers between
different parts of a program.

We will see that the key to forming compound data is that a programming lan-
guage should provide some kind of “glue” so that data objects can be combined to
form more complex data objects. There are many possible kinds of glue. Indeed, we
will discover how to form compound data using no special “data” operations at all,
only functions. This will further blur the distinction between “function” and “data,”
which was already becoming tenuous toward the end of chapter 1. We will also
explore some conventional techniques for representing sequences and trees. One
key idea in dealing with compound data is the notion of closure—that the glue we
use for combining data objects should allow us to combine not only primitive data
objects, but compound data objects as well. Another key idea is that compound data
objects can serve as conventional interfaces for combining program modules in mix-
and-match ways. We illustrate some of these ideas by presenting a simple graphics
language that exploits closure.

We will then augment the representational power of our language by introduc-
ing symbolic expressions—data whose elementary parts can be arbitrary symbols
rather than only numbers. We explore various alternatives for representing sets of
objects. We will find that, just as a given numerical function can be computed by
many different computational processes, there are many ways in which a given
data structure can be represented in terms of simpler objects, and the choice of
representation can have significant impact on the time and space requirements of
processes that manipulate the data. We will investigate these ideas in the context of
symbolic differentiation, the representation of sets, and the encoding of information.

Next we will take up the problem of working with data that may be represented
differently by different parts of a program. This leads to the need to implement
generic operations, which must handle many different types of data. Maintaining
modularity in the presence of generic operations requires more powerful abstraction
barriers than can be erected with simple data abstraction alone. In particular, we

1. The ability to directly manipulate functions provides an analogous increase in the expressive
power of a programming language. For example, in section 1.3.1 we introduced the sum func-
tion, which takes a function term as an argument and computes the sum of the values of term
over some specified interval. In order to define sum, it is crucial that we be able to speak of
a function such as term as an entity in its own right, without regard for how term might be
expressed with more primitive operations. Indeed, if we did not have the notion of “a function,”
it is doubtful that we would ever even think of the possibility of defining an operation such as
sum. Moreover, insofar as performing the summation is concerned, the details of how term may
be constructed from more primitive operations are irrelevant.

72 Chapter 2 Building Abstractions with Data

introduce data-directed programming as a technique that allows individual data rep-
resentations to be designed in isolation and then combined additively (i.e., without
modification). To illustrate the power of this approach to system design, we close
the chapter by applying what we have learned to the implementation of a package
for performing symbolic arithmetic on polynomials, in which the coefficients of the
polynomials can be integers, rational numbers, complex numbers, and even other
polynomials.

2.1 Introduction to Data Abstraction
In section 1.1.8, we noted that a function used as an element in creating a more
complex function could be regarded not only as a collection of particular operations
but also as a functional abstraction. That is, the details of how the function was im-
plemented could be suppressed, and the particular function itself could be replaced
by any other function with the same overall behavior. In other words, we could
make an abstraction that would separate the way the function would be used from
the details of how the function would be implemented in terms of more primitive
functions. The analogous notion for compound data is called data abstraction. Data
abstraction is a methodology that enables us to isolate how a compound data object
is used from the details of how it is constructed from more primitive data objects.

The basic idea of data abstraction is to structure the programs that are to use
compound data objects so that they operate on “abstract data.” That is, our programs
should use data in such a way as to make no assumptions about the data that are not
strictly necessary for performing the task at hand. At the same time, a “concrete”
data representation is defined independent of the programs that use the data. The
interface between these two parts of our system will be a set of functions, called
selectors and constructors, that implement the abstract data in terms of the concrete
representation. To illustrate this technique, we will consider how to design a set of
functions for manipulating rational numbers.

2.1.1 Example: Arithmetic Operations for Rational Numbers
Suppose we want to do arithmetic with rational numbers. We want to be able to add,
subtract, multiply, and divide them and to test whether two rational numbers are
equal.

Let us begin by assuming that we already have a way of constructing a rational
number from a numerator and a denominator. We also assume that, given a rational
number, we have a way of extracting (or selecting) its numerator and its denominator.
Let us further assume that the constructor and selectors are available as functions:

• make_rat(n, d) returns the rational number whose numerator is the integer n
and whose denominator is the integer d.

• numer(x) returns the numerator of the rational number x.
• denom(x) returns the denominator of the rational number x.

We are using here a powerful strategy of synthesis: wishful thinking. We haven’t
yet said how a rational number is represented, or how the functions numer, denom,
and make_rat should be implemented. Even so, if we did have these three functions,

2.1.1 Example: Arithmetic Operations for Rational Numbers 73

we could then add, subtract, multiply, divide, and test equality by using the following
relations:

n1

d1
+

n2

d2
=

n1d2 + n2d1

d1d2

n1

d1
–

n2

d2
=

n1d2 – n2d1

d1d2

n1

d1
· n2

d2
=

n1n2

d1d2

n1/d1

n2/d2
=

n1d2

d1n2

n1

d1
=

n2

d2
if and only if n1d2 = n2d1

We can express these rules as functions:

function add_rat(x, y) {
return make_rat(numer(x) * denom(y) + numer(y) * denom(x),

denom(x) * denom(y));
}
function sub_rat(x, y) {

return make_rat(numer(x) * denom(y) - numer(y) * denom(x),
denom(x) * denom(y));

}
function mul_rat(x, y) {

return make_rat(numer(x) * numer(y),
denom(x) * denom(y));

}
function div_rat(x, y) {

return make_rat(numer(x) * denom(y),
denom(x) * numer(y));

}
function equal_rat(x, y) {

return numer(x) * denom(y) === numer(y) * denom(x);
}

Now we have the operations on rational numbers defined in terms of the selector
and constructor functions numer, denom, and make_rat. But we haven’t yet defined
these. What we need is some way to glue together a numerator and a denominator
to form a rational number.

Pairs
To enable us to implement the concrete level of our data abstraction, our JavaScript
environment provides a compound structure called a pair, which can be constructed
with the primitive function pair. This function takes two arguments and returns a
compound data object that contains the two arguments as parts. Given a pair, we
can extract the parts using the primitive functions head and tail. Thus, we can use
pair, head, and tail as follows:

74 Chapter 2 Building Abstractions with Data

const x = pair(1, 2);

head(x);
1

tail(x);
2

Notice that a pair is a data object that can be given a name and manipulated, just like
a primitive data object. Moreover, pair can be used to form pairs whose elements
are pairs, and so on:

const x = pair(1, 2);

const y = pair(3, 4);

const z = pair(x, y);

head(head(z));
1

head(tail(z));
3

In section 2.2 we will see how this ability to combine pairs means that pairs can be
used as general-purpose building blocks to create all sorts of complex data structures.
The single compound-data primitive pair, implemented by the functions pair, head,
and tail, is the only glue we need. Data objects constructed from pairs are called
list-structured data.

Representing rational numbers
Pairs offer a natural way to complete the rational-number system. Simply represent
a rational number as a pair of two integers: a numerator and a denominator. Then
make_rat, numer, and denom are readily implemented as follows:2

function make_rat(n, d) { return pair(n, d); }
function numer(x) { return head(x); }
function denom(x) { return tail(x); }

2. Another way to define the selectors and constructor is
const make_rat = pair;
const numer = head;
const denom = tail;

The first definition associates the name make_rat with the value of the expression pair, which
is the primitive function that constructs pairs. Thus make_rat and pair are names for the same
primitive constructor.

Defining selectors and constructors in this way is efficient: Instead of make_rat calling pair,
make_rat is pair, so there is only one function called, not two, when make_rat is called. On
the other hand, doing this defeats debugging aids that trace function calls or put breakpoints on
function calls: You may want to watch make_rat being called, but you certainly don’t want to
watch every call to pair.

We have chosen not to use this style of definition in this book.

2.1.1 Example: Arithmetic Operations for Rational Numbers 75

Also, in order to display the results of our computations, we can print rational num-
bers by printing the numerator, a slash, and the denominator. We use the primitive
function stringify to turn any value (here a number) into a string. The operator +
in JavaScript is overloaded; it can be applied to two numbers or to two strings, and
in the latter case it returns the result of concatenating the two strings.3

function print_rat(x) {
return display(stringify(numer(x)) + " / " + stringify(denom(x)));

}

Now we can try our rational-number functions:4

const one_half = make_rat(1, 2);

print_rat(one_half);
"1 / 2"

const one_third = make_rat(1, 3);

print_rat(add_rat(one_half, one_third));
"5 / 6"

print_rat(mul_rat(one_half, one_third));
"1 / 6"

print_rat(add_rat(one_third, one_third));
"6 / 9"

As the final example shows, our rational-number implementation does not reduce
rational numbers to lowest terms. We can remedy this by changing make_rat. If we
have a gcd function like the one in section 1.2.5 that produces the greatest common
divisor of two integers, we can use gcd to reduce the numerator and the denominator
to lowest terms before constructing the pair:

function make_rat(n, d) {
const g = gcd(n, d);
return pair(n / g, d / g);

}

Now we have

print_rat(add_rat(one_third, one_third));
"2 / 3"

as desired. This modification was accomplished by changing the constructor make_
rat without changing any of the functions (such as add_rat and mul_rat) that
implement the actual operations.

3. In JavaScript, the operator + can also be applied to a string and a number and to other operand
combinations, but in this book, we choose to apply it either to two numbers or to two strings.

4. The primitive function display introduced in exercise 1.22 returns its argument, but in the
uses of print_rat below, we show only what print_rat prints, not what the interpreter prints
as the value returned by print_rat.

76 Chapter 2 Building Abstractions with Data

Programs that use rational numbers

Rational numbers in problem domain

add_rat sub_rat ...

Rational numbers as numerators and denominators

make_rat numer denom

Rational numbers as pairs

pair head tail

However pairs are implemented

Figure 2.1 Data-abstraction barriers in the rational-number package.

Exercise 2.1
Define a better version of make_rat that handles both positive and negative arguments. The
function make_rat should normalize the sign so that if the rational number is positive, both
the numerator and denominator are positive, and if the rational number is negative, only
the numerator is negative.

2.1.2 Abstraction Barriers
Before continuing with more examples of compound data and data abstraction, let us
consider some of the issues raised by the rational-number example. We defined the
rational-number operations in terms of a constructor make_rat and selectors numer
and denom. In general, the underlying idea of data abstraction is to identify for each
type of data object a basic set of operations in terms of which all manipulations of
data objects of that type will be expressed, and then to use only those operations in
manipulating the data.

We can envision the structure of the rational-number system as shown in fig-
ure 2.1. The horizontal lines represent abstraction barriers that isolate different
“levels” of the system. At each level, the barrier separates the programs (above)
that use the data abstraction from the programs (below) that implement the data
abstraction. Programs that use rational numbers manipulate them solely in terms of
the functions supplied “for public use” by the rational-number package: add_rat,
sub_rat, mul_rat, div_rat, and equal_rat. These, in turn, are implemented
solely in terms of the constructor and selectors make_rat, numer, and denom, which
themselves are implemented in terms of pairs. The details of how pairs are imple-
mented are irrelevant to the rest of the rational-number package so long as pairs can
be manipulated by the use of pair, head, and tail. In effect, functions at each level
are the interfaces that define the abstraction barriers and connect the different levels.

This simple idea has many advantages. One advantage is that it makes pro-
grams much easier to maintain and to modify. Any complex data structure can be

2.1.2 Abstraction Barriers 77

represented in a variety of ways with the primitive data structures provided by a
programming language. Of course, the choice of representation influences the pro-
grams that operate on it; thus, if the representation were to be changed at some later
time, all such programs might have to be modified accordingly. This task could be
time-consuming and expensive in the case of large programs unless the dependence
on the representation were to be confined by design to a very few program modules.

For example, an alternate way to address the problem of reducing rational num-
bers to lowest terms is to perform the reduction whenever we access the parts of a
rational number, rather than when we construct it. This leads to different constructor
and selector functions:

function make_rat(n, d) {
return pair(n, d);

}
function numer(x) {

const g = gcd(head(x), tail(x));
return head(x) / g;

}
function denom(x) {

const g = gcd(head(x), tail(x));
return tail(x) / g;

}

The difference between this implementation and the previous one lies in when we
compute the gcd. If in our typical use of rational numbers we access the numerators
and denominators of the same rational numbers many times, it would be preferable
to compute the gcd when the rational numbers are constructed. If not, we may be
better off waiting until access time to compute the gcd. In any case, when we change
from one representation to the other, the functions add_rat, sub_rat, and so on do
not have to be modified at all.

Constraining the dependence on the representation to a few interface functions
helps us design programs as well as modify them, because it allows us to maintain
the flexibility to consider alternate implementations. To continue with our simple
example, suppose we are designing a rational-number package and we can’t decide
initially whether to perform the gcd at construction time or at selection time. The
data-abstraction methodology gives us a way to defer that decision without losing
the ability to make progress on the rest of the system.

Exercise 2.2
Consider the problem of representing line segments in a plane. Each segment is repre-
sented as a pair of points: a starting point and an ending point. Declare a constructor
make_segment and selectors start_segment and end_segment that define the represen-
tation of segments in terms of points. Furthermore, a point can be represented as a pair
of numbers: the x coordinate and the y coordinate. Accordingly, specify a constructor
make_point and selectors x_point and y_point that define this representation. Finally,
using your selectors and constructors, declare a function midpoint_segment that takes a
line segment as argument and returns its midpoint (the point whose coordinates are the

78 Chapter 2 Building Abstractions with Data

average of the coordinates of the endpoints). To try your functions, you’ll need a way to
print points:

function print_point(p) {
return display("(" + stringify(x_point(p)) + ", "

+ stringify(y_point(p)) + ")");
}

Exercise 2.3
Implement a representation for rectangles in a plane. (Hint: You may want to make use of
exercise 2.2.) In terms of your constructors and selectors, create functions that compute the
perimeter and the area of a given rectangle. Now implement a different representation for
rectangles. Can you design your system with suitable abstraction barriers, so that the same
perimeter and area functions will work using either representation?

2.1.3 What Is Meant by Data?
We began the rational-number implementation in section 2.1.1 by implementing the
rational-number operations add_rat, sub_rat, and so on in terms of three unspec-
ified functions: make_rat, numer, and denom. At that point, we could think of the
operations as being defined in terms of data objects—numerators, denominators, and
rational numbers—whose behavior was specified by the latter three functions.

But exactly what is meant by data? It is not enough to say “whatever is imple-
mented by the given selectors and constructors.” Clearly, not every arbitrary set of
three functions can serve as an appropriate basis for the rational-number implemen-
tation. We need to guarantee that, if we construct a rational number x from a pair
of integers n and d, then extracting the numer and the denom of x and dividing
them should yield the same result as dividing n by d. In other words, make_rat,
numer, and denom must satisfy the condition that, for any integer n and any nonzero
integer d, if x is make_rat(n, d), then

numer(x)
denom(x)

=
n
d

In fact, this is the only condition make_rat, numer, and denom must fulfill in order
to form a suitable basis for a rational-number representation. In general, we can
think of data as defined by some collection of selectors and constructors, together
with specified conditions that these functions must fulfill in order to be a valid
representation.5

5. Surprisingly, this idea is very difficult to formulate rigorously. There are two approaches to
giving such a formulation. One, pioneered by C. A. R. Hoare (1972), is known as the method
of abstract models. It formalizes the “functions plus conditions” specification as outlined in
the rational-number example above. Note that the condition on the rational-number represen-
tation was stated in terms of facts about integers (equality and division). In general, abstract
models define new kinds of data objects in terms of previously defined types of data objects.
Assertions about data objects can therefore be checked by reducing them to assertions about
previously defined data objects. Another approach, introduced by Zilles at MIT, by Goguen,

2.1.3 What Is Meant by Data? 79

This point of view can serve to define not only “high-level” data objects, such
as rational numbers, but lower-level objects as well. Consider the notion of a pair,
which we used in order to define our rational numbers. We never actually said what
a pair was, only that the language supplied functions pair, head, and tail for
operating on pairs. But the only thing we need to know about these three operations
is that if we glue two objects together using pair we can retrieve the objects using
head and tail. That is, the operations satisfy the condition that, for any objects
x and y, if z is pair(x, y) then head(z) is x and tail(z) is y. Indeed, we
mentioned that these three functions are included as primitives in our language.
However, any triple of functions that satisfies the above condition can be used as
the basis for implementing pairs. This point is illustrated strikingly by the fact that
we could implement pair, head, and tail without using any data structures at all
but only using functions. Here are the definitions:6

function pair(x, y) {
function dispatch(m) {

return m === 0
? x
: m === 1
? y
: error(m, "argument not 0 or 1 -- pair");

}
return dispatch;

}
function head(z) { return z(0); }
function tail(z) { return z(1); }

This use of functions corresponds to nothing like our intuitive notion of what data
should be. Nevertheless, all we need to do to show that this is a valid way to represent
pairs is to verify that these functions satisfy the condition given above.

The subtle point to notice is that the value returned by pair(x, y) is a func-
tion—namely the internally defined function dispatch, which takes one argument
and returns either x or y depending on whether the argument is 0 or 1. Corre-
spondingly, head(z) is defined to apply z to 0. Hence, if z is the function formed
by pair(x, y), then z applied to 0 will yield x. Thus, we have shown that
head(pair(x, y)) yields x, as desired. Similarly, tail(pair(x, y)) applies the
function returned by pair(x, y) to 1, which returns y. Therefore, this functional
implementation of pairs is a valid implementation, and if we access pairs using only

Thatcher, Wagner, and Wright at IBM (see Thatcher, Wagner, and Wright 1978), and by Guttag
at Toronto (see Guttag 1977), is called algebraic specification. It regards the “functions” as
elements of an abstract algebraic system whose behavior is specified by axioms that correspond
to our “conditions,” and uses the techniques of abstract algebra to check assertions about data
objects. Both methods are surveyed in the paper by Liskov and Zilles (1975).

6. The function error introduced in section 1.3.3 takes as optional second argument a string
that gets displayed before the first argument—for example, if m is 42:
Error in line 7: argument not 0 or 1 -- pair: 42

80 Chapter 2 Building Abstractions with Data

pair, head, and tail we cannot distinguish this implementation from one that uses
“real” data structures.

The point of exhibiting the functional representation of pairs is not that our lan-
guage works this way (an efficient implementation of pairs might use JavaScript’s
native vector data structure) but that it could work this way. The functional repre-
sentation, although obscure, is a perfectly adequate way to represent pairs, since it
fulfills the only conditions that pairs need to fulfill. This example also demonstrates
that the ability to manipulate functions as objects automatically provides the ability
to represent compound data. This may seem a curiosity now, but functional repre-
sentations of data will play a central role in our programming repertoire. This style
of programming is often called message passing, and we will be using it as a basic
tool in chapter 3 when we address the issues of modeling and simulation.

Exercise 2.4
Here is an alternative functional representation of pairs. For this representation, verify that
head(pair(x, y)) yields x for any objects x and y.

function pair(x, y) {
return m => m(x, y);

}
function head(z) {

return z((p, q) => p);
}

What is the corresponding definition of tail? (Hint: To verify that this works, make use of
the substitution model of section 1.1.5.)

Exercise 2.5
Show that we can represent pairs of nonnegative integers using only numbers and arith-
metic operations if we represent the pair a and b as the integer that is the product 2a3b.
Give the corresponding definitions of the functions pair, head, and tail.

Exercise 2.6
In case representing pairs as functions (exercise 2.4) wasn’t mind-boggling enough, con-
sider that, in a language that can manipulate functions, we can get by without numbers (at
least insofar as nonnegative integers are concerned) by implementing 0 and the operation
of adding 1 as

const zero = f => x => x;

function add_1(n) {
return f => x => f(n(f)(x));

}

This representation is known as Church numerals, after its inventor, Alonzo Church, the
logician who invented the λ calculus.

Define one and two directly (not in terms of zero and add_1). (Hint: Use substitution
to evaluate add_1(zero)). Give a direct definition of the addition function plus (not in
terms of repeated application of add_1).

2.1.4 Extended Exercise: Interval Arithmetic 81

2.1.4 Extended Exercise: Interval Arithmetic
Alyssa P. Hacker is designing a system to help people solve engineering problems.
One feature she wants to provide in her system is the ability to manipulate inexact
quantities (such as measured parameters of physical devices) with known precision,
so that when computations are done with such approximate quantities the results
will be numbers of known precision.

Electrical engineers will be using Alyssa’s system to compute electrical quanti-
ties. It is sometimes necessary for them to compute the value of a parallel equivalent
resistance Rp of two resistors R1 and R2 using the formula

Rp =
1

1/R1 + 1/R2

Resistance values are usually known only up to some tolerance guaranteed by the
manufacturer of the resistor. For example, if you buy a resistor labeled “6.8 ohms
with 10% tolerance” you can only be sure that the resistor has a resistance between
6.8 – 0.68 = 6.12 and 6.8 + 0.68 = 7.48 ohms. Thus, if you have a 6.8-ohm 10% re-
sistor in parallel with a 4.7-ohm 5% resistor, the resistance of the combination can
range from about 2.58 ohms (if the two resistors are at the lower bounds) to about
2.97 ohms (if the two resistors are at the upper bounds).

Alyssa’s idea is to implement “interval arithmetic” as a set of arithmetic opera-
tions for combining “intervals” (objects that represent the range of possible values
of an inexact quantity). The result of adding, subtracting, multiplying, or dividing
two intervals is itself an interval, representing the range of the result.

Alyssa postulates the existence of an abstract object called an “interval” that has
two endpoints: a lower bound and an upper bound. She also presumes that, given
the endpoints of an interval, she can construct the interval using the data constructor
make_interval. Alyssa first writes a function for adding two intervals. She reasons
that the minimum value the sum could be is the sum of the two lower bounds and
the maximum value it could be is the sum of the two upper bounds:

function add_interval(x, y) {
return make_interval(lower_bound(x) + lower_bound(y),

upper_bound(x) + upper_bound(y));
}

Alyssa also works out the product of two intervals by finding the minimum and
the maximum of the products of the bounds and using them as the bounds of the
resulting interval. (The functions math_min and math_max are primitives that find
the minimum or maximum of any number of arguments.)

function mul_interval(x, y) {
const p1 = lower_bound(x) * lower_bound(y);
const p2 = lower_bound(x) * upper_bound(y);
const p3 = upper_bound(x) * lower_bound(y);
const p4 = upper_bound(x) * upper_bound(y);
return make_interval(math_min(p1, p2, p3, p4),

math_max(p1, p2, p3, p4));
}

82 Chapter 2 Building Abstractions with Data

To divide two intervals, Alyssa multiplies the first by the reciprocal of the second.
Note that the bounds of the reciprocal interval are the reciprocal of the upper bound
and the reciprocal of the lower bound, in that order.

function div_interval(x, y) {
return mul_interval(x, make_interval(1 / upper_bound(y),

1 / lower_bound(y)));
}

Exercise 2.7
Alyssa’s program is incomplete because she has not specified the implementation of the
interval abstraction. Here is a definition of the interval constructor:

function make_interval(x, y) { return pair(x, y); }

Define selectors upper_bound and lower_bound to complete the implementation.

Exercise 2.8
Using reasoning analogous to Alyssa’s, describe how the difference of two intervals may
be computed. Define a corresponding subtraction function, called sub_interval.

Exercise 2.9
The width of an interval is half of the difference between its upper and lower bounds. The
width is a measure of the uncertainty of the number specified by the interval. For some
arithmetic operations the width of the result of combining two intervals is a function only
of the widths of the argument intervals, whereas for others the width of the combination is
not a function of the widths of the argument intervals. Show that the width of the sum (or
difference) of two intervals is a function only of the widths of the intervals being added (or
subtracted). Give examples to show that this is not true for multiplication or division.

Exercise 2.10
Ben Bitdiddle, an expert systems programmer, looks over Alyssa’s shoulder and comments
that it is not clear what it means to divide by an interval that spans zero. Modify Alyssa’s
program to check for this condition and to signal an error if it occurs.

Exercise 2.11
In passing, Ben also cryptically comments: “By testing the signs of the endpoints of the
intervals, it is possible to break mul_interval into nine cases, only one of which requires
more than two multiplications.” Rewrite this function using Ben’s suggestion.

After debugging her program, Alyssa shows it to a potential user, who complains
that her program solves the wrong problem. He wants a program that can deal with
numbers represented as a center value and an additive tolerance; for example, he
wants to work with intervals such as 3.5± 0.15 rather than [3.35, 3.65]. Alyssa

2.1.4 Extended Exercise: Interval Arithmetic 83

returns to her desk and fixes this problem by supplying an alternate constructor and
alternate selectors:

function make_center_width(c, w) {
return make_interval(c - w, c + w);

}
function center(i) {

return (lower_bound(i) + upper_bound(i)) / 2;
}
function width(i) {

return (upper_bound(i) - lower_bound(i)) / 2;
}

Unfortunately, most of Alyssa’s users are engineers. Real engineering situations
usually involve measurements with only a small uncertainty, measured as the ratio
of the width of the interval to the midpoint of the interval. Engineers usually specify
percentage tolerances on the parameters of devices, as in the resistor specifications
given earlier.

Exercise 2.12
Define a constructor make_center_percent that takes a center and a percentage tolerance
and produces the desired interval. You must also define a selector percent that produces
the percentage tolerance for a given interval. The center selector is the same as the one
shown above.

Exercise 2.13
Show that under the assumption of small percentage tolerances there is a simple formula
for the approximate percentage tolerance of the product of two intervals in terms of the
tolerances of the factors. You may simplify the problem by assuming that all numbers are
positive.

After considerable work, Alyssa P. Hacker delivers her finished system. Several
years later, after she has forgotten all about it, she gets a frenzied call from an irate
user, Lem E. Tweakit. It seems that Lem has noticed that the formula for parallel
resistors can be written in two algebraically equivalent ways:

R1R2

R1 + R2

and

1
1/R1 + 1/R2

He has written the following two programs, each of which computes the parallel-
resistors formula differently:

84 Chapter 2 Building Abstractions with Data

function par1(r1, r2) {
return div_interval(mul_interval(r1, r2),

add_interval(r1, r2));
}
function par2(r1, r2) {

const one = make_interval(1, 1);
return div_interval(one,

add_interval(div_interval(one, r1),
div_interval(one, r2)));

}

Lem complains that Alyssa’s program gives different answers for the two ways of
computing. This is a serious complaint.

Exercise 2.14
Demonstrate that Lem is right. Investigate the behavior of the system on a variety of
arithmetic expressions. Make some intervals A and B, and use them in computing the
expressions A/A and A/B. You will get the most insight by using intervals whose width
is a small percentage of the center value. Examine the results of the computation in
center-percent form (see exercise 2.12).

Exercise 2.15
Eva Lu Ator, another user, has also noticed the different intervals computed by different
but algebraically equivalent expressions. She says that a formula to compute with intervals
using Alyssa’s system will produce tighter error bounds if it can be written in such a form
that no name that represents an uncertain number is repeated. Thus, she says, par2 is a
“better” program for parallel resistances than par1. Is she right? Why?

Exercise 2.16
Explain, in general, why equivalent algebraic expressions may lead to different answers.
Can you devise an interval-arithmetic package that does not have this shortcoming, or is
this task impossible? (Warning: This problem is very difficult.)

2.2 Hierarchical Data and the Closure Property
As we have seen, pairs provide a primitive “glue” that we can use to construct
compound data objects. Figure 2.2 shows a standard way to visualize a pair—in
this case, the pair formed by pair(1, 2). In this representation, which is called
box-and-pointer notation, each compound object is shown as a pointer to a box.
The box for a pair has two parts, the left part containing the head of the pair and the
right part containing the tail.

We have already seen that pair can be used to combine not only numbers but
pairs as well. (You made use of this fact, or should have, in doing exercises 2.2
and 2.3.) As a consequence, pairs provide a universal building block from which we
can construct all sorts of data structures. Figure 2.3 shows two ways to use pairs to
combine the numbers 1, 2, 3, and 4.

The ability to create pairs whose elements are pairs is the essence of list struc-
ture’s importance as a representational tool. We refer to this ability as the closure
property of pair. In general, an operation for combining data objects satisfies

2.2.1 Representing Sequences 85

21

Figure 2.2 Box-and-pointer representation of pair(1, 2).

1

4

2 3

3 4

1 2

pair(pair(1, 2),
 pair(3, 4))

pair(pair(1,
 pair(2, 3)),
 4)

Figure 2.3 Two ways to combine 1, 2, 3, and 4 using pairs.

the closure property if the results of combining things with that operation can
themselves be combined using the same operation.7 Closure is the key to power
in any means of combination because it permits us to create hierarchical struc-
tures—structures made up of parts, which themselves are made up of parts, and
so on.

From the outset of chapter 1, we’ve made essential use of closure in dealing
with functions, because all but the very simplest programs rely on the fact that the
elements of a combination can themselves be combinations. In this section, we take
up the consequences of closure for compound data. We describe some conventional
techniques for using pairs to represent sequences and trees, and we exhibit a graphics
language that illustrates closure in a vivid way.

2.2.1 Representing Sequences
One of the useful structures we can build with pairs is a sequence—an ordered
collection of data objects. There are, of course, many ways to represent sequences
in terms of pairs. One particularly straightforward representation is illustrated in
figure 2.4, where the sequence 1, 2, 3, 4 is represented as a chain of pairs. The head
of each pair is the corresponding item in the chain, and the tail of the pair is the
next pair in the chain. The tail of the final pair signals the end of the sequence,
represented in box-and-pointer diagrams as a diagonal line and in programs as Java-
Script’s primitive value null. The entire sequence is constructed by nested pair
operations:

7. The use of the word “closure” here comes from abstract algebra, where a set of elements is
said to be closed under an operation if applying the operation to elements in the set produces
an element that is again an element of the set. The programming languages community also
(unfortunately) uses the word “closure” to describe a totally unrelated concept: A closure is an
implementation technique for representing functions with free names. We do not use the word
“closure” in this second sense in this book.

86 Chapter 2 Building Abstractions with Data

1 42 3

Figure 2.4 The sequence 1, 2, 3, 4 represented as a chain of pairs.

pair(1,
pair(2,

pair(3,
pair(4, null))));

Such a sequence of pairs, formed by nested pair applications, is called a list, and
our JavaScript environment provides a primitive called list to help in constructing
lists.8 The above sequence could be produced by list(1, 2, 3, 4). In general,

list(a1, a2, . . ., an)

is equivalent to

pair(a1, pair(a2, pair(. . ., pair(an, null). . .)))

Our interpreter prints pairs using a textual representation of box-and-pointer dia-
grams that we call box notation. The result of pair(1, 2) is printed as [1, 2],
and the data object in figure 2.4 is printed as [1, [2, [3, [4, null]]]]:

const one_through_four = list(1, 2, 3, 4);

one_through_four;
[1, [2, [3, [4, null]]]]

We can think of head as selecting the first item in the list, and of tail as select-
ing the sublist consisting of all but the first item. Nested applications of head and
tail can be used to extract the second, third, and subsequent items in the list. The
constructor pair makes a list like the original one, but with an additional item at the
beginning.

head(one_through_four);
1

tail(one_through_four);
[2, [3, [4, null]]]

head(tail(one_through_four));
2

pair(10, one_through_four);
[10, [1, [2, [3, [4, null]]]]]

8. In this book, we use list to mean a chain of pairs terminated by the end-of-list marker. In
contrast, the term list structure refers to any data structure made out of pairs, not just to lists.

2.2.1 Representing Sequences 87

pair(5, one_through_four);
[5, [1, [2, [3, [4, null]]]]]

The value null, used to terminate the chain of pairs, can be thought of as a sequence
of no elements, the empty list.9

Box notation is sometimes difficult to read. In this book, when we want to indi-
cate the list nature of a data structure, we will employ the alternative list notation:
Whenever possible, list notation uses applications of list whose evaluation would
result in the desired structure. For example, instead of the box notation

[1, [[2, 3], [[4, [5, null]], [6, null]]]]

we write

list(1, [2, 3], list(4, 5), 6)

in list notation.10

List operations
The use of pairs to represent sequences of elements as lists is accompanied by
conventional programming techniques for manipulating lists by successively using
tail to walk down the lists. For example, the function list_ref takes as arguments
a list and a number n and returns the nth item of the list. It is customary to number
the elements of the list beginning with 0. The method for computing list_ref is
the following:

• For n = 0, list_ref should return the head of the list.
• Otherwise, list_ref should return the (n – 1)st item of the tail of the list.

function list_ref(items, n) {
return n === 0

? head(items)
: list_ref(tail(items), n - 1);

}

const squares = list(1, 4, 9, 16, 25);

list_ref(squares, 3);
16

Often we walk down the whole list. To aid in this, our JavaScript environment in-
cludes a primitive predicate is_null, which tests whether its argument is the empty
list. The function length, which returns the number of items in a list, illustrates this
typical pattern of use:

9. The value null is used in JavaScript for various purposes, but in this book we shall only use
it to represent the empty list.

10. Our JavaScript environment provides a primitive function display_list that works like
the primitive function display, except that it uses list notation instead of box notation.

88 Chapter 2 Building Abstractions with Data

function length(items) {
return is_null(items)

? 0
: 1 + length(tail(items));

}

const odds = list(1, 3, 5, 7);

length(odds);
4

The length function implements a simple recursive plan. The reduction step is:

• The length of any list is 1 plus the length of the tail of the list.

This is applied successively until we reach the base case:

• The length of the empty list is 0.

We could also compute length in an iterative style:

function length(items) {
function length_iter(a, count) {

return is_null(a)
? count
: length_iter(tail(a), count + 1);

}
return length_iter(items, 0);

}

Another conventional programming technique is to construct an answer list by
adjoining elements to the front of the list with pair while walking down a list using
tail, as in the function append, which takes two lists as arguments and combines
their elements to make a new list:

append(squares, odds);
list(1, 4, 9, 16, 25, 1, 3, 5, 7)

append(odds, squares);
list(1, 3, 5, 7, 1, 4, 9, 16, 25)

The function append is also implemented using a recursive plan. To append lists
list1 and list2, do the following:

• If list1 is the empty list, then the result is just list2.
• Otherwise, append the tail of list1 and list2, and adjoin the head of list1

to the result:

function append(list1, list2) {
return is_null(list1)

? list2
: pair(head(list1), append(tail(list1), list2));

}

2.2.1 Representing Sequences 89

Exercise 2.17
Define a function last_pair that returns the list that contains only the last element of a
given (nonempty) list:

last_pair(list(23, 72, 149, 34));
list(34)

Exercise 2.18
Define a function reverse that takes a list as argument and returns a list of the same
elements in reverse order:

reverse(list(1, 4, 9, 16, 25));
list(25, 16, 9, 4, 1)

Exercise 2.19
Consider the change-counting program of section 1.2.2. It would be nice to be able to easily
change the currency used by the program, so that we could compute the number of ways
to change a British pound, for example. As the program is written, the knowledge of the
currency is distributed partly into the function first_denomination and partly into the
function count_change (which knows that there are five kinds of U.S. coins). It would be
nicer to be able to supply a list of coins to be used for making change.

We want to rewrite the function cc so that its second argument is a list of the values of
the coins to use rather than an integer specifying which coins to use. We could then have
lists that defined each kind of currency:

const us_coins = list(50, 25, 10, 5, 1);
const uk_coins = list(100, 50, 20, 10, 5, 2, 1);

We could then call cc as follows:

cc(100, us_coins);
292

To do this will require changing the program cc somewhat. It will still have the same form,
but it will access its second argument differently, as follows:

function cc(amount, coin_values) {
return amount === 0

? 1
: amount < 0 || no_more(coin_values)
? 0
: cc(amount, except_first_denomination(coin_values)) +

cc(amount - first_denomination(coin_values), coin_values);
}

Define the functions first_denomination, except_first_denomination, and no_more
in terms of primitive operations on list structures. Does the order of the list coin_values
affect the answer produced by cc? Why or why not?

90 Chapter 2 Building Abstractions with Data

Exercise 2.20
In the presence of higher-order functions, it is not strictly necessary for functions to have
multiple parameters; one would suffice. If we have a function such as plus that natu-
rally requires two arguments, we could write a variant of the function to which we pass
the arguments one at a time. An application of the variant to the first argument could
return a function that we can then apply to the second argument, and so on. This prac-
tice—called currying and named after the American mathematician and logician Haskell
Brooks Curry—is quite common in programming languages such as Haskell and OCaml.
In JavaScript, a curried version of plus looks as follows.

function plus_curried(x) {
return y => x + y;

}

Write a function brooks that takes a curried function as first argument and as second
argument a list of arguments to which the curried function is then applied, one by one,
in the given order. For example, the following application of brooks should have the same
effect as plus_curried(3)(4):

brooks(plus_curried, list(3, 4));
7

While we are at it, we might as well curry the function brooks! Write a function
brooks_curried that can be applied as follows:

brooks_curried(list(plus_curried, 3, 4));
7

With this function brooks_curried, what are the results of evaluating the following two
statements?

brooks_curried(list(brooks_curried,
list(plus_curried, 3, 4)));

brooks_curried(list(brooks_curried,
list(brooks_curried,

list(plus_curried, 3, 4))));

Mapping over lists
One extremely useful operation is to apply some transformation to each element in
a list and generate the list of results. For instance, the following function scales each
number in a list by a given factor:

function scale_list(items, factor) {
return is_null(items)

? null
: pair(head(items) * factor,

scale_list(tail(items), factor));
}

scale_list(list(1, 2, 3, 4, 5), 10);
[10, [20, [30, [40, [50, null]]]]]

2.2.1 Representing Sequences 91

We can abstract this general idea and capture it as a common pattern expressed
as a higher-order function, just as in section 1.3. The higher-order function here is
called map. The function map takes as arguments a function of one argument and
a list, and returns a list of the results produced by applying the function to each
element in the list:

function map(fun, items) {
return is_null(items)

? null
: pair(fun(head(items)),

map(fun, tail(items)));
}

map(abs, list(-10, 2.5, -11.6, 17));
[10, [2.5, [11.6, [17, null]]]]

map(x => x * x, list(1, 2, 3, 4));
[1, [4, [9, [16, null]]]]

Now we can give a new definition of scale_list in terms of map:

function scale_list(items, factor) {
return map(x => x * factor, items);

}

The function map is an important construct, not only because it captures a com-
mon pattern, but because it establishes a higher level of abstraction in dealing with
lists. In the original definition of scale_list, the recursive structure of the pro-
gram draws attention to the element-by-element processing of the list. Defining
scale_list in terms of map suppresses that level of detail and emphasizes that
scaling transforms a list of elements to a list of results. The difference between the
two definitions is not that the computer is performing a different process (it isn’t)
but that we think about the process differently. In effect, map helps establish an
abstraction barrier that isolates the implementation of functions that transform lists
from the details of how the elements of the list are extracted and combined. Like
the barriers shown in figure 2.1, this abstraction gives us the flexibility to change the
low-level details of how sequences are implemented, while preserving the concep-
tual framework of operations that transform sequences to sequences. Section 2.2.3
expands on this use of sequences as a framework for organizing programs.

Exercise 2.21
The function square_list takes a list of numbers as argument and returns a list of the
squares of those numbers.

square_list(list(1, 2, 3, 4));
[1, [4, [9, [16, null]]]]

Here are two different definitions of square_list. Complete both of them by filling in the
missing expressions:

92 Chapter 2 Building Abstractions with Data

function square_list(items) {
return is_null(items)

? null
: pair(〈??〉, 〈??〉);

}

function square_list(items) {
return map(〈??〉, 〈??〉);

}

Exercise 2.22
Louis Reasoner tries to rewrite the first square_list function of exercise 2.21 so that it
evolves an iterative process:

function square_list(items) {
function iter(things, answer) {

return is_null(things)
? answer
: iter(tail(things),

pair(square(head(things)),
answer));

}
return iter(items, null);

}

Unfortunately, defining square_list this way produces the answer list in the reverse order
of the one desired. Why?

Louis then tries to fix his bug by interchanging the arguments to pair:

function square_list(items) {
function iter(things, answer) {

return is_null(things)
? answer
: iter(tail(things),

pair(answer,
square(head(things))));

}
return iter(items, null);

}

This doesn’t work either. Explain.

Exercise 2.23
The function for_each is similar to map. It takes as arguments a function and a list of
elements. However, rather than forming a list of the results, for_each just applies the
function to each of the elements in turn, from left to right. The values returned by applying
the function to the elements are not used at all—for_each is used with functions that
perform an action, such as printing. For example,

for_each(x => display(x), list(57, 321, 88));
57
321
88

The value returned by the call to for_each (not illustrated above) can be something
arbitrary, such as true. Give an implementation of for_each.

2.2.2 Hierarchical Structures 93

[1, [2, null]]

4

1 2

3

[3, [4, null]][[1, [2, null]], [3, [4, null]]]

Figure 2.5 Structure formed by pair(list(1, 2), list(3, 4)).

[[1, [2, null]], [3, [4, null]]]

[1, [2, null]]

3 4

1 2

Figure 2.6 The list structure in figure 2.5 viewed as a tree.

2.2.2 Hierarchical Structures
The representation of sequences in terms of lists generalizes naturally to represent
sequences whose elements may themselves be sequences. For example, we can
regard the object [[1, [2, null]], [3, [4, null]]] constructed by

pair(list(1, 2), list(3, 4));

as a list of three items, the first of which is itself a list, [1, [2, null]]. Figure 2.5
shows the representation of this structure in terms of pairs.

Another way to think of sequences whose elements are sequences is as trees. The
elements of the sequence are the branches of the tree, and elements that are them-
selves sequences are subtrees. Figure 2.6 shows the structure in figure 2.5 viewed as
a tree.

Recursion is a natural tool for dealing with tree structures, since we can often
reduce operations on trees to operations on their branches, which reduce in turn to
operations on the branches of the branches, and so on, until we reach the leaves
of the tree. As an example, compare the length function of section 2.2.1 with the
count_leaves function, which returns the total number of leaves of a tree:

const x = pair(list(1, 2), list(3, 4));

length(x);
3

count_leaves(x);
4

94 Chapter 2 Building Abstractions with Data

list(x, x);
list(list(list(1, 2), 3, 4), list(list(1, 2), 3, 4))

length(list(x, x));
2

count_leaves(list(x, x));
8

To implement count_leaves, recall the recursive plan for computing length:

• The length of a list x is 1 plus the length of the tail of x.
• The length of the empty list is 0.

The function count_leaves is similar. The value for the empty list is the same:

• count_leaves of the empty list is 0.

But in the reduction step, where we strip off the head of the list, we must take into
account that the head may itself be a tree whose leaves we need to count. Thus, the
appropriate reduction step is

• count_leaves of a tree x is count_leaves of the head of x plus count_leaves
of the tail of x.

Finally, by taking heads we reach actual leaves, so we need another base case:

• count_leaves of a leaf is 1.

To aid in writing recursive functions on trees, our JavaScript environment provides
the primitive predicate is_pair, which tests whether its argument is a pair. Here is
the complete function:11

function count_leaves(x) {
return is_null(x)

? 0
: ! is_pair(x)
? 1
: count_leaves(head(x)) + count_leaves(tail(x));

}

Exercise 2.24
Suppose we evaluate the expression list(1, list(2, list(3, 4))). Give the result
printed by the interpreter, the corresponding box-and-pointer structure, and the interpreta-
tion of this as a tree (as in figure 2.6).

11. The order of the two predicates matters, since null satisfies is_null and also is not a pair.

2.2.2 Hierarchical Structures 95

Exercise 2.25
Give combinations of heads and tails that will pick 7 from each of the following lists,
given in list notation:

list(1, 3, list(5, 7), 9)

list(list(7))

list(1, list(2, list(3, list(4, list(5, list(6, 7))))))

Exercise 2.26
Suppose we define x and y to be two lists:

const x = list(1, 2, 3);
const y = list(4, 5, 6);

What is the result of evaluating each of the following expressions, in box notation and list
notation?

append(x, y)

pair(x, y)

list(x, y)

Exercise 2.27
Modify your reverse function of exercise 2.18 to produce a deep_reverse function that
takes a list as argument and returns as its value the list with its elements reversed and with
all sublists deep-reversed as well. For example,

const x = list(list(1, 2), list(3, 4));

x;
list(list(1, 2), list(3, 4))

reverse(x);
list(list(3, 4), list(1, 2))

deep_reverse(x);
list(list(4, 3), list(2, 1))

Exercise 2.28
Write a function fringe that takes as argument a tree (represented as a list) and returns a
list whose elements are all the leaves of the tree arranged in left-to-right order. For example,

const x = list(list(1, 2), list(3, 4));

fringe(x);
list(1, 2, 3, 4)

fringe(list(x, x));
list(1, 2, 3, 4, 1, 2, 3, 4)

96 Chapter 2 Building Abstractions with Data

Exercise 2.29
A binary mobile consists of two branches, a left branch and a right branch. Each branch is
a rod of a certain length, from which hangs either a weight or another binary mobile. We
can represent a binary mobile using compound data by constructing it from two branches
(for example, using list):

function make_mobile(left, right) {
return list(left, right);

}

A branch is constructed from a length (which must be a number) together with a
structure, which may be either a number (representing a simple weight) or another
mobile:

function make_branch(length, structure) {
return list(length, structure);

}

a. Write the corresponding selectors left_branch and right_branch, which return the
branches of a mobile, and branch_length and branch_structure, which return the
components of a branch.

b. Using your selectors, define a function total_weight that returns the total weight of a
mobile.

c. A mobile is said to be balanced if the torque applied by its top-left branch is equal to
that applied by its top-right branch (that is, if the length of the left rod multiplied by the
weight hanging from that rod is equal to the corresponding product for the right side)
and if each of the submobiles hanging off its branches is balanced. Design a predicate
that tests whether a binary mobile is balanced.

d. Suppose we change the representation of mobiles so that the constructors are

function make_mobile(left, right) {
return pair(left, right);

}
function make_branch(length, structure) {

return pair(length, structure);
}

How much do you need to change your programs to convert to the new representation?

Mapping over trees
Just as map is a powerful abstraction for dealing with sequences, map together
with recursion is a powerful abstraction for dealing with trees. For instance, the
scale_tree function, analogous to scale_list of section 2.2.1, takes as argu-
ments a numeric factor and a tree whose leaves are numbers. It returns a tree of the
same shape, where each number is multiplied by the factor. The recursive plan for
scale_tree is similar to the one for count_leaves:

2.2.2 Hierarchical Structures 97

function scale_tree(tree, factor) {
return is_null(tree)

? null
: ! is_pair(tree)
? tree * factor
: pair(scale_tree(head(tree), factor),

scale_tree(tail(tree), factor));
}

scale_tree(list(1, list(2, list(3, 4), 5), list(6, 7)),
10);

list(10, list(20, list(30, 40), 50), list(60, 70))

Another way to implement scale_tree is to regard the tree as a sequence of
sub-trees and use map. We map over the sequence, scaling each sub-tree in turn, and
return the list of results. In the base case, where the tree is a leaf, we simply multiply
by the factor:

function scale_tree(tree, factor) {
return map(sub_tree => is_pair(sub_tree)

? scale_tree(sub_tree, factor)
: sub_tree * factor,

tree);
}

Many tree operations can be implemented by similar combinations of sequence
operations and recursion.

Exercise 2.30
Declare a function square_tree analogous to the square_list function of exercise 2.21.
That is, square_tree should behave as follows:

square_tree(list(1,
list(2, list(3, 4), 5),
list(6, 7)));

list(1, list(4, list(9, 16), 25), list(36, 49)))

Declare square_tree both directly (i.e., without using any higher-order functions) and
also by using map and recursion.

Exercise 2.31
Abstract your answer to exercise 2.30 to produce a function tree_map with the property
that square_tree could be declared as

function square_tree(tree) { return tree_map(square, tree); }

98 Chapter 2 Building Abstractions with Data

Exercise 2.32
We can represent a set as a list of distinct elements, and we can represent the set of all
subsets of the set as a list of lists. For example, if the set is list(1, 2, 3), then the set of
all subsets is

list(null, list(3), list(2), list(2, 3),
list(1), list(1, 3), list(1, 2),
list(1, 2, 3))

Complete the following declaration of a function that generates the set of subsets of a set
and give a clear explanation of why it works:

function subsets(s) {
if (is_null(s)) {

return list(null);
} else {

const rest = subsets(tail(s));
return append(rest, map(〈??〉, rest));

}
}

2.2.3 Sequences as Conventional Interfaces
In working with compound data, we’ve stressed how data abstraction permits us to
design programs without becoming enmeshed in the details of data representations,
and how abstraction preserves for us the flexibility to experiment with alternative
representations. In this section, we introduce another powerful design principle for
working with data structures—the use of conventional interfaces.

In section 1.3 we saw how program abstractions, implemented as higher-order
functions, can capture common patterns in programs that deal with numerical data.
Our ability to formulate analogous operations for working with compound data de-
pends crucially on the style in which we manipulate our data structures. Consider,
for example, the following function, analogous to the count_leaves function of
section 2.2.2, which takes a tree as argument and computes the sum of the squares
of the leaves that are odd:

function sum_odd_squares(tree) {
return is_null(tree)

? 0
: ! is_pair(tree)
? is_odd(tree) ? square(tree) : 0
: sum_odd_squares(head(tree)) +
sum_odd_squares(tail(tree));

}

On the surface, this function is very different from the following one, which con-
structs a list of all the even Fibonacci numbers Fib(k), where k is less than or equal
to a given integer n:

2.2.3 Sequences as Conventional Interfaces 99

enumerate: filter: map: accumulate:

enumerate: map: filter: accumulate:

tree leaves is_odd square +, 0

integers fib is_even pair, null

Figure 2.7 The signal-flow plans for the functions sum_odd_squares (top) and
even_fibs (bottom) reveal the commonality between the two programs.

function even_fibs(n) {
function next(k) {

if (k > n) {
return null;

} else {
const f = fib(k);
return is_even(f)

? pair(f, next(k + 1))
: next(k + 1);

}
}
return next(0);

}

Despite the fact that these two functions are structurally very different, a more
abstract description of the two computations reveals a great deal of similarity. The
first program

• enumerates the leaves of a tree;
• filters them, selecting the odd ones;
• squares each of the selected ones; and
• accumulates the results using +, starting with 0.

The second program

• enumerates the integers from 0 to n;
• computes the Fibonacci number for each integer;
• filters them, selecting the even ones; and
• accumulates the results using pair, starting with the empty list.

A signal-processing engineer would find it natural to conceptualize these pro-
cesses in terms of signals flowing through a cascade of stages, each of which
implements part of the program plan, as shown in figure 2.7. In sum_odd_squares,
we begin with an enumerator, which generates a “signal” consisting of the leaves

100 Chapter 2 Building Abstractions with Data

of a given tree. This signal is passed through a filter, which eliminates all but the
odd elements. The resulting signal is in turn passed through a map, which is a
“transducer” that applies the square function to each element. The output of the
map is then fed to an accumulator, which combines the elements using +, starting
from an initial 0. The plan for even_fibs is analogous.

Unfortunately, the two function declarations above fail to exhibit this signal-flow
structure. For instance, if we examine the sum_odd_squares function, we find that
the enumeration is implemented partly by the is_null and is_pair tests and partly
by the tree-recursive structure of the function. Similarly, the accumulation is found
partly in the tests and partly in the addition used in the recursion. In general, there
are no distinct parts of either function that correspond to the elements in the signal-
flow description. Our two functions decompose the computations in a different way,
spreading the enumeration over the program and mingling it with the map, the filter,
and the accumulation. If we could organize our programs to make the signal-flow
structure manifest in the functions we write, this would increase the conceptual
clarity of the resulting program.

Sequence Operations
The key to organizing programs so as to more clearly reflect the signal-flow structure
is to concentrate on the “signals” that flow from one stage in the process to the next.
If we represent these signals as lists, then we can use list operations to implement
the processing at each of the stages. For instance, we can implement the mapping
stages of the signal-flow diagrams using the map function from section 2.2.1:

map(square, list(1, 2, 3, 4, 5));
list(1, 4, 9, 16, 25)

Filtering a sequence to select only those elements that satisfy a given predicate
is accomplished by

function filter(predicate, sequence) {
return is_null(sequence)

? null
: predicate(head(sequence))
? pair(head(sequence),

filter(predicate, tail(sequence)))
: filter(predicate, tail(sequence));

}

For example,

filter(is_odd, list(1, 2, 3, 4, 5));
list(1, 3, 5)

Accumulations can be implemented by

function accumulate(op, initial, sequence) {
return is_null(sequence)

? initial
: op(head(sequence),

accumulate(op, initial, tail(sequence)));
}

2.2.3 Sequences as Conventional Interfaces 101

accumulate(plus, 0, list(1, 2, 3, 4, 5));
15

accumulate(times, 1, list(1, 2, 3, 4, 5));
120

accumulate(pair, null, list(1, 2, 3, 4, 5));
list(1, 2, 3, 4, 5)

All that remains to implement signal-flow diagrams is to enumerate the sequence
of elements to be processed. For even_fibs, we need to generate the sequence of
integers in a given range, which we can do as follows:

function enumerate_interval(low, high) {
return low > high

? null
: pair(low,

enumerate_interval(low + 1, high));
}

enumerate_interval(2, 7);
list(2, 3, 4, 5, 6, 7)

To enumerate the leaves of a tree, we can use12

function enumerate_tree(tree) {
return is_null(tree)

? null
: ! is_pair(tree)
? list(tree)
: append(enumerate_tree(head(tree)),

enumerate_tree(tail(tree)));
}

enumerate_tree(list(1, list(2, list(3, 4)), 5));
list(1, 2, 3, 4, 5)

Now we can reformulate sum_odd_squares and even_fibs as in the signal-
flow diagrams. For sum_odd_squares, we enumerate the sequence of leaves of the
tree, filter this to keep only the odd numbers in the sequence, square each element,
and sum the results:

function sum_odd_squares(tree) {
return accumulate(plus,

0,
map(square,

filter(is_odd,
enumerate_tree(tree))));

}

12. This is, in fact, precisely the fringe function from exercise 2.28. Here we’ve renamed it to
emphasize that it is part of a family of general sequence-manipulation functions.

102 Chapter 2 Building Abstractions with Data

For even_fibs, we enumerate the integers from 0 to n, generate the Fibonacci
number for each of these integers, filter the resulting sequence to keep only the
even elements, and accumulate the results into a list:

function even_fibs(n) {
return accumulate(pair,

null,
filter(is_even,

map(fib,
enumerate_interval(0, n))));

}

The value of expressing programs as sequence operations is that this helps us
make program designs that are modular, that is, designs that are constructed by
combining relatively independent pieces. We can encourage modular design by pro-
viding a library of standard components together with a conventional interface for
connecting the components in flexible ways.

Modular construction is a powerful strategy for controlling complexity in en-
gineering design. In real signal-processing applications, for example, designers
regularly build systems by cascading elements selected from standardized families
of filters and transducers. Similarly, sequence operations provide a library of stan-
dard program elements that we can mix and match. For instance, we can reuse pieces
from the sum_odd_squares and even_fibs functions in a program that constructs
a list of the squares of the first n + 1 Fibonacci numbers:

function list_fib_squares(n) {
return accumulate(pair,

null,
map(square,

map(fib,
enumerate_interval(0, n))));

}

list_fib_squares(10);
list(0, 1, 1, 4, 9, 25, 64, 169, 441, 1156, 3025)

We can rearrange the pieces and use them in computing the product of the squares
of the odd integers in a sequence:

function product_of_squares_of_odd_elements(sequence) {
return accumulate(times,

1,
map(square,

filter(is_odd, sequence)));
}

product_of_squares_of_odd_elements(list(1, 2, 3, 4, 5));
225

We can also formulate conventional data-processing applications in terms of
sequence operations. Suppose we have a sequence of personnel records and we want
to find the salary of the highest-paid programmer. Assume that we have a selector

2.2.3 Sequences as Conventional Interfaces 103

salary that returns the salary of a record, and a predicate is_programmer that tests
if a record is for a programmer. Then we can write

function salary_of_highest_paid_programmer(records) {
return accumulate(math_max,

0,
map(salary,

filter(is_programmer, records)));
}

These examples give just a hint of the vast range of operations that can be expressed
as sequence operations.13

Sequences, implemented here as lists, serve as a conventional interface that per-
mits us to combine processing modules. Additionally, when we uniformly represent
structures as sequences, we have localized the data-structure dependencies in our
programs to a small number of sequence operations. By changing these, we can
experiment with alternative representations of sequences, while leaving the overall
design of our programs intact. We will exploit this capability in section 3.5, when
we generalize the sequence-processing paradigm to admit infinite sequences.

Exercise 2.33
Fill in the missing expressions to complete the following definitions of some basic list-
manipulation operations as accumulations:

function map(f, sequence) {
return accumulate((x, y) => 〈??〉,

null, sequence);
}
function append(seq1, seq2) {

return accumulate(pair, 〈??〉, 〈??〉);
}
function length(sequence) {

return accumulate(〈??〉, 0, sequence);
}

Exercise 2.34
Evaluating a polynomial in x at a given value of x can be formulated as an accumulation.
We evaluate the polynomial

anxn + an–1xn–1 + · · ·+ a1x + a0

using a well-known algorithm called Horner’s rule, which structures the computation as

(· · · (anx + an–1)x + · · ·+ a1) x + a0

13. Richard Waters (1979) developed a program that automatically analyzes traditional Fortran
programs, viewing them in terms of maps, filters, and accumulations. He found that fully 90
percent of the code in the Fortran Scientific Subroutine Package fits neatly into this paradigm.
One of the reasons for the success of Lisp as a programming language is that lists provide
a standard medium for expressing ordered collections so that they can be manipulated using
higher-order operations. Many modern languages, such as Python, have learned this lesson.

104 Chapter 2 Building Abstractions with Data

In other words, we start with an, multiply by x, add an–1, multiply by x, and so on, until
we reach a0.14 Fill in the following template to produce a function that evaluates a polyno-
mial using Horner’s rule. Assume that the coefficients of the polynomial are arranged in a
sequence, from a0 through an.

function horner_eval(x, coefficient_sequence) {
return accumulate((this_coeff, higher_terms) => 〈??〉,

0,
coefficient_sequence);

}

For example, to compute 1 + 3x + 5x3 + x5 at x = 2 you would evaluate

horner_eval(2, list(1, 3, 0, 5, 0, 1));

Exercise 2.35
Redefine count_leaves from section 2.2.2 as an accumulation:

function count_leaves(t) {
return accumulate(〈??〉, 〈??〉, map(〈??〉, 〈??〉));

}

Exercise 2.36
The function accumulate_n is similar to accumulate except that it takes as its third argu-
ment a sequence of sequences, which are all assumed to have the same number of elements.
It applies the designated accumulation function to combine all the first elements of the
sequences, all the second elements of the sequences, and so on, and returns a sequence of
the results. For instance, if s is a sequence containing four sequences

list(list(1, 2, 3), list(4, 5, 6), list(7, 8, 9), list(10, 11, 12))

then the value of accumulate_n(plus, 0, s) should be the sequence list(22, 26, 30).
Fill in the missing expressions in the following definition of accumulate_n:

function accumulate_n(op, init, seqs) {
return is_null(head(seqs))

? null
: pair(accumulate(op, init, 〈??〉),

accumulate_n(op, init, 〈??〉));
}

14. According to Knuth (1997b), this rule was formulated by W. G. Horner early in the nine-
teenth century, but the method was actually used by Newton over a hundred years earlier.
Horner’s rule evaluates the polynomial using fewer additions and multiplications than does
the straightforward method of first computing anxn, then adding an–1xn–1, and so on. In fact, it
is possible to prove that any algorithm for evaluating arbitrary polynomials must use at least as
many additions and multiplications as does Horner’s rule, and thus Horner’s rule is an optimal
algorithm for polynomial evaluation. This was proved (for the number of additions) by A. M.
Ostrowski in a 1954 paper that essentially founded the modern study of optimal algorithms. The
analogous statement for multiplications was proved by V. Y. Pan in 1966. The book by Borodin
and Munro (1975) provides an overview of these and other results about optimal algorithms.

2.2.3 Sequences as Conventional Interfaces 105

Exercise 2.37
Suppose we represent vectors v = (vi) as sequences of numbers, and matrices m = (mij) as
sequences of vectors (the rows of the matrix). For example, the matrix 1 2 3 4

4 5 6 6
6 7 8 9


is represented as the following sequence:

list(list(1, 2, 3, 4),
list(4, 5, 6, 6),
list(6, 7, 8, 9))

With this representation, we can use sequence operations to concisely express the basic
matrix and vector operations. These operations (which are described in any book on matrix
algebra) are the following:

dot_product(v, w) returns the sum ∑i viwi;

matrix_times_vector(m, v) returns the vector t, where ti = ∑j mijvj;

matrix_times_matrix(m, n) returns the matrix p, where pij = ∑k miknkj;

transpose(m) returns the matrix n, where nij = mji.

We can define the dot product as15

function dot_product(v, w) {
return accumulate(plus, 0, accumulate_n(times, 1, list(v, w)));

}

Fill in the missing expressions in the following functions for computing the other matrix
operations. (The function accumulate_n is declared in exercise 2.36.)

function matrix_times_vector(m, v) {
return map(〈??〉, m);

}
function transpose(mat) {

return accumulate_n(〈??〉, 〈??〉, mat);
}
function matrix_times_matrix(n, m) {

const cols = transpose(n);
return map(〈??〉, m);

}

Exercise 2.38
The accumulate function is also known as fold_right, because it combines the first
element of the sequence with the result of combining all the elements to the right. There
is also a fold_left, which is similar to fold_right, except that it combines elements
working in the opposite direction:

15. This definition uses the function accumulate_n from exercise 2.36.

106 Chapter 2 Building Abstractions with Data

function fold_left(op, initial, sequence) {
function iter(result, rest) {

return is_null(rest)
? result
: iter(op(result, head(rest)),

tail(rest));
}
return iter(initial, sequence);

}

What are the values of

fold_right(divide, 1, list(1, 2, 3));

fold_left(divide, 1, list(1, 2, 3));

fold_right(list, null, list(1, 2, 3));

fold_left(list, null, list(1, 2, 3));

Give a property that op should satisfy to guarantee that fold_right and fold_left will
produce the same values for any sequence.

Exercise 2.39
Complete the following definitions of reverse (exercise 2.18) in terms of fold_right and
fold_left from exercise 2.38:

function reverse(sequence) {
return fold_right((x, y) => 〈??〉, null, sequence);

}

function reverse(sequence) {
return fold_left((x, y) => 〈??〉, null, sequence);

}

Nested Mappings
We can extend the sequence paradigm to include many computations that are com-
monly expressed using nested loops.16 Consider this problem: Given a positive
integer n, find all ordered pairs of distinct positive integers i and j, where 1≤ j < i≤ n,
such that i + j is prime. For example, if n is 6, then the pairs are the following:

i 2 3 4 4 5 6 6
j 1 2 1 3 2 1 5

i + j 3 5 5 7 7 7 11

A natural way to organize this computation is to generate the sequence of all ordered
pairs of positive integers less than or equal to n, filter to select those pairs whose sum

16. This approach to nested mappings was shown to us by David Turner, whose languages KRC
and Miranda provide elegant formalisms for dealing with these constructs. The examples in this
section (see also exercise 2.42) are adapted from Turner 1981. In section 3.5.3, we’ll see how
this approach generalizes to infinite sequences.

2.2.3 Sequences as Conventional Interfaces 107

is prime, and then, for each pair (i, j) that passes through the filter, produce the triple
(i, j, i + j).

Here is a way to generate the sequence of pairs: For each integer i≤ n, enumerate
the integers j < i, and for each such i and j generate the pair (i, j). In terms of sequence
operations, we map along the sequence enumerate_interval(1, n). For each i
in this sequence, we map along the sequence enumerate_interval(1, i - 1).
For each j in this latter sequence, we generate the pair list(i, j). This gives
us a sequence of pairs for each i. Combining all the sequences for all the i (by
accumulating with append) produces the required sequence of pairs:17

accumulate(append,
null,
map(i => map(j => list(i, j),

enumerate_interval(1, i - 1)),
enumerate_interval(1, n)));

The combination of mapping and accumulating with append is so common in this
sort of program that we will isolate it as a separate function:

function flatmap(f, seq) {
return accumulate(append, null, map(f, seq));

}

Now filter this sequence of pairs to find those whose sum is prime. The filter pred-
icate is called for each element of the sequence; its argument is a pair and it must
extract the integers from the pair. Thus, the predicate to apply to each element in the
sequence is

function is_prime_sum(pair) {
return is_prime(head(pair) + head(tail(pair)));

}

Finally, generate the sequence of results by mapping over the filtered pairs using the
following function, which constructs a triple consisting of the two elements of the
pair along with their sum:

function make_pair_sum(pair) {
return list(head(pair), head(tail(pair)),

head(pair) + head(tail(pair)));
}

Combining all these steps yields the complete function:

function prime_sum_pairs(n) {
return map(make_pair_sum,

filter(is_prime_sum,
flatmap(i => map(j => list(i, j),

enumerate_interval(1, i - 1)),
enumerate_interval(1, n))));

}

17. We’re representing a pair here as a list of two elements rather than as an ordinary pair. Thus,
the “pair” (i, j) is represented as list(i, j), not pair(i, j).

108 Chapter 2 Building Abstractions with Data

Nested mappings are also useful for sequences other than those that enumerate
intervals. Suppose we wish to generate all the permutations of a set S; that is, all
the ways of ordering the items in the set. For instance, the permutations of {1, 2, 3}
are {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and {3, 2, 1}. Here is a plan for
generating the permutations of S: For each item x in S, recursively generate the
sequence of permutations of S – x,18 and adjoin x to the front of each one. This yields,
for each x in S, the sequence of permutations of S that begin with x. Combining these
sequences for all x gives all the permutations of S:19

function permutations(s) {
return is_null(s) // empty set?

? list(null) // sequence containing empty set
: flatmap(x => map(p => pair(x, p),

permutations(remove(x, s))),
s);

}

Notice how this strategy reduces the problem of generating permutations of S to the
problem of generating the permutations of sets with fewer elements than S. In the
terminal case, we work our way down to the empty list, which represents a set of
no elements. For this, we generate list(null), which is a sequence with one item,
namely the set with no elements. The remove function used in permutations re-
turns all the items in a given sequence except for a given item. This can be expressed
as a simple filter:

function remove(item, sequence) {
return filter(x => ! (x === item),

sequence);
}

Exercise 2.40
Write a function unique_pairs that, given an integer n, generates the sequence of pairs
(i, j) with 1≤ j < i≤ n. Use unique_pairs to simplify the definition of prime_sum_pairs
given above.

Exercise 2.41
Write a function to find all ordered triples of distinct positive integers i, j, and k less than
or equal to a given integer n that sum to a given integer s.

Exercise 2.42
The “eight-queens puzzle” asks how to place eight queens on a chessboard so that no queen
is in check from any other (i.e., no two queens are in the same row, column, or diagonal).
One possible solution is shown in figure 2.8. One way to solve the puzzle is to work across
the board, placing a queen in each column. Once we have placed k – 1 queens, we must

18. The set S – x is the set of all elements of S, excluding x.

19. The character sequence // in JavaScript programs is used to introduce comments. Everything
from // to the end of the line is ignored by the interpreter. In this book we don’t use many
comments; we try to make our programs self-documenting by using descriptive names.

2.2.3 Sequences as Conventional Interfaces 109

Figure 2.8 A solution to the eight-queens puzzle.

place the kth queen in a position where it does not check any of the queens already on the
board. We can formulate this approach recursively: Assume that we have already generated
the sequence of all possible ways to place k – 1 queens in the first k – 1 columns of the board.
For each of these ways, generate an extended set of positions by placing a queen in each
row of the kth column. Now filter these, keeping only the positions for which the queen in
the kth column is safe with respect to the other queens. This produces the sequence of all
ways to place k queens in the first k columns. By continuing this process, we will produce
not only one solution, but all solutions to the puzzle.

We implement this solution as a function queens, which returns a sequence of all
solutions to the problem of placing n queens on an n× n chessboard. The function queens
has an internal function queens_cols that returns the sequence of all ways to place queens
in the first k columns of the board.

function queens(board_size) {
function queen_cols(k) {

return k === 0
? list(empty_board)
: filter(positions => is_safe(k, positions),

flatmap(rest_of_queens =>
map(new_row =>

adjoin_position(new_row, k,
rest_of_queens),

enumerate_interval(1, board_size)),
queen_cols(k - 1)));

}
return queen_cols(board_size);

}

In this function rest_of_queens is a way to place k – 1 queens in the first k – 1 columns,
and new_row is a proposed row in which to place the queen for the kth column. Complete
the program by implementing the representation for sets of board positions, including the
function adjoin_position, which adjoins a new row-column position to a set of positions,
and empty_board, which represents an empty set of positions. You must also write the

110 Chapter 2 Building Abstractions with Data

function is_safe, which determines for a set of positions whether the queen in the kth
column is safe with respect to the others. (Note that we need only check whether the new
queen is safe—the other queens are already guaranteed safe with respect to each other.)

Exercise 2.43
Louis Reasoner is having a terrible time doing exercise 2.42. His queens function seems
to work, but it runs extremely slowly. (Louis never does manage to wait long enough for it
to solve even the 6× 6 case.) When Louis asks Eva Lu Ator for help, she points out that
he has interchanged the order of the nested mappings in the flatmap, writing it as

flatmap(new_row =>
map(rest_of_queens =>

adjoin_position(new_row, k, rest_of_queens),
queen_cols(k - 1)),

enumerate_interval(1, board_size));

Explain why this interchange makes the program run slowly. Estimate how long it will
take Louis’s program to solve the eight-queens puzzle, assuming that the program in
exercise 2.42 solves the puzzle in time T .

2.2.4 Example: A Picture Language
This section presents a simple language for drawing pictures that illustrates the
power of data abstraction and closure, and also exploits higher-order functions in
an essential way. The language is designed to make it easy to experiment with
patterns such as the ones in figure 2.9, which are composed of repeated elements
that are shifted and scaled.20 In this language, the data objects being combined are
represented as functions rather than as list structure. Just as pair, which satisfies
the closure property, allowed us to easily build arbitrarily complicated list structure,
the operations in this language, which also satisfy the closure property, allow us to
easily build arbitrarily complicated patterns.

The picture language
When we began our study of programming in section 1.1, we emphasized the impor-
tance of describing a language by focusing on the language’s primitives, its means
of combination, and its means of abstraction. We’ll follow that framework here.

Part of the elegance of this picture language is that there is only one kind of
element, called a painter. A painter draws an image that is shifted and scaled to
fit within a designated parallelogram-shaped frame. For example, there’s a primitive
painter we’ll call wave that makes a crude line drawing, as shown in figure 2.10. The

20. The picture language is based on the language Peter Henderson created to construct images
like M.C. Escher’s “Square Limit” woodcut (see Henderson 1982). The woodcut incorporates
a repeated scaled pattern, similar to the arrangements drawn using the square_limit function
in this section.

2.2.4 Example: A Picture Language 111

Figure 2.9 Designs generated with the picture language.

Figure 2.10 Images produced by the wave painter, with respect to four different frames.
The frames, shown with dashed lines, are not part of the images.

actual shape of the drawing depends on the frame—all four images in figure 2.10
are produced by the same wave painter, but with respect to four different frames.
Painters can be more elaborate than this: The primitive painter called rogers paints

112 Chapter 2 Building Abstractions with Data

a picture of MIT’s founder, William Barton Rogers, as shown in figure 2.11.21 The
four images in figure 2.11 are drawn with respect to the same four frames as the
wave images in figure 2.10.

To combine images, we use various operations that construct new painters from
given painters. For example, the beside operation takes two painters and produces
a new, compound painter that draws the first painter’s image in the left half of the
frame and the second painter’s image in the right half of the frame. Similarly, below
takes two painters and produces a compound painter that draws the first painter’s
image below the second painter’s image. Some operations transform a single painter
to produce a new painter. For example, flip_vert takes a painter and produces a
painter that draws its image upside-down, and flip_horiz produces a painter that
draws the original painter’s image left-to-right reversed.

21. William Barton Rogers (1804–1882) was the founder and first president of MIT. A geologist
and talented teacher, he taught at William and Mary College and at the University of Virginia.
In 1859 he moved to Boston, where he had more time for research, worked on a plan for
establishing a “polytechnic institute,” and served as Massachusetts’s first State Inspector of
Gas Meters.

When MIT was established in 1861, Rogers was elected its first president. Rogers espoused
an ideal of “useful learning” that was different from the university education of the time, with
its overemphasis on the classics, which, as he wrote, “stand in the way of the broader, higher
and more practical instruction and discipline of the natural and social sciences.” This education
was likewise to be different from narrow trade-school education. In Rogers’s words:

The world-enforced distinction between the practical and the scientific worker is ut-
terly futile, and the whole experience of modern times has demonstrated its utter
worthlessness.

Rogers served as president of MIT until 1870, when he resigned due to ill health. In 1878 the
second president of MIT, John Runkle, resigned under the pressure of a financial crisis brought
on by the Panic of 1873 and strain of fighting off attempts by Harvard to take over MIT. Rogers
returned to hold the office of president until 1881.

Rogers collapsed and died while addressing MIT’s graduating class at the commencement
exercises of 1882. Runkle quoted Rogers’s last words in a memorial address delivered that same
year:

“As I stand here today and see what the Institute is, . . . I call to mind the beginnings
of science. I remember one hundred and fifty years ago Stephen Hales published a
pamphlet on the subject of illuminating gas, in which he stated that his researches had
demonstrated that 128 grains of bituminous coal—”

“Bituminous coal,” these were his last words on earth. Here he bent forward, as if
consulting some notes on the table before him, then slowly regaining an erect position,
threw up his hands, and was translated from the scene of his earthly labors and triumphs
to “the tomorrow of death,” where the mysteries of life are solved, and the disembod-
ied spirit finds unending satisfaction in contemplating the new and still unfathomable
mysteries of the infinite future.

In the words of Francis A. Walker (MIT’s third president):

All his life he had borne himself most faithfully and heroically, and he died as so good
a knight would surely have wished, in harness, at his post, and in the very part and act
of public duty.

2.2.4 Example: A Picture Language 113

Figure 2.11 Images of William Barton Rogers, founder and first president of MIT,
painted with respect to the same four frames as in figure 2.10 (original image courtesy
MIT Museum).

Figure 2.12 shows the drawing of a painter called wave4 that is built up in two
stages starting from wave:

const wave2 = beside(wave, flip_vert(wave));
const wave4 = below(wave2, wave2);

In building up a complex image in this manner we are exploiting the fact that
painters are closed under the language’s means of combination. The beside or
below of two painters is itself a painter; therefore, we can use it as an element
in making more complex painters. As with building up list structure using pair, the
closure of our data under the means of combination is crucial to the ability to create
complex structures while using only a few operations.

Once we can combine painters, we would like to be able to abstract typical pat-
terns of combining painters. We will implement the painter operations as JavaScript
functions. This means that we don’t need a special abstraction mechanism in the
picture language: Since the means of combination are ordinary JavaScript functions,
we automatically have the capability to do anything with painter operations that we
can do with functions. For example, we can abstract the pattern in wave4 as

114 Chapter 2 Building Abstractions with Data

const wave2 = const wave4 =
beside(wave, flip_vert(wave)); below(wave2, wave2);

Figure 2.12 Creating a complex figure, starting from the wave painter of figure 2.10.

right_split

identity

right_split

right_split(n)

right_split

corner_splitup_split

n--1

up_split

right_split
identity

n--1n--1

n--1

n--1

corner_split(n)

n--1

n--1

Figure 2.13 Recursive plans for right_split and corner_split.

function flipped_pairs(painter) {
const painter2 = beside(painter, flip_vert(painter));
return below(painter2, painter2);

}

and declare wave4 as an instance of this pattern:

const wave4 = flipped_pairs(wave);

We can also define recursive operations. Here’s one that makes painters split and
branch towards the right as shown in figures 2.13 and 2.14:

2.2.4 Example: A Picture Language 115

function right_split(painter, n) {
if (n === 0) {

return painter;
} else {

const smaller = right_split(painter, n - 1);
return beside(painter, below(smaller, smaller));

}
}

We can produce balanced patterns by branching upwards as well as towards the right
(see exercise 2.44 and figures 2.13 and 2.14):

function corner_split(painter, n) {
if (n === 0) {

return painter;
} else {

const up = up_split(painter, n - 1);
const right = right_split(painter, n - 1);
const top_left = beside(up, up);
const bottom_right = below(right, right);
const corner = corner_split(painter, n - 1);
return beside(below(painter, top_left),

below(bottom_right, corner));
}

}

By placing four copies of a corner_split appropriately, we obtain a pattern called
square_limit, whose application to wave and rogers is shown in figure 2.9:

function square_limit(painter, n) {
const quarter = corner_split(painter, n);
const half = beside(flip_horiz(quarter), quarter);
return below(flip_vert(half), half);

}

Exercise 2.44
Declare the function up_split used by corner_split. It is similar to right_split,
except that it switches the roles of below and beside.

Higher-order operations
In addition to abstracting patterns of combining painters, we can work at a higher
level, abstracting patterns of combining painter operations. That is, we can view the
painter operations as elements to manipulate and can write means of combination
for these elements—functions that take painter operations as arguments and create
new painter operations.

For example, flipped_pairs and square_limit each arrange four copies
of a painter’s image in a square pattern; they differ only in how they orient the

116 Chapter 2 Building Abstractions with Data

right_split(wave, 4)

corner_split(wave, 4)

right_split(rogers, 4)

corner_split(rogers, 4)

Figure 2.14 The recursive operation right_split applied to the painters wave and
rogers. Combining four corner_split figures produces symmetric square_limit as
shown in figure 2.9.

copies. One way to abstract this pattern of painter combination is with the following
function, which takes four one-argument painter operations and produces a painter
operation that transforms a given painter with those four operations and arranges
the results in a square.22 The functions tl, tr, bl, and br are the transformations to
apply to the top left copy, the top right copy, the bottom left copy, and the bottom
right copy, respectively.

function square_of_four(tl, tr, bl, br) {
return painter => {

const top = beside(tl(painter), tr(painter));
const bottom = beside(bl(painter), br(painter));
return below(bottom, top);

};
}

22. In square_of_four, we use an extension of the syntax of lambda expressions that was
introduced in section 1.3.2: The body of a lambda expression can be a block, not just a re-
turn expression. Such a lambda expression has the shape (parameters) => { statements } or
parameter => { statements }.

2.2.4 Example: A Picture Language 117

Then flipped_pairs can be defined in terms of square_of_four as follows:23

function flipped_pairs(painter) {
const combine4 = square_of_four(identity, flip_vert,

identity, flip_vert);
return combine4(painter);

}

and square_limit can be expressed as24

function square_limit(painter, n) {
const combine4 = square_of_four(flip_horiz, identity,

rotate180, flip_vert);
return combine4(corner_split(painter, n));

}

Exercise 2.45
The functions right_split and up_split can be expressed as instances of a general
splitting operation. Declare a function split with the property that evaluating

const right_split = split(beside, below);
const up_split = split(below, beside);

produces functions right_split and up_split with the same behaviors as the ones
already declared.

Frames
Before we can show how to implement painters and their means of combination, we
must first consider frames. A frame can be described by three vectors—an origin
vector and two edge vectors. The origin vector specifies the offset of the frame’s
origin from some absolute origin in the plane, and the edge vectors specify the
offsets of the frame’s corners from its origin. If the edges are perpendicular, the
frame will be rectangular. Otherwise the frame will be a more general parallelogram.

Figure 2.15 shows a frame and its associated vectors. In accordance with data
abstraction, we need not be specific yet about how frames are represented, other
than to say that there is a constructor make_frame, which takes three vectors and
produces a frame, and three corresponding selectors origin_frame, edge1_frame,
and edge2_frame (see exercise 2.47).

We will use coordinates in the unit square (0≤ x, y≤ 1) to specify images. With
each frame, we associate a frame coordinate map, which will be used to shift and
scale images to fit the frame. The map transforms the unit square into the frame by
mapping the vector v = (x, y) to the vector sum

Origin(Frame) + x · Edge1 (Frame) + y · Edge2 (Frame)

23. Equivalently, we could write
const flipped_pairs = square_of_four(identity, flip_vert,

identity, flip_vert);

24. The function rotate180 rotates a painter by 180 degrees. Instead of rotate180 we could
say compose(flip_vert, flip_horiz), using the compose function from exercise 1.42.

118 Chapter 2 Building Abstractions with Data

Frame

Edge

vector

Frame

Edge

vector

Frame

Origin

vector

(0, 0) point on display screen

2 1

Figure 2.15 A frame is described by three vectors—an origin and two edges.

For example, (0, 0) is mapped to the origin of the frame, (1, 1) to the vertex diago-
nally opposite the origin, and (0.5, 0.5) to the center of the frame. We can create a
frame’s coordinate map with the following function:25

function frame_coord_map(frame) {
return v => add_vect(origin_frame(frame),

add_vect(scale_vect(xcor_vect(v),
edge1_frame(frame)),

scale_vect(ycor_vect(v),
edge2_frame(frame))));

}

Observe that applying frame_coord_map to a frame returns a function that, given a
vector, returns a vector. If the argument vector is in the unit square, the result vector
will be in the frame. For example,

frame_coord_map(a_frame)(make_vect(0, 0));

returns the same vector as

origin_frame(a_frame);

Exercise 2.46
A two-dimensional vector v running from the origin to a point can be represented as a
pair consisting of an x-coordinate and a y-coordinate. Implement a data abstraction for
vectors by giving a constructor make_vect and corresponding selectors xcor_vect and
ycor_vect. In terms of your selectors and constructor, implement functions add_vect,

25. The function frame_coord_map uses the vector operations described in exercise 2.46 be-
low, which we assume have been implemented using some representation for vectors. Because
of data abstraction, it doesn’t matter what this vector representation is, so long as the vector
operations behave correctly.

2.2.4 Example: A Picture Language 119

sub_vect, and scale_vect that perform the operations vector addition, vector subtraction,
and multiplying a vector by a scalar:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
(x1, y1) – (x2, y2) = (x1 – x2, y1 – y2)
s · (x, y) = (sx, sy)

Exercise 2.47
Here are two possible constructors for frames:

function make_frame(origin, edge1, edge2) {
return list(origin, edge1, edge2);

}

function make_frame(origin, edge1, edge2) {
return pair(origin, pair(edge1, edge2));

}

For each constructor supply the appropriate selectors to produce an implementation for
frames.

Painters
A painter is represented as a function that, given a frame as argument, draws a
particular image shifted and scaled to fit the frame. That is to say, if p is a painter
and f is a frame, then we produce p’s image in f by calling p with f as argument.

The details of how primitive painters are implemented depend on the particu-
lar characteristics of the graphics system and the type of image to be drawn. For
instance, suppose we have a function draw_line that draws a line on the screen
between two specified points. Then we can create painters for line drawings, such
as the wave painter in figure 2.10, from lists of line segments as follows:26

function segments_to_painter(segment_list) {
return frame =>

for_each(segment =>
draw_line(

frame_coord_map(frame)
(start_segment(segment)),

frame_coord_map(frame)
(end_segment(segment))),

segment_list);
}

The segments are given using coordinates with respect to the unit square. For each
segment in the list, the painter transforms the segment endpoints with the frame
coordinate map and draws a line between the transformed points.

26. The function segments_to_painter uses the representation for line segments described in
exercise 2.48 below. It also uses the for_each function described in exercise 2.23.

120 Chapter 2 Building Abstractions with Data

Representing painters as functions erects a powerful abstraction barrier in the
picture language. We can create and intermix all sorts of primitive painters, based on
a variety of graphics capabilities. The details of their implementation do not matter.
Any function can serve as a painter, provided that it takes a frame as argument and
draws something scaled to fit the frame.27

Exercise 2.48
A directed line segment in the plane can be represented as a pair of vectors—the vector
running from the origin to the start-point of the segment, and the vector running from the
origin to the end-point of the segment. Use your vector representation from exercise 2.46
to define a representation for segments with a constructor make_segment and selectors
start_segment and end_segment.

Exercise 2.49
Use segments_to_painter to define the following primitive painters:

a. The painter that draws the outline of the designated frame.

b. The painter that draws an “X” by connecting opposite corners of the frame.

c. The painter that draws a diamond shape by connecting the midpoints of the sides of the
frame.

d. The wave painter.

Transforming and combining painters
An operation on painters (such as flip_vert or beside) works by creating a
painter that invokes the original painters with respect to frames derived from the
argument frame. Thus, for example, flip_vert doesn’t have to know how a painter
works in order to flip it—it just has to know how to turn a frame upside down: The
flipped painter just uses the original painter, but in the inverted frame.

Painter operations are based on the function transform_painter, which takes
as arguments a painter and information on how to transform a frame and produces
a new painter. The transformed painter, when called on a frame, transforms the
frame and calls the original painter on the transformed frame. The arguments to
transform_painter are points (represented as vectors) that specify the corners of
the new frame: When mapped into the frame, the first point specifies the new frame’s
origin and the other two specify the ends of its edge vectors. Thus, arguments within
the unit square specify a frame contained within the original frame.

27. For example, the rogers painter of figure 2.11 was constructed from a gray-level image. For
each point in a given frame, the rogers painter determines the point in the image that is mapped
to it under the frame coordinate map, and shades it accordingly. By allowing different types
of painters, we are capitalizing on the abstract data idea discussed in section 2.1.3, where we
argued that a rational-number representation could be anything at all that satisfies an appropriate
condition. Here we’re using the fact that a painter can be implemented in any way at all, so long
as it draws something in the designated frame. Section 2.1.3 also showed how pairs could be im-
plemented as functions. Painters are our second example of a functional representation for data.

2.2.4 Example: A Picture Language 121

function transform_painter(painter, origin, corner1, corner2) {
return frame => {

const m = frame_coord_map(frame);
const new_origin = m(origin);
return painter(make_frame(

new_origin,
sub_vect(m(corner1), new_origin),
sub_vect(m(corner2), new_origin)));

};
}

Here’s how to flip painter images vertically:

function flip_vert(painter) {
return transform_painter(painter,

make_vect(0, 1), // new origin
make_vect(1, 1), // new end of edge1
make_vect(0, 0)); // new end of edge2

}

Using transform_painter, we can easily define new transformations. For exam-
ple, we can declare a painter that shrinks its image to the upper-right quarter of the
frame it is given:

function shrink_to_upper_right(painter) {
return transform_painter(painter,

make_vect(0.5, 0.5),
make_vect(1, 0.5),
make_vect(0.5, 1));

}

Other transformations rotate images counterclockwise by 90 degrees28

function rotate90(painter) {
return transform_painter(painter,

make_vect(1, 0),
make_vect(1, 1),
make_vect(0, 0));

}

or squash images towards the center of the frame:29

function squash_inwards(painter) {
return transform_painter(painter,

make_vect(0, 0),
make_vect(0.65, 0.35),
make_vect(0.35, 0.65));

}

28. The function rotate90 is a pure rotation only for square frames, because it also stretches
and shrinks the image to fit into the rotated frame.

29. The diamond-shaped images in figures 2.10 and 2.11 were created with squash_inwards
applied to wave and rogers.

122 Chapter 2 Building Abstractions with Data

Frame transformation is also the key to defining means of combining two or
more painters. The beside function, for example, takes two painters, transforms
them to paint in the left and right halves of an argument frame respectively, and
produces a new, compound painter. When the compound painter is given a frame, it
calls the first transformed painter to paint in the left half of the frame and calls the
second transformed painter to paint in the right half of the frame:

function beside(painter1, painter2) {
const split_point = make_vect(0.5, 0);
const paint_left = transform_painter(painter1,

make_vect(0, 0),
split_point,
make_vect(0, 1));

const paint_right = transform_painter(painter2,
split_point,
make_vect(1, 0),
make_vect(0.5, 1));

return frame => {
paint_left(frame);
paint_right(frame);

};
}

Observe how the painter data abstraction, and in particular the representation of
painters as functions, makes beside easy to implement. The beside function need
not know anything about the details of the component painters other than that each
painter will draw something in its designated frame.

Exercise 2.50
Declare the transformation flip_horiz, which flips painters horizontally, and transforma-
tions that rotate painters counterclockwise by 180 degrees and 270 degrees.

Exercise 2.51
Declare the below operation for painters. The function below takes two painters as argu-
ments. The resulting painter, given a frame, draws with the first painter in the bottom of
the frame and with the second painter in the top. Define below in two different ways—first
by writing a function that is analogous to the beside function given above, and again in
terms of beside and suitable rotation operations (from exercise 2.50).

Levels of language for robust design
The picture language exploits some of the critical ideas we’ve introduced about
abstraction with functions and data. The fundamental data abstractions, painters, are
implemented using functional representations, which enables the language to handle
different basic drawing capabilities in a uniform way. The means of combination
satisfy the closure property, which permits us to easily build up complex designs.
Finally, all the tools for abstracting functions are available to us for abstracting
means of combination for painters.

2.2.4 Example: A Picture Language 123

We have also obtained a glimpse of another crucial idea about languages and
program design. This is the approach of stratified design, the notion that a complex
system should be structured as a sequence of levels that are described using a se-
quence of languages. Each level is constructed by combining parts that are regarded
as primitive at that level, and the parts constructed at each level are used as primitives
at the next level. The language used at each level of a stratified design has primitives,
means of combination, and means of abstraction appropriate to that level of detail.

Stratified design pervades the engineering of complex systems. For example, in
computer engineering, resistors and transistors are combined (and described using a
language of analog circuits) to produce parts such as and-gates and or-gates, which
form the primitives of a language for digital-circuit design.30 These parts are com-
bined to build processors, bus structures, and memory systems, which are in turn
combined to form computers, using languages appropriate to computer architecture.
Computers are combined to form distributed systems, using languages appropriate
for describing network interconnections, and so on.

As a tiny example of stratification, our picture language uses primitive elements
(primitive painters) that specify points and lines to provide the shapes of a painter
like rogers. The bulk of our description of the picture language focused on combin-
ing these primitives, using geometric combiners such as beside and below. We
also worked at a higher level, regarding beside and below as primitives to be
manipulated in a language whose operations, such as square_of_four, capture
common patterns of combining geometric combiners.

Stratified design helps make programs robust, that is, it makes it likely that
small changes in a specification will require correspondingly small changes in the
program. For instance, suppose we wanted to change the image based on wave
shown in figure 2.9. We could work at the lowest level to change the detailed ap-
pearance of the wave element; we could work at the middle level to change the way
corner_split replicates the wave; we could work at the highest level to change
how square_limit arranges the four copies of the corner. In general, each level of
a stratified design provides a different vocabulary for expressing the characteristics
of the system, and a different kind of ability to change it.

Exercise 2.52
Make changes to the square limit of wave shown in figure 2.9 by working at each of the
levels described above. In particular:

a. Add some segments to the primitive wave painter of exercise 2.49 (to add a smile, for
example).

b. Change the pattern constructed by corner_split (for example, by using only one copy
of the up_split and right_split images instead of two).

c. Modify the version of square_limit that uses square_of_four so as to assemble the
corners in a different pattern. (For example, you might make the big Mr. Rogers look
outward from each corner of the square.)

30. Section 3.3.4 describes one such language.

124 Chapter 2 Building Abstractions with Data

2.3 Symbolic Data
All the compound data objects we have used so far were constructed ultimately from
numbers. In this section we extend the representational capability of our language
by introducing the ability to work with strings of characters as data.

2.3.1 Strings
So far, we have used strings in order to display messages, using the functions
display and error (as for example in exercise 1.22). We can form compound data
using strings and have lists such as

list("a", "b", "c", "d")
list(23, 45, 17)
list(list("Jakob", 27), list("Lova", 9), list("Luisa", 24))

In order to distinguish strings from names, we surround them with double quotation
marks. For example, the JavaScript expression z denotes the value of the name z,
whereas the JavaScript expression "z" denotes a string that consists of a single
character, namely the last letter in the English alphabet in lower case.

Via quotation marks, we can distinguish between strings and names:

const a = 1;
const b = 2;

list(a, b);
[1, [2, null]]

list("a", "b");
["a", ["b", null]]

list("a", b);
["a", [2, null]]

In section 1.1.6, we introduced === and !== as primitive predicates on numbers.
From now on, we shall allow two strings as operands of === and !==. The predicate
=== returns true if and only if the two strings are the same, and !== returns true if
and only if the two strings are not the same.31 Using ===, we can implement a useful
function called member. This takes two arguments: a string and a list of strings or a
number and a list of numbers. If the first argument is not contained in the list (i.e., is
not === to any item in the list), then member returns null. Otherwise, it returns the
sublist of the list beginning with the first occurrence of the string or number:

31. We can consider two strings to be “the same” if they consist of the same characters in the
same order. Such a definition skirts a deep issue that we are not yet ready to address: the meaning
of “sameness” in a programming language. We will return to this in chapter 3 (section 3.1.3).

2.3.1 Strings 125

function member(item, x) {
return is_null(x)

? null
: item === head(x)
? x
: member(item, tail(x));

}

For example, the value of

member("apple", list("pear", "banana", "prune"))

is null, whereas the value of

member("apple", list("x", "y", "apple", "pear"))

is list("apple", "pear").

Exercise 2.53
What is the result of evaluating each of the following expressions, in box notation and list
notation?

list("a", "b", "c")

list(list("george"))

tail(list(list("x1", "x2"), list("y1", "y2")))

tail(head(list(list("x1", "x2"), list("y1", "y2"))))

member("red", list("blue", "shoes", "yellow", "socks"))

member("red", list("red", "shoes", "blue", "socks"))

Exercise 2.54
Two lists are said to be equal if they contain equal elements arranged in the same order.
For example,

equal(list("this", "is", "a", "list"), list("this", "is", "a", "list"))

is true, but

equal(list("this", "is", "a", "list"), list("this", list("is", "a"), "list"))

is false. To be more precise, we can define equal recursively in terms of the basic ===
equality of numbers and strings by saying that a and b are equal if they are both strings
or both numbers and they are ===, or if they are both pairs such that head(a) is equal
to head(b) and tail(a) is equal to tail(b). Using this idea, implement equal as a
function.

Exercise 2.55
The JavaScript interpreter reads the characters after a double quotation mark " until it
finds another double quotation mark. All characters between the two are part of the string,
excluding the double quotation marks themselves. But what if we want a string to contain

126 Chapter 2 Building Abstractions with Data

double quotation marks? For this purpose, JavaScript also allows single quotation marks to
delimit strings, as for example in 'say your name aloud'. Within singly-quoted strings,
we can use double quotation marks, and vice versa, so 'say "your name" aloud' and
"say 'your name' aloud" are valid strings that have different characters at positions 4
and 14, if we start counting at 0. Depending on the font in use, two single quotation marks
might not be easily distinguishable from a double quotation mark. Can you spot which is
which and work out the value of the following expression?

'"' === ""

2.3.2 Example: Symbolic Differentiation
As an illustration of symbol manipulation and a further illustration of data abstrac-
tion, consider the design of a function that performs symbolic differentiation of
algebraic expressions. We would like the function to take as arguments an algebraic
expression and a variable and to return the derivative of the expression with respect
to the variable. For example, if the arguments to the function are ax2 + bx + c and x,
the function should return 2ax + b. Symbolic differentiation is of special historical
significance in the programming language Lisp.32 It was one of the motivating
examples behind the development of a computer language for symbol manipula-
tion. Furthermore, it marked the beginning of the line of research that led to the
development of powerful systems for symbolic mathematical work, which are today
routinely used by applied mathematicians and physicists.

In developing the symbolic-differentiation program, we will follow the same
strategy of data abstraction that we followed in developing the rational-number
system of section 2.1.1. That is, we will first define a differentiation algorithm that
operates on abstract objects such as “sums,” “products,” and “variables” without
worrying about how these are to be represented. Only afterward will we address the
representation problem.

The differentiation program with abstract data
To keep things simple, we will consider a very simple symbolic-differentiation pro-
gram that handles expressions that are built up using only the operations of addition
and multiplication with two arguments. Differentiation of any such expression can
be carried out by applying the following reduction rules:

dc
dx

= 0 for c a constant or a variable different from x

dx
dx

= 1

d(u + v)
dx

=
du
dx

+
dv
dx

d(uv)
dx

= u
(

dv
dx

)
+ v
(

du
dx

)

32. The original version of this book used the programming language Scheme, a dialect of Lisp.

2.3.2 Example: Symbolic Differentiation 127

Observe that the latter two rules are recursive in nature. That is, to obtain the
derivative of a sum we first find the derivatives of the terms and add them. Each of
the terms may in turn be an expression that needs to be decomposed. Decompos-
ing into smaller and smaller pieces will eventually produce pieces that are either
constants or variables, whose derivatives will be either 0 or 1.

To embody these rules in a function we indulge in a little wishful thinking, as
we did in designing the rational-number implementation. If we had a means for
representing algebraic expressions, we should be able to tell whether an expression
is a sum, a product, a constant, or a variable. We should be able to extract the parts of
an expression. For a sum, for example, we want to be able to extract the addend (first
term) and the augend (second term). We should also be able to construct expressions
from parts. Let us assume that we already have functions to implement the following
selectors, constructors, and predicates:

is_variable(e) Is e a variable?

is_same_variable(v1, v2) Are v1 and v2 the same variable?

is_sum(e) Is e a sum?

addend(e) Addend of the sum e.

augend(e) Augend of the sum e.

make_sum(a1, a2) Construct the sum of a1 and a2.

is_product(e) Is e a product?

multiplier(e) Multiplier of the product e.

multiplicand(e) Multiplicand of the product e.

make_product(m1, m2) Construct the product of m1 and m2.

Using these, and the primitive predicate is_number, which identifies numbers, we
can express the differentiation rules as the following function:

function deriv(exp, variable) {
return is_number(exp)

? 0
: is_variable(exp)
? is_same_variable(exp, variable) ? 1 : 0
: is_sum(exp)
? make_sum(deriv(addend(exp), variable),

deriv(augend(exp), variable))
: is_product(exp)
? make_sum(make_product(multiplier(exp),

deriv(multiplicand(exp),
variable)),

make_product(deriv(multiplier(exp),
variable),

multiplicand(exp)))
: error(exp, "unknown expression type -- deriv");

}

128 Chapter 2 Building Abstractions with Data

This deriv function incorporates the complete differentiation algorithm. Since it
is expressed in terms of abstract data, it will work no matter how we choose to
represent algebraic expressions, as long as we design a proper set of selectors and
constructors. This is the issue we must address next.

Representing algebraic expressions
We can imagine many ways to use list structure to represent algebraic expres-
sions. For example, we could use lists of symbols that mirror the usual alge-
braic notation, representing ax + b as list("a", "*", "x", "+", "b"). How-
ever, it will be more convenient if we reflect the mathematical structure of the
expression in the JavaScript value representing it; that is, to represent ax + b as
list("+", list("*", "a", "x"), "b"). Placing a binary operator in front of
its operands is called prefix notation, in contrast with the infix notation introduced
in section 1.1.1. With prefix notation, our data representation for the differentiation
problem is as follows:

• The variables are just strings. They are identified by the primitive predicate
is_string:

function is_variable(x) { return is_string(x); }

• Two variables are the same if the strings representing them are equal:

function is_same_variable(v1, v2) {
return is_variable(v1) && is_variable(v2) && v1 === v2;

}

• Sums and products are constructed as lists:

function make_sum(a1, a2) { return list("+", a1, a2); }
function make_product(m1, m2) { return list("*", m1, m2); }

• A sum is a list whose first element is the string "+":

function is_sum(x) {
return is_pair(x) && head(x) === "+";

}

• The addend is the second item of the sum list:

function addend(s) { return head(tail(s)); }

• The augend is the third item of the sum list:

function augend(s) { return head(tail(tail(s))); }

• A product is a list whose first element is the string "*":

function is_product(x) {
return is_pair(x) && head(x) === "*";

}

2.3.2 Example: Symbolic Differentiation 129

• The multiplier is the second item of the product list:

function multiplier(s) { return head(tail(s)); }

• The multiplicand is the third item of the product list:

function multiplicand(s) { return head(tail(tail(s))); }

Thus, we need only combine these with the algorithm as embodied by deriv in order
to have a working symbolic-differentiation program. Let us look at some examples
of its behavior:

deriv(list("+", "x", 3), "x");
list("+", 1, 0)

deriv(list("*", "x", "y"), "x");
list("+", list("*", "x", 0), list("*", 1, "y"))

deriv(list("*", list("*", "x", "y"), list("+", "x", 3)), "x");
list("+", list("*", list("*", "x", "y"), list("+", 1, 0)),

list("*", list("+", list("*", "x", 0), list("*", 1, "y")),
list("+", "x", 3)))

The program produces answers that are correct; however, they are unsimplified. It is
true that

d(xy)
dx

= x · 0 + 1 · y

but we would like the program to know that x · 0 = 0, 1 · y = y, and 0 + y = y. The
answer for the second example should have been simply y. As the third example
shows, this becomes a serious issue when the expressions are complex.

Our difficulty is much like the one we encountered with the rational-number
implementation: we haven’t reduced answers to simplest form. To accomplish the
rational-number reduction, we needed to change only the constructors and the selec-
tors of the implementation. We can adopt a similar strategy here. We won’t change
deriv at all. Instead, we will change make_sum so that if both summands are num-
bers, make_sum will add them and return their sum. Also, if one of the summands is
0, then make_sum will return the other summand.

function make_sum(a1, a2) {
return number_equal(a1, 0)

? a2
: number_equal(a2, 0)
? a1
: is_number(a1) && is_number(a2)
? a1 + a2
: list("+", a1, a2);

}

This uses the function number_equal, which checks whether an expression is equal
to a given number:

130 Chapter 2 Building Abstractions with Data

function number_equal(exp, num) {
return is_number(exp) && exp === num;

}

Similarly, we will change make_product to build in the rules that 0 times anything
is 0 and 1 times anything is the thing itself:

function make_product(m1, m2) {
return number_equal(m1, 0) || number_equal(m2, 0)

? 0
: number_equal(m1, 1)
? m2
: number_equal(m2, 1)
? m1
: is_number(m1) && is_number(m2)
? m1 * m2
: list("*", m1, m2);

}

Here is how this version works on our three examples:

deriv(list("+", "x", 3), "x");
1

deriv(list("*", "x", "y"), "x");
"y"

deriv(list("*", list("*", "x", "y"), list("+", "x", 3)), "x");
list("+", list("*", "x", "y"), list("*", "y", list("+", "x", 3)))

Although this is quite an improvement, the third example shows that there is still
a long way to go before we get a program that puts expressions into a form that
we might agree is “simplest.” The problem of algebraic simplification is complex
because, among other reasons, a form that may be simplest for one purpose may not
be for another.

Exercise 2.56
Show how to extend the basic differentiator to handle more kinds of expressions. For
instance, implement the differentiation rule

d(un)
dx

= nun–1
(

du
dx

)
by adding a new clause to the deriv program and defining appropriate functions is_exp,
base, exponent, and make_exp. (You may use the string "**" to denote exponentiation.)
Build in the rules that anything raised to the power 0 is 1 and anything raised to the power
1 is the thing itself.

Exercise 2.57
Extend the differentiation program to handle sums and products of arbitrary numbers of
(two or more) terms. Then the last example above could be expressed as

deriv(list("*", "x", "y", list("+", "x", 3)), "x");

2.3.3 Example: Representing Sets 131

Try to do this by changing only the representation for sums and products, without changing
the deriv function at all. For example, the addend of a sum would be the first term, and
the augend would be the sum of the rest of the terms.

Exercise 2.58
Suppose we want to modify the differentiation program so that it works with ordinary
mathematical notation, in which "+" and "*" are infix rather than prefix operators. Since
the differentiation program is defined in terms of abstract data, we can modify it to work
with different representations of expressions solely by changing the predicates, selectors,
and constructors that define the representation of the algebraic expressions on which the
differentiator is to operate.

a. Show how to do this in order to differentiate algebraic expressions presented in infix
form, as in this example:

list("x", "+", list(3, "*", list("x", "+", list("y", "+", 2))))

To simplify the task, assume that "+" and "*" always take two arguments and that
expressions are fully parenthesized.

b. The problem becomes substantially harder if we allow a notation closer to ordinary
infix notation, which omits unnecessary parentheses and assumes that multiplication
has higher precedence than addition, as in this example:

list("x", "+", "3", "*", list("x", "+", "y", "+", 2))

Can you design appropriate predicates, selectors, and constructors for this notation such
that our derivative program still works?

2.3.3 Example: Representing Sets
In the previous examples we built representations for two kinds of compound data
objects: rational numbers and algebraic expressions. In one of these examples we
had the choice of simplifying (reducing) the expressions at either construction time
or selection time, but other than that the choice of a representation for these struc-
tures in terms of lists was straightforward. When we turn to the representation of
sets, the choice of a representation is not so obvious. Indeed, there are a number
of possible representations, and they differ significantly from one another in several
ways.

Informally, a set is simply a collection of distinct objects. To give a more precise
definition we can employ the method of data abstraction. That is, we define “set”
by specifying the operations that are to be used on sets. These are union_set,
intersection_set, is_element_of_set, and adjoin_set. The function is_
element_of_set is a predicate that determines whether a given element is a
member of a set. The function adjoin_set takes an object and a set as argu-
ments and returns a set that contains the elements of the original set and also
the adjoined element. The function union_set computes the union of two sets,
which is the set containing each element that appears in either argument. The func-
tion intersection_set computes the intersection of two sets, which is the set
containing only elements that appear in both arguments. From the viewpoint of

132 Chapter 2 Building Abstractions with Data

data abstraction, we are free to design any representation that implements these
operations in a way consistent with the interpretations given above.33

Sets as unordered lists
One way to represent a set is as a list of its elements in which no element appears
more than once. The empty set is represented by the empty list. In this representa-
tion, is_element_of_set is similar to the function member of section 2.3.1. It uses
equal instead of === so that the set elements need not be just numbers or strings:

function is_element_of_set(x, set) {
return is_null(set)

? false
: equal(x, head(set))
? true
: is_element_of_set(x, tail(set));

}

Using this, we can write adjoin_set. If the object to be adjoined is already in the
set, we just return the set. Otherwise, we use pair to add the object to the list that
represents the set:

function adjoin_set(x, set) {
return is_element_of_set(x, set)

? set
: pair(x, set);

}

For intersection_set we can use a recursive strategy. If we know how to form
the intersection of set2 and the tail of set1, we only need to decide whether to
include the head of set1 in this. But this depends on whether head(set1) is also
in set2. Here is the resulting function:

function intersection_set(set1, set2) {
return is_null(set1) || is_null(set2)

? null
: is_element_of_set(head(set1), set2)
? pair(head(set1), intersection_set(tail(set1), set2))
: intersection_set(tail(set1), set2);

}

33. If we want to be more formal, we can specify “consistent with the interpretations given
above” to mean that the operations satisfy a collection of rules such as these:
• For any set S and any object x, is_element_of_set(x, adjoin_set(x, S)) is true

(informally: “Adjoining an object to a set produces a set that contains the object”).

• For any sets S and T and any object x, is_element_of_set(x, union_set(S, T)) is
equal to is_element_of_set(x, S) || is_element_of_set(x, T) (informally: “The
elements of union_set(S, T) are the elements that are in S or in T”).

• For any object x, is_element_of_set(x, null) is false (informally: “No object is an
element of the empty set”).

2.3.3 Example: Representing Sets 133

In designing a representation, one of the issues we should be concerned with is
efficiency. Consider the number of steps required by our set operations. Since they
all use is_element_of_set, the speed of this operation has a major impact on the
efficiency of the set implementation as a whole. Now, in order to check whether
an object is a member of a set, is_element_of_set may have to scan the entire
set. (In the worst case, the object turns out not to be in the set.) Hence, if the set
has n elements, is_element_of_set might take up to n steps. Thus, the number of
steps required grows as Θ(n). The number of steps required by adjoin_set, which
uses this operation, also grows as Θ(n). For intersection_set, which does an
is_element_of_set check for each element of set1, the number of steps required
grows as the product of the sizes of the sets involved, or Θ(n2) for two sets of size n.
The same will be true of union_set.

Exercise 2.59
Implement the union_set operation for the unordered-list representation of sets.

Exercise 2.60
We specified that a set would be represented as a list with no duplicates. Now sup-
pose we allow duplicates. For instance, the set {1, 2, 3} could be represented as the
list list(2, 3, 2, 1, 3, 2, 2). Design functions is_element_of_set, adjoin_set,
union_set, and intersection_set that operate on this representation. How does the
efficiency of each compare with the corresponding function for the non-duplicate represen-
tation? Are there applications for which you would use this representation in preference to
the non-duplicate one?

Sets as ordered lists
One way to speed up our set operations is to change the representation so that
the set elements are listed in increasing order. To do this, we need some way to
compare two objects so that we can say which is bigger. For example, we could
compare strings lexicographically, or we could agree on some method for assigning
a unique number to an object and then compare the elements by comparing the
corresponding numbers. To keep our discussion simple, we will consider only the
case where the set elements are numbers, so that we can compare elements using >
and <. We will represent a set of numbers by listing its elements in increasing order.
Whereas our first representation above allowed us to represent the set {1, 3, 6, 10}
by listing the elements in any order, our new representation allows only the list
list(1, 3, 6, 10).

One advantage of ordering shows up in is_element_of_set: In checking for
the presence of an item, we no longer have to scan the entire set. If we reach a set
element that is larger than the item we are looking for, then we know that the item
is not in the set:

134 Chapter 2 Building Abstractions with Data

function is_element_of_set(x, set) {
return is_null(set)

? false
: x === head(set)
? true
: x < head(set)
? false
: // x > head(set)
is_element_of_set(x, tail(set));

}

How many steps does this save? In the worst case, the item we are looking for may
be the largest one in the set, so the number of steps is the same as for the unordered
representation. On the other hand, if we search for items of many different sizes
we can expect that sometimes we will be able to stop searching at a point near the
beginning of the list and that other times we will still need to examine most of the
list. On the average we should expect to have to examine about half of the items in
the set. Thus, the average number of steps required will be about n/2. This is still
Θ(n) growth, but it does save us, on the average, a factor of 2 in number of steps
over the previous implementation.

We obtain a more impressive speedup with intersection_set. In the un-
ordered representation this operation required Θ(n2) steps, because we performed
a complete scan of set2 for each element of set1. But with the ordered representa-
tion, we can use a more clever method. Begin by comparing the initial elements, x1
and x2, of the two sets. If x1 equals x2, then that gives an element of the intersec-
tion, and the rest of the intersection is the intersection of the tails of the two sets.
Suppose, however, that x1 is less than x2. Since x2 is the smallest element in set2,
we can immediately conclude that x1 cannot appear anywhere in set2 and hence is
not in the intersection. Hence, the intersection is equal to the intersection of set2
with the tail of set1. Similarly, if x2 is less than x1, then the intersection is given
by the intersection of set1 with the tail of set2. Here is the function:

function intersection_set(set1, set2) {
if (is_null(set1) || is_null(set2)) {

return null;
} else {

const x1 = head(set1);
const x2 = head(set2);
return x1 === x2

? pair(x1, intersection_set(tail(set1), tail(set2)))
: x1 < x2
? intersection_set(tail(set1), set2)
: // x2 < x1
intersection_set(set1, tail(set2));

}
}

To estimate the number of steps required by this process, observe that at each
step we reduce the intersection problem to computing intersections of smaller
sets—removing the first element from set1 or set2 or both. Thus, the number of
steps required is at most the sum of the sizes of set1 and set2, rather than the

2.3.3 Example: Representing Sets 135

7 3 5

3 9 1 7 93

1 11 5 9 1 7 11

11

5

Figure 2.16 Various binary trees that represent the set {1, 3, 5, 7, 9, 11}.

product of the sizes as with the unordered representation. This is Θ(n) growth rather
than Θ(n2)—a considerable speedup, even for sets of moderate size.

Exercise 2.61
Give an implementation of adjoin_set using the ordered representation. By analogy with
is_element_of_set show how to take advantage of the ordering to produce a function
that requires on the average about half as many steps as with the unordered representation.

Exercise 2.62
Give a Θ(n) implementation of union_set for sets represented as ordered lists.

Sets as binary trees
We can do better than the ordered-list representation by arranging the set elements
in the form of a tree. Each node of the tree holds one element of the set, called
the “entry” at that node, and a link to each of two other (possibly empty) nodes.
The “left” link points to elements smaller than the one at the node, and the “right”
link to elements greater than the one at the node. Figure 2.16 shows some trees that
represent the set {1, 3, 5, 7, 9, 11}. The same set may be represented by a tree in a
number of different ways. The only thing we require for a valid representation is that
all elements in the left subtree be smaller than the node entry and that all elements
in the right subtree be larger.

The advantage of the tree representation is this: Suppose we want to check
whether a number x is contained in a set. We begin by comparing x with the entry in
the top node. If x is less than this, we know that we need only search the left subtree;
if x is greater, we need only search the right subtree. Now, if the tree is “balanced,”
each of these subtrees will be about half the size of the original. Thus, in one step we
have reduced the problem of searching a tree of size n to searching a tree of size n/2.
Since the size of the tree is halved at each step, we should expect that the number of

136 Chapter 2 Building Abstractions with Data

steps needed to search a tree of size n grows as Θ(log n).34 For large sets, this will
be a significant speedup over the previous representations.

We can represent trees by using lists. Each node will be a list of three items: the
entry at the node, the left subtree, and the right subtree. A left or a right subtree of
the empty list will indicate that there is no subtree connected there. We can describe
this representation by the following functions:35

function entry(tree) { return head(tree); }
function left_branch(tree) { return head(tail(tree)); }
function right_branch(tree) { return head(tail(tail(tree))); }
function make_tree(entry, left, right) {

return list(entry, left, right);
}

Now we can write is_element_of_set using the strategy described above:

function is_element_of_set(x, set) {
return is_null(set)

? false
: x === entry(set)
? true
: x < entry(set)
? is_element_of_set(x, left_branch(set))
: // x > entry(set)
is_element_of_set(x, right_branch(set));

}

Adjoining an item to a set is implemented similarly and also requires Θ(log n)
steps. To adjoin an item x, we compare x with the node entry to determine whether
x should be added to the right or to the left branch, and having adjoined x to the
appropriate branch we piece this newly constructed branch together with the original
entry and the other branch. If x is equal to the entry, we just return the node. If we
are asked to adjoin x to an empty tree, we generate a tree that has x as the entry and
empty right and left branches. Here is the function:

34. Halving the size of the problem at each step is the distinguishing characteristic of log-
arithmic growth, as we saw with the fast-exponentiation algorithm of section 1.2.4 and the
half-interval search method of section 1.3.3.

35. We are representing sets in terms of trees, and trees in terms of lists—in effect, a data
abstraction built upon a data abstraction. We can regard the functions entry, left_branch,
right_branch, and make_tree as a way of isolating the abstraction of a “binary tree” from the
particular way we might wish to represent such a tree in terms of list structure.

2.3.3 Example: Representing Sets 137

function adjoin_set(x, set) {
return is_null(set)

? make_tree(x, null, null)
: x === entry(set)
? set
: x < entry(set)
? make_tree(entry(set),

adjoin_set(x, left_branch(set)),
right_branch(set))

: // x > entry(set)
make_tree(entry(set),

left_branch(set),
adjoin_set(x, right_branch(set)));

}

The above claim that searching the tree can be performed in a logarithmic num-
ber of steps rests on the assumption that the tree is “balanced,” i.e., that the left and
the right subtree of every tree have approximately the same number of elements, so
that each subtree contains about half the elements of its parent. But how can we be
certain that the trees we construct will be balanced? Even if we start with a balanced
tree, adding elements with adjoin_set may produce an unbalanced result. Since
the position of a newly adjoined element depends on how the element compares with
the items already in the set, we can expect that if we add elements “randomly” the
tree will tend to be balanced on the average. But this is not a guarantee. For example,
if we start with an empty set and adjoin the numbers 1 through 7 in sequence we
end up with the highly unbalanced tree shown in figure 2.17. In this tree all the left
subtrees are empty, so it has no advantage over a simple ordered list. One way to
solve this problem is to define an operation that transforms an arbitrary tree into a
balanced tree with the same elements. Then we can perform this transformation after
every few adjoin_set operations to keep our set in balance. There are also other
ways to solve this problem, most of which involve designing new data structures for
which searching and insertion both can be done in Θ(log n) steps.36

Exercise 2.63
Each of the following two functions converts a binary tree to a list.

function tree_to_list_1(tree) {
return is_null(tree)

? null
: append(tree_to_list_1(left_branch(tree)),

pair(entry(tree),
tree_to_list_1(right_branch(tree))));

}

36. Examples of such structures include B-trees and red-black trees. There is a large literature
on data structures devoted to this problem. See Cormen, Leiserson, Rivest, and Stein 2022.

138 Chapter 2 Building Abstractions with Data

1

2

3

4

5

6

7

Figure 2.17 Unbalanced tree produced by adjoining 1 through 7 in sequence.

function tree_to_list_2(tree) {
function copy_to_list(tree, result_list) {

return is_null(tree)
? result_list
: copy_to_list(left_branch(tree),

pair(entry(tree),
copy_to_list(right_branch(tree),

result_list)));
}
return copy_to_list(tree, null);

}

a. Do the two functions produce the same result for every tree? If not, how do the results
differ? What lists do the two functions produce for the trees in figure 2.16?

b. Do the two functions have the same order of growth in the number of steps required to
convert a balanced tree with n elements to a list? If not, which one grows more slowly?

Exercise 2.64
The following function list_to_tree converts an ordered list to a balanced binary tree.
The helper function partial_tree takes as arguments an integer n and list of at least n
elements and constructs a balanced tree containing the first n elements of the list. The result
returned by partial_tree is a pair (formed with pair) whose head is the constructed tree
and whose tail is the list of elements not included in the tree.

2.3.3 Example: Representing Sets 139

function list_to_tree(elements) {
return head(partial_tree(elements, length(elements)));

}
function partial_tree(elts, n) {

if (n === 0) {
return pair(null, elts);

} else {
const left_size = math_floor((n - 1) / 2);
const left_result = partial_tree(elts, left_size);
const left_tree = head(left_result);
const non_left_elts = tail(left_result);
const right_size = n - (left_size + 1);
const this_entry = head(non_left_elts);
const right_result = partial_tree(tail(non_left_elts), right_size);
const right_tree = head(right_result);
const remaining_elts = tail(right_result);
return pair(make_tree(this_entry, left_tree, right_tree),

remaining_elts);
}

}

a. Write a short paragraph explaining as clearly as you can how partial_tree works.
Draw the tree produced by list_to_tree for the list list(1, 3, 5, 7, 9, 11).

b. What is the order of growth in the number of steps required by list_to_tree to
convert a list of n elements?

Exercise 2.65
Use the results of exercises 2.63 and 2.64 to give Θ(n) implementations of union_set and
intersection_set for sets implemented as (balanced) binary trees.37

Sets and information retrieval
We have examined options for using lists to represent sets and have seen how the
choice of representation for a data object can have a large impact on the perfor-
mance of the programs that use the data. Another reason for concentrating on sets is
that the techniques discussed here appear again and again in applications involving
information retrieval.

Consider a data base containing a large number of individual records, such as the
personnel files for a company or the transactions in an accounting system. A typical
data-management system spends a large amount of time accessing or modifying the
data in the records and therefore requires an efficient method for accessing records.
This is done by identifying a part of each record to serve as an identifying key. A
key can be anything that uniquely identifies the record. For a personnel file, it might
be an employee’s ID number. For an accounting system, it might be a transaction
number. Whatever the key is, when we define the record as a data structure we
should include a key selector function that retrieves the key associated with a given
record.

37. Exercises 2.63–2.65 are due to Paul Hilfinger.

140 Chapter 2 Building Abstractions with Data

Now we represent the data base as a set of records. To locate the record with a
given key we use a function lookup, which takes as arguments a key and a data base
and which returns the record that has that key, or false if there is no such record. The
function lookup is implemented in almost the same way as is_element_of_set.
For example, if the set of records is implemented as an unordered list, we could use

function lookup(given_key, set_of_records) {
return is_null(set_of_records)

? false
: equal(given_key, key(head(set_of_records)))
? head(set_of_records)
: lookup(given_key, tail(set_of_records));

}

Of course, there are better ways to represent large sets than as unordered lists.
Information-retrieval systems in which records have to be “randomly accessed” are
typically implemented by a tree-based method, such as the binary-tree represen-
tation discussed previously. In designing such a system the methodology of data
abstraction can be a great help. The designer can create an initial implementation
using a simple, straightforward representation such as unordered lists. This will
be unsuitable for the eventual system, but it can be useful in providing a “quick
and dirty” data base with which to test the rest of the system. Later on, the data
representation can be modified to be more sophisticated. If the data base is accessed
in terms of abstract selectors and constructors, this change in representation will not
require any changes to the rest of the system.

Exercise 2.66
Implement the lookup function for the case where the set of records is structured as a
binary tree, ordered by the numerical values of the keys.

2.3.4 Example: Huffman Encoding Trees
This section provides practice in the use of list structure and data abstraction to
manipulate sets and trees. The application is to methods for representing data as
sequences of ones and zeros (bits). For example, the ASCII standard code used
to represent text in computers encodes each character as a sequence of seven bits.
Using seven bits allows us to distinguish 27, or 128, possible different characters. In
general, if we want to distinguish n different symbols, we will need to use log2 n
bits per symbol. If all our messages are made up of the eight symbols A, B, C, D, E,
F, G, and H, we can choose a code with three bits per character, for example

A 000 C 010 E 100 G 110
B 001 D 011 F 101 H 111

With this code, the message

BACADAEAFABBAAAGAH

is encoded as the string of 54 bits

001000010000011000100000101000001001000000000110000111

2.3.4 Example: Huffman Encoding Trees 141

Codes such as ASCII and the A-through-H code above are known as fixed-length
codes, because they represent each symbol in the message with the same number of
bits. It is sometimes advantageous to use variable-length codes, in which different
symbols may be represented by different numbers of bits. For example, Morse code
does not use the same number of dots and dashes for each letter of the alphabet. In
particular, E, the most frequent letter, is represented by a single dot. In general, if our
messages are such that some symbols appear very frequently and some very rarely,
we can encode data more efficiently (i.e., using fewer bits per message) if we assign
shorter codes to the frequent symbols. Consider the following alternative code for
the letters A through H:

A 0 C 1010 E 1100 G 1110
B 100 D 1011 F 1101 H 1111

With this code, the same message as above is encoded as the string

100010100101101100011010100100000111001111

This string contains 42 bits, so it saves more than 20% in space in comparison with
the fixed-length code shown above.

One of the difficulties of using a variable-length code is knowing when you have
reached the end of a symbol in reading a sequence of zeros and ones. Morse code
solves this problem by using a special separator code (in this case, a pause) after the
sequence of dots and dashes for each letter. Another solution is to design the code in
such a way that no complete code for any symbol is the beginning (or prefix) of the
code for another symbol. Such a code is called a prefix code. In the example above,
A is encoded by 0 and B is encoded by 100, so no other symbol can have a code that
begins with 0 or with 100.

In general, we can attain significant savings if we use variable-length prefix
codes that take advantage of the relative frequencies of the symbols in the messages
to be encoded. One particular scheme for doing this is called the Huffman encoding
method, after its discoverer, David Huffman. A Huffman code can be represented as
a binary tree whose leaves are the symbols that are encoded. At each non-leaf node
of the tree there is a set containing all the symbols in the leaves that lie below the
node. In addition, each symbol at a leaf is assigned a weight (which is its relative
frequency), and each non-leaf node contains a weight that is the sum of all the
weights of the leaves lying below it. The weights are not used in the encoding or
the decoding process. We will see below how they are used to help construct the
tree.

Figure 2.18 shows the Huffman tree for the A-through-H code given above. The
weights at the leaves indicate that the tree was designed for messages in which A
appears with relative frequency 8, B with relative frequency 3, and the other letters
each with relative frequency 1.

Given a Huffman tree, we can find the encoding of any symbol by starting at the
root and moving down until we reach the leaf that holds the symbol. Each time we
move down a left branch we add a 0 to the code, and each time we move down a
right branch we add a 1. (We decide which branch to follow by testing to see which
branch either is the leaf node for the symbol or contains the symbol in its set.) For

142 Chapter 2 Building Abstractions with Data

{A B C D E F G H} 17

{B C D E F G H} 9

A 8

{B C D} 5

{C D} 2

D 1C 1

B 3

{E F G H} 4

{G H} 2

{E F} 2

E 1 F 1

H 1G 1

Figure 2.18 A Huffman encoding tree.

example, starting from the root of the tree in figure 2.18, we arrive at the leaf for
D by following a right branch, then a left branch, then a right branch, then a right
branch; hence, the code for D is 1011.

To decode a bit sequence using a Huffman tree, we begin at the root and use the
successive zeros and ones of the bit sequence to determine whether to move down
the left or the right branch. Each time we come to a leaf, we have generated a new
symbol in the message, at which point we start over from the root of the tree to find
the next symbol. For example, suppose we are given the tree above and the sequence
10001010. Starting at the root, we move down the right branch (since the first bit of
the string is 1), then down the left branch (since the second bit is 0), then down the
left branch (since the third bit is also 0). This brings us to the leaf for B, so the first
symbol of the decoded message is B. Now we start again at the root, and we make
a left move because the next bit in the string is 0. This brings us to the leaf for A.
Then we start again at the root with the rest of the string 1010, so we move right,
left, right, left and reach C. Thus, the entire message is BAC.

Generating Huffman trees
Given an “alphabet” of symbols and their relative frequencies, how do we construct
the “best” code? (In other words, which tree will encode messages with the fewest
bits?) Huffman gave an algorithm for doing this and showed that the resulting code
is indeed the best variable-length code for messages where the relative frequency of
the symbols matches the frequencies with which the code was constructed. We will
not prove this optimality of Huffman codes here, but we will show how Huffman
trees are constructed.38

38. See Hamming 1980 for a discussion of the mathematical properties of Huffman codes.

2.3.4 Example: Huffman Encoding Trees 143

The algorithm for generating a Huffman tree is very simple. The idea is to ar-
range the tree so that the symbols with the lowest frequency appear farthest away
from the root. Begin with the set of leaf nodes, containing symbols and their fre-
quencies, as determined by the initial data from which the code is to be constructed.
Now find two leaves with the lowest weights and merge them to produce a node that
has these two nodes as its left and right branches. The weight of the new node is the
sum of the two weights. Remove the two leaves from the original set and replace
them by this new node. Now continue this process. At each step, merge two nodes
with the smallest weights, removing them from the set and replacing them with a
node that has these two as its left and right branches. The process stops when there
is only one node left, which is the root of the entire tree. Here is how the Huffman
tree of figure 2.18 was generated:

Initial leaves {(A 8) (B 3) (C 1) (D 1) (E 1) (F 1) (G 1) (H 1)}
Merge {(A 8) (B 3) ({C D} 2) (E 1) (F 1) (G 1) (H 1)}
Merge {(A 8) (B 3) ({C D} 2) ({E F} 2) (G 1) (H 1)}
Merge {(A 8) (B 3) ({C D} 2) ({E F} 2) ({G H} 2)}
Merge {(A 8) (B 3) ({C D} 2) ({E F G H} 4)}
Merge {(A 8) ({B C D} 5) ({E F G H} 4)}
Merge {(A 8) ({B C D E F G H} 9)}
Final merge {({A B C D E F G H} 17)}

The algorithm does not always specify a unique tree, because there may not be
unique smallest-weight nodes at each step. Also, the choice of the order in which
the two nodes are merged (i.e., which will be the right branch and which will be the
left branch) is arbitrary.

Representing Huffman trees
In the exercises below we will work with a system that uses Huffman trees to en-
code and decode messages and generates Huffman trees according to the algorithm
outlined above. We will begin by discussing how trees are represented.

Leaves of the tree are represented by a list consisting of the string "leaf", the
symbol at the leaf, and the weight:

function make_leaf(symbol, weight) {
return list("leaf", symbol, weight);

}
function is_leaf(object) {

return head(object) === "leaf";
}
function symbol_leaf(x) { return head(tail(x)); }
function weight_leaf(x) { return head(tail(tail(x))); }

A general tree will be a list of a string "code_tree", a left branch, a right branch, a
set of symbols, and a weight. The set of symbols will be simply a list of the symbols,
rather than some more sophisticated set representation. When we make a tree by
merging two nodes, we obtain the weight of the tree as the sum of the weights of
the nodes, and the set of symbols as the union of the sets of symbols for the nodes.

144 Chapter 2 Building Abstractions with Data

Since our symbol sets are represented as lists, we can form the union by using the
append function we defined in section 2.2.1:

function make_code_tree(left, right) {
return list("code_tree", left, right,

append(symbols(left), symbols(right)),
weight(left) + weight(right));

}

If we make a tree in this way, we have the following selectors:

function left_branch(tree) { return head(tail(tree)); }
function right_branch(tree) { return head(tail(tail(tree))); }
function symbols(tree) {

return is_leaf(tree)
? list(symbol_leaf(tree))
: head(tail(tail(tail(tree))));

}
function weight(tree) {

return is_leaf(tree)
? weight_leaf(tree)
: head(tail(tail(tail(tail(tree)))));

}

The functions symbols and weight must do something slightly different depending
on whether they are called with a leaf or a general tree. These are simple examples
of generic functions (functions that can handle more than one kind of data), which
we will have much more to say about in sections 2.4 and 2.5.

The decoding function
The following function implements the decoding algorithm. It takes as arguments a
list of zeros and ones, together with a Huffman tree.

function decode(bits, tree) {
function decode_1(bits, current_branch) {

if (is_null(bits)) {
return null;

} else {
const next_branch = choose_branch(head(bits),

current_branch);
return is_leaf(next_branch)

? pair(symbol_leaf(next_branch),
decode_1(tail(bits), tree))

: decode_1(tail(bits), next_branch);
}

}
return decode_1(bits, tree);

}

2.3.4 Example: Huffman Encoding Trees 145

function choose_branch(bit, branch) {
return bit === 0

? left_branch(branch)
: bit === 1
? right_branch(branch)
: error(bit, "bad bit -- choose_branch");

}

The function decode_1 takes two arguments: the list of remaining bits and the
current position in the tree. It keeps moving “down” the tree, choosing a left or a
right branch according to whether the next bit in the list is a zero or a one. (This
is done with the function choose_branch.) When it reaches a leaf, it returns the
symbol at that leaf as the next symbol in the message by adjoining it to the result
of decoding the rest of the message, starting at the root of the tree. Note the error
check in the final clause of choose_branch, which complains if the function finds
something other than a zero or a one in the input data.

Sets of weighted elements
In our representation of trees, each non-leaf node contains a set of symbols, which
we have represented as a simple list. However, the tree-generating algorithm dis-
cussed above requires that we also work with sets of leaves and trees, successively
merging the two smallest items. Since we will be required to repeatedly find the
smallest item in a set, it is convenient to use an ordered representation for this kind
of set.

We will represent a set of leaves and trees as a list of elements, arranged in
increasing order of weight. The following adjoin_set function for constructing
sets is similar to the one described in exercise 2.61; however, items are compared by
their weights, and the element being added to the set is never already in it.

function adjoin_set(x, set) {
return is_null(set)

? list(x)
: weight(x) < weight(head(set))
? pair(x, set)
: pair(head(set), adjoin_set(x, tail(set)));

}

The following function takes a list of symbol-frequency pairs such as

list(list("A", 4), list("B", 2), list("C", 1), list("D", 1))

and constructs an initial ordered set of leaves, ready to be merged according to the
Huffman algorithm:

146 Chapter 2 Building Abstractions with Data

function make_leaf_set(pairs) {
if (is_null(pairs)) {

return null;
} else {

const first_pair = head(pairs);
return adjoin_set(

make_leaf(head(first_pair), // symbol
head(tail(first_pair))), // frequency

make_leaf_set(tail(pairs)));
}

}

Exercise 2.67
Declare an encoding tree and a sample message:

const sample_tree = make_code_tree(make_leaf("A", 4),
make_code_tree(make_leaf("B", 2),

make_code_tree(
make_leaf("D", 1),
make_leaf("C", 1))));

const sample_message = list(0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0);

Use the decode function to decode the message, and give the result.

Exercise 2.68
The encode function takes as arguments a message and a tree and produces the list of bits
that gives the encoded message.

function encode(message, tree) {
return is_null(message)

? null
: append(encode_symbol(head(message), tree),

encode(tail(message), tree));
}

The function encode_symbol, which you must write, returns the list of bits that encodes
a given symbol according to a given tree. You should design encode_symbol so that it

2.3.4 Example: Huffman Encoding Trees 147

signals an error if the symbol is not in the tree at all. Test your function by encoding the
result you obtained in exercise 2.67 with the sample tree and seeing whether it is the same
as the original sample message.

Exercise 2.69
The following function takes as its argument a list of symbol-frequency pairs (where no
symbol appears in more than one pair) and generates a Huffman encoding tree according
to the Huffman algorithm.

function generate_huffman_tree(pairs) {
return successive_merge(make_leaf_set(pairs));

}

The function make_leaf_set that transforms the list of pairs into an ordered set of leaves
is given above. Write the function successive_merge using make_code_tree to succes-
sively merge the smallest-weight elements of the set until there is only one element left,
which is the desired Huffman tree. (This function is slightly tricky, but not really compli-
cated. If you find yourself designing a complex function, then you are almost certainly
doing something wrong. You can take significant advantage of the fact that we are using
an ordered set representation.)

Exercise 2.70
The following eight-symbol alphabet with associated relative frequencies was designed to
efficiently encode the lyrics of 1950s rock songs. (Note that the “symbols” of an “alphabet”
need not be individual letters.)

A 2 NA 16
BOOM 1 SHA 3
GET 2 YIP 9
JOB 2 WAH 1

Use generate_huffman_tree (exercise 2.69) to generate a corresponding Huffman tree,
and use encode (exercise 2.68) to encode the following message:

Get a job
Sha na na na na na na na na
Get a job
Sha na na na na na na na na
Wah yip yip yip yip yip yip yip yip yip
Sha boom

How many bits are required for the encoding? What is the smallest number of bits that
would be needed to encode this song if we used a fixed-length code for the eight-symbol
alphabet?

Exercise 2.71
Suppose we have a Huffman tree for an alphabet of n symbols, and that the relative fre-
quencies of the symbols are 1, 2, 4, . . . , 2n–1. Sketch the tree for n=5; for n=10. In such
a tree (for general n) how may bits are required to encode the most frequent symbol? the
least frequent symbol?

148 Chapter 2 Building Abstractions with Data

Exercise 2.72
Consider the encoding function that you designed in exercise 2.68. What is the order of
growth in the number of steps needed to encode a symbol? Be sure to include the number
of steps needed to search the symbol list at each node encountered. To answer this question
in general is difficult. Consider the special case where the relative frequencies of the n
symbols are as described in exercise 2.71, and give the order of growth (as a function of n)
of the number of steps needed to encode the most frequent and least frequent symbols in
the alphabet.

2.4 Multiple Representations for Abstract Data
We have introduced data abstraction, a methodology for structuring systems in such
a way that much of a program can be specified independent of the choices involved
in implementing the data objects that the program manipulates. For example, we saw
in section 2.1.1 how to separate the task of designing a program that uses rational
numbers from the task of implementing rational numbers in terms of the computer
language’s primitive mechanisms for constructing compound data. The key idea was
to erect an abstraction barrier—in this case, the selectors and constructors for ratio-
nal numbers (make_rat, numer, denom)—that isolates the way rational numbers
are used from their underlying representation in terms of list structure. A similar ab-
straction barrier isolates the details of the functions that perform rational arithmetic
(add_rat, sub_rat, mul_rat, and div_rat) from the “higher-level” functions that
use rational numbers. The resulting program has the structure shown in figure 2.1.

These data-abstraction barriers are powerful tools for controlling complexity. By
isolating the underlying representations of data objects, we can divide the task of
designing a large program into smaller tasks that can be performed separately. But
this kind of data abstraction is not yet powerful enough, because it may not always
make sense to speak of “the underlying representation” for a data object.

For one thing, there might be more than one useful representation for a data
object, and we might like to design systems that can deal with multiple representa-
tions. To take a simple example, complex numbers may be represented in two almost
equivalent ways: in rectangular form (real and imaginary parts) and in polar form
(magnitude and angle). Sometimes rectangular form is more appropriate and some-
times polar form is more appropriate. Indeed, it is perfectly plausible to imagine a
system in which complex numbers are represented in both ways, and in which the
functions for manipulating complex numbers work with either representation.

More importantly, programming systems are often designed by many people
working over extended periods of time, subject to requirements that change over
time. In such an environment, it is simply not possible for everyone to agree in
advance on choices of data representation. So in addition to the data-abstraction
barriers that isolate representation from use, we need abstraction barriers that isolate
different design choices from each other and permit different choices to coexist in a
single program. Furthermore, since large programs are often created by combining
preexisting modules that were designed in isolation, we need conventions that permit
programmers to incorporate modules into larger systems additively, that is, without
having to redesign or reimplement these modules.

2.4 Multiple Representations for Abstract Data 149

add_complex

Programs that use complex numbers

Complex-arithmetic package

List structure and primitive machine arithmetic

sub_complex
mul_complex
div_complex

Rectangular

representation

Polar

representation

Figure 2.19 Data-abstraction barriers in the complex-number system.

In this section, we will learn how to cope with data that may be represented in
different ways by different parts of a program. This requires constructing generic
functions—functions that can operate on data that may be represented in more than
one way. Our main technique for building generic functions will be to work in
terms of data objects that have type tags, that is, data objects that include explicit
information about how they are to be processed. We will also discuss data-directed
programming, a powerful and convenient implementation strategy for additively
assembling systems with generic operations.

We begin with the simple complex-number example. We will see how type
tags and data-directed style enable us to design separate rectangular and polar
representations for complex numbers while maintaining the notion of an abstract
“complex-number” data object. We will accomplish this by defining arithmetic
functions for complex numbers (add_complex, sub_complex, mul_complex, and
div_complex) in terms of generic selectors that access parts of a complex number
independent of how the number is represented. The resulting complex-number sys-
tem, as shown in figure 2.19, contains two different kinds of abstraction barriers.
The “horizontal” abstraction barriers play the same role as the ones in figure 2.1.
They isolate “higher-level” operations from “lower-level” representations. In addi-
tion, there is a “vertical” barrier that gives us the ability to separately design and
install alternative representations.

In section 2.5 we will show how to use type tags and data-directed style to
develop a generic arithmetic package. This provides functions (add, mul, and so
on) that can be used to manipulate all sorts of “numbers” and can be easily extended
when a new kind of number is needed. In section 2.5.3, we’ll show how to use
generic arithmetic in a system that performs symbolic algebra.

150 Chapter 2 Building Abstractions with Data

2.4.1 Representations for Complex Numbers
We will develop a system that performs arithmetic operations on complex numbers
as a simple but unrealistic example of a program that uses generic operations. We
begin by discussing two plausible representations for complex numbers as ordered
pairs: rectangular form (real part and imaginary part) and polar form (magnitude and
angle).39 Section 2.4.2 will show how both representations can be made to coexist
in a single system through the use of type tags and generic operations.

Like rational numbers, complex numbers are naturally represented as ordered
pairs. The set of complex numbers can be thought of as a two-dimensional space
with two orthogonal axes, the “real” axis and the “imaginary” axis. (See figure 2.20.)
From this point of view, the complex number z = x + iy (where i2 = –1) can be thought
of as the point in the plane whose real coordinate is x and whose imaginary coordi-
nate is y. Addition of complex numbers reduces in this representation to addition of
coordinates:

Real-part(z1 + z2) = Real-part(z1) + Real-part(z2)

Imaginary-part(z1 + z2) = Imaginary-part(z1) + Imaginary-part(z2)

When multiplying complex numbers, it is more natural to think in terms of
representing a complex number in polar form, as a magnitude and an angle (r and
A in figure 2.20). The product of two complex numbers is the vector obtained by
stretching one complex number by the length of the other and then rotating it through
the angle of the other:

Magnitude(z1 · z2) = Magnitude(z1) ·Magnitude(z2)

Angle(z1 · z2) = Angle(z1) + Angle(z2)

Thus, there are two different representations for complex numbers, which are
appropriate for different operations. Yet, from the viewpoint of someone writing a
program that uses complex numbers, the principle of data abstraction suggests that
all the operations for manipulating complex numbers should be available regardless
of which representation is used by the computer. For example, it is often useful to
be able to find the magnitude of a complex number that is specified by rectangular
coordinates. Similarly, it is often useful to be able to determine the real part of a
complex number that is specified by polar coordinates.

To design such a system, we can follow the same data-abstraction strategy
we followed in designing the rational-number package in section 2.1.1. Assume

39. In actual computational systems, rectangular form is preferable to polar form most of the
time because of roundoff errors in conversion between rectangular and polar form. This is why
the complex-number example is unrealistic. Nevertheless, it provides a clear illustration of the
design of a system using generic operations and a good introduction to the more substantial
systems to be developed later in this chapter.

2.4.1 Representations for Complex Numbers 151

Imaginary

Real

z = x + iy = re

A

y

x

r

iA

Figure 2.20 Complex numbers as points in the plane.

that the operations on complex numbers are implemented in terms of four selec-
tors: real_part, imag_part, magnitude, and angle. Also assume that we have
two functions for constructing complex numbers: make_from_real_imag returns a
complex number with specified real and imaginary parts, and make_from_mag_ang
returns a complex number with specified magnitude and angle. These functions have
the property that, for any complex number z, both

make_from_real_imag(real_part(z), imag_part(z));

and

make_from_mag_ang(magnitude(z), angle(z));

produce complex numbers that are equal to z.
Using these constructors and selectors, we can implement arithmetic on complex

numbers using the “abstract data” specified by the constructors and selectors, just as
we did for rational numbers in section 2.1.1. As shown in the formulas above, we
can add and subtract complex numbers in terms of real and imaginary parts while
multiplying and dividing complex numbers in terms of magnitudes and angles:

function add_complex(z1, z2) {
return make_from_real_imag(real_part(z1) + real_part(z2),

imag_part(z1) + imag_part(z2));
}
function sub_complex(z1, z2) {

return make_from_real_imag(real_part(z1) - real_part(z2),
imag_part(z1) - imag_part(z2));

}
function mul_complex(z1, z2) {

return make_from_mag_ang(magnitude(z1) * magnitude(z2),
angle(z1) + angle(z2));

}
function div_complex(z1, z2) {

return make_from_mag_ang(magnitude(z1) / magnitude(z2),
angle(z1) - angle(z2));

}

152 Chapter 2 Building Abstractions with Data

To complete the complex-number package, we must choose a representation and
we must implement the constructors and selectors in terms of primitive numbers
and primitive list structure. There are two obvious ways to do this: We can represent
a complex number in “rectangular form” as a pair (real part, imaginary part) or in
“polar form” as a pair (magnitude, angle). Which shall we choose?

In order to make the different choices concrete, imagine that there are two pro-
grammers, Ben Bitdiddle and Alyssa P. Hacker, who are independently designing
representations for the complex-number system. Ben chooses to represent complex
numbers in rectangular form. With this choice, selecting the real and imaginary parts
of a complex number is straightforward, as is constructing a complex number with
given real and imaginary parts. To find the magnitude and the angle, or to construct
a complex number with a given magnitude and angle, he uses the trigonometric
relations

x = r cos A r =
√

x2 + y2

y = r sin A A = arctan(y, x)

which relate the real and imaginary parts (x, y) to the magnitude and the angle
(r, A).40 Ben’s representation is therefore given by the following selectors and
constructors:

function real_part(z) { return head(z); }
function imag_part(z) { return tail(z); }
function magnitude(z) {

return math_sqrt(square(real_part(z)) + square(imag_part(z)));
}
function angle(z) {

return math_atan2(imag_part(z), real_part(z));
}
function make_from_real_imag(x, y) { return pair(x, y); }

function make_from_mag_ang(r, a) {
return pair(r * math_cos(a), r * math_sin(a));

}

Alyssa, in contrast, chooses to represent complex numbers in polar form. For her,
selecting the magnitude and angle is straightforward, but she has to use the trigono-
metric relations to obtain the real and imaginary parts. Alyssa’s representation is:

function real_part(z) {
return magnitude(z) * math_cos(angle(z));

}
function imag_part(z) {

return magnitude(z) * math_sin(angle(z));
}
function magnitude(z) { return head(z); }
function angle(z) { return tail(z); }

40. The arctangent function referred to here, computed by JavaScript’s math_atan2 function,
is defined so as to take two arguments y and x and to return the angle whose tangent is y/x. The
signs of the arguments determine the quadrant of the angle.

2.4.2 Tagged data 153

function make_from_real_imag(x, y) {
return pair(math_sqrt(square(x) + square(y)),

math_atan2(y, x));
}
function make_from_mag_ang(r, a) { return pair(r, a); }

The discipline of data abstraction ensures that the same implementation of add_
complex, sub_complex, mul_complex, and div_complex will work with either
Ben’s representation or Alyssa’s representation.

2.4.2 Tagged data
One way to view data abstraction is as an application of the “principle of least
commitment.” In implementing the complex-number system in section 2.4.1, we
can use either Ben’s rectangular representation or Alyssa’s polar representation. The
abstraction barrier formed by the selectors and constructors permits us to defer to
the last possible moment the choice of a concrete representation for our data objects
and thus retain maximum flexibility in our system design.

The principle of least commitment can be carried to even further extremes. If
we desire, we can maintain the ambiguity of representation even after we have
designed the selectors and constructors, and elect to use both Ben’s representa-
tion and Alyssa’s representation. If both representations are included in a single
system, however, we will need some way to distinguish data in polar form from
data in rectangular form. Otherwise, if we were asked, for instance, to find the
magnitude of the pair (3, 4), we wouldn’t know whether to answer 5 (interpreting
the number in rectangular form) or 3 (interpreting the number in polar form). A
straightforward way to accomplish this distinction is to include a type tag—the
string "rectangular" or "polar"—as part of each complex number. Then when
we need to manipulate a complex number we can use the tag to decide which selector
to apply.

In order to manipulate tagged data, we will assume that we have functions
type_tag and contents that extract from a data object the tag and the actual
contents (the polar or rectangular coordinates, in the case of a complex number).
We will also postulate a function attach_tag that takes a tag and contents and
produces a tagged data object. A straightforward way to implement this is to use
ordinary list structure:

function attach_tag(type_tag, contents) {
return pair(type_tag, contents);

}
function type_tag(datum) {

return is_pair(datum)
? head(datum)
: error(datum, "bad tagged datum -- type_tag");

}
function contents(datum) {

return is_pair(datum)
? tail(datum)
: error(datum, "bad tagged datum -- contents");

}

154 Chapter 2 Building Abstractions with Data

Using type_tag, we can define predicates is_rectangular and is_polar,
which recognize rectangular and polar numbers, respectively:

function is_rectangular(z) {
return type_tag(z) === "rectangular";

}
function is_polar(z) {

return type_tag(z) === "polar";
}

With type tags, Ben and Alyssa can now modify their code so that their two
different representations can coexist in the same system. Whenever Ben constructs
a complex number, he tags it as rectangular. Whenever Alyssa constructs a complex
number, she tags it as polar. In addition, Ben and Alyssa must make sure that the
names of their functions do not conflict. One way to do this is for Ben to append
the suffix rectangular to the name of each of his representation functions and for
Alyssa to append polar to the names of hers. Here is Ben’s revised rectangular
representation from section 2.4.1:

function real_part_rectangular(z) { return head(z); }
function imag_part_rectangular(z) { return tail(z); }
function magnitude_rectangular(z) {

return math_sqrt(square(real_part_rectangular(z)) +
square(imag_part_rectangular(z)));

}
function angle_rectangular(z) {

return math_atan(imag_part_rectangular(z),
real_part_rectangular(z));

}
function make_from_real_imag_rectangular(x, y) {

return attach_tag("rectangular", pair(x, y));
}
function make_from_mag_ang_rectangular(r, a) {

return attach_tag("rectangular",
pair(r * math_cos(a), r * math_sin(a)));

}

and here is Alyssa’s revised polar representation:

function real_part_polar(z) {
return magnitude_polar(z) * math_cos(angle_polar(z));

}
function imag_part_polar(z) {

return magnitude_polar(z) * math_sin(angle_polar(z));
}
function magnitude_polar(z) { return head(z); }
function angle_polar(z) { return tail(z); }
function make_from_real_imag_polar(x, y) {

return attach_tag("polar",
pair(math_sqrt(square(x) + square(y)),

math_atan(y, x)));
}

2.4.2 Tagged data 155

function make_from_mag_ang_polar(r, a) {
return attach_tag("polar", pair(r, a));

}

Each generic selector is implemented as a function that checks the tag of its
argument and calls the appropriate function for handling data of that type. For ex-
ample, to obtain the real part of a complex number, real_part examines the tag
to determine whether to use Ben’s real_part_rectangular or Alyssa’s real_
part_polar. In either case, we use contents to extract the bare, untagged datum
and send this to the rectangular or polar function as required:

function real_part(z) {
return is_rectangular(z)

? real_part_rectangular(contents(z))
: is_polar(z)
? real_part_polar(contents(z))
: error(z, "unknown type -- real_part");

}
function imag_part(z) {

return is_rectangular(z)
? imag_part_rectangular(contents(z))
: is_polar(z)
? imag_part_polar(contents(z))
: error(z, "unknown type -- imag_part");

}
function magnitude(z) {

return is_rectangular(z)
? magnitude_rectangular(contents(z))
: is_polar(z)
? magnitude_polar(contents(z))
: error(z, "unknown type -- magnitude");

}
function angle(z) {

return is_rectangular(z)
? angle_rectangular(contents(z))
: is_polar(z)
? angle_polar(contents(z))
: error(z, "unknown type -- angle");

}

To implement the complex-number arithmetic operations, we can use the same
functions add_complex, sub_complex, mul_complex, and div_complex from sec-
tion 2.4.1, because the selectors they call are generic, and so will work with either
representation. For example, the function add_complex is still

function add_complex(z1, z2) {
return make_from_real_imag(real_part(z1) + real_part(z2),

imag_part(z1) + imag_part(z2));
}

Finally, we must choose whether to construct complex numbers using Ben’s
representation or Alyssa’s representation. One reasonable choice is to construct

156 Chapter 2 Building Abstractions with Data

add_complex sub_complex mul_complex div_complex

Programs that use complex numbers

Complex-arithmetic package

Rectangular

representation

Polar

representation

List structure and primitive machine arithmetic

real_part

imag_part

magnitude

angle

Figure 2.21 Structure of the generic complex-arithmetic system.

rectangular numbers whenever we have real and imaginary parts and to construct
polar numbers whenever we have magnitudes and angles:

function make_from_real_imag(x, y) {
return make_from_real_imag_rectangular(x, y);

}
function make_from_mag_ang(r, a) {

return make_from_mag_ang_polar(r, a);
}

The resulting complex-number system has the structure shown in figure 2.21. The
system has been decomposed into three relatively independent parts: the complex-
number-arithmetic operations, Alyssa’s polar implementation, and Ben’s rectangu-
lar implementation. The polar and rectangular implementations could have been
written by Ben and Alyssa working separately, and both of these can be used
as underlying representations by a third programmer implementing the complex-
arithmetic functions in terms of the abstract constructor/selector interface.

Since each data object is tagged with its type, the selectors operate on the data in
a generic manner. That is, each selector is defined to have a behavior that depends
upon the particular type of data it is applied to. Notice the general mechanism for
interfacing the separate representations: Within a given representation implementa-
tion (say, Alyssa’s polar package) a complex number is an untyped pair (magnitude,
angle). When a generic selector operates on a number of polar type, it strips off the
tag and passes the contents on to Alyssa’s code. Conversely, when Alyssa constructs
a number for general use, she tags it with a type so that it can be appropriately rec-
ognized by the higher-level functions. This discipline of stripping off and attaching
tags as data objects are passed from level to level can be an important organizational
strategy, as we shall see in section 2.5.

2.4.3 Data-Directed Programming and Additivity 157

2.4.3 Data-Directed Programming and Additivity
The general strategy of checking the type of a datum and calling an appropriate
function is called dispatching on type. This is a powerful strategy for obtaining
modularity in system design. On the other hand, implementing the dispatch as in
section 2.4.2 has two significant weaknesses. One weakness is that the generic inter-
face functions (real_part, imag_part, magnitude, and angle) must know about
all the different representations. For instance, suppose we wanted to incorporate
a new representation for complex numbers into our complex-number system. We
would need to identify this new representation with a type, and then add a clause
to each of the generic interface functions to check for the new type and apply the
appropriate selector for that representation.

Another weakness of the technique is that even though the individual represen-
tations can be designed separately, we must guarantee that no two functions in the
entire system have the same name. This is why Ben and Alyssa had to change the
names of their original functions from section 2.4.1.

The issue underlying both of these weaknesses is that the technique for imple-
menting generic interfaces is not additive. The person implementing the generic
selector functions must modify those functions each time a new representation is
installed, and the people interfacing the individual representations must modify their
code to avoid name conflicts. In each of these cases, the changes that must be made
to the code are straightforward, but they must be made nonetheless, and this is a
source of inconvenience and error. This is not much of a problem for the complex-
number system as it stands, but suppose there were not two but hundreds of different
representations for complex numbers. And suppose that there were many generic
selectors to be maintained in the abstract-data interface. Suppose, in fact, that no one
programmer knew all the interface functions or all the representations. The problem
is real and must be addressed in such programs as large-scale data-base-management
systems.

What we need is a means for modularizing the system design even further. This
is provided by the programming technique known as data-directed programming.
To understand how data-directed programming works, begin with the observation
that whenever we deal with a set of generic operations that are common to a set of
different types we are, in effect, dealing with a two-dimensional table that contains
the possible operations on one axis and the possible types on the other axis. The
entries in the table are the functions that implement each operation for each type
of argument presented. In the complex-number system developed in the previous
section, the correspondence between operation name, data type, and actual function
was spread out among the various conditional clauses in the generic interface func-
tions. But the same information could have been organized in a table, as shown in
figure 2.22.

158 Chapter 2 Building Abstractions with Data

real_part

imag_part

magnitude

angle

real_part_polar

imag_part_polar

magnitude_polar

angle_polar

real_part_rectangular

imag_part_rectangular

magnitude_rectangular

angle_rectangular

Types

Polar RectangularOperations

Figure 2.22 Table of operations for the complex-number system.

Data-directed programming is the technique of designing programs to work with
such a table directly. Previously, we implemented the mechanism that interfaces the
complex-arithmetic code with the two representation packages as a set of functions
that each perform an explicit dispatch on type. Here we will implement the interface
as a single function that looks up the combination of the operation name and argu-
ment type in the table to find the correct function to apply, and then applies it to the
contents of the argument. If we do this, then to add a new representation package to
the system we need not change any existing functions; we need only add new entries
to the table.

To implement this plan, assume that we have two functions, put and get, for
manipulating the operation-and-type table:

• put(op, type, item)
installs the item in the table, indexed by the op and the type.

• get(op, type)
looks up the op, type entry in the table and returns the item found there. If no
item is found, get returns a unique primitive value that is referred to by the name
undefined and recognized by the primitive predicate is_undefined.41

For now, we can assume that put and get are included in our language. In chap-
ter 3 (section 3.3.3) we will see how to implement these and other operations for
manipulating tables.

Here is how data-directed programming can be used in the complex-number
system. Ben, who developed the rectangular representation, implements his code
just as he did originally. He defines a collection of functions or a package, and
interfaces these to the rest of the system by adding entries to the table that tell the
system how to operate on rectangular numbers. This is accomplished by calling the
following function:

41. The name undefined is predeclared in any JavaScript implementation and should not be
used other than to refer to that primitive value.

2.4.3 Data-Directed Programming and Additivity 159

function install_rectangular_package() {
// internal functions
function real_part(z) { return head(z); }
function imag_part(z) { return tail(z); }
function make_from_real_imag(x, y) { return pair(x, y); }
function magnitude(z) {

return math_sqrt(square(real_part(z)) + square(imag_part(z)));
}
function angle(z) {

return math_atan(imag_part(z), real_part(z));
}
function make_from_mag_ang(r, a) {

return pair(r * math_cos(a), r * math_sin(a));
}

// interface to the rest of the system
function tag(x) { return attach_tag("rectangular", x); }
put("real_part", list("rectangular"), real_part);
put("imag_part", list("rectangular"), imag_part);
put("magnitude", list("rectangular"), magnitude);
put("angle", list("rectangular"), angle);
put("make_from_real_imag", "rectangular",

(x, y) => tag(make_from_real_imag(x, y)));
put("make_from_mag_ang", "rectangular",

(r, a) => tag(make_from_mag_ang(r, a)));
return "done";

}

Notice that the internal functions here are the same functions from section 2.4.1
that Ben wrote when he was working in isolation. No changes are necessary in
order to interface them to the rest of the system. Moreover, since these function
declarations are internal to the installation function, Ben needn’t worry about name
conflicts with other functions outside the rectangular package. To interface these
to the rest of the system, Ben installs his real_part function under the operation
name real_part and the type list("rectangular"), and similarly for the other
selectors.42 The interface also defines the constructors to be used by the external
system.43 These are identical to Ben’s internally defined constructors, except that
they attach the tag.

42. We use the list list("rectangular") rather than the string "rectangular" to allow for
the possibility of operations with multiple arguments, not all of the same type.

43. The type the constructors are installed under needn’t be a list because a constructor is always
used to make an object of one particular type.

160 Chapter 2 Building Abstractions with Data

Alyssa’s polar package is analogous:

function install_polar_package() {
// internal functions
function magnitude(z) { return head(z); }
function angle(z) { return tail(z); }
function make_from_mag_ang(r, a) { return pair(r, a); }
function real_part(z) {

return magnitude(z) * math_cos(angle(z));
}
function imag_part(z) {

return magnitude(z) * math_sin(angle(z));
}
function make_from_real_imag(x, y) {

return pair(math_sqrt(square(x) + square(y)),
math_atan(y, x));

}

// interface to the rest of the system
function tag(x) { return attach_tag("polar", x); }
put("real_part", list("polar"), real_part);
put("imag_part", list("polar"), imag_part);
put("magnitude", list("polar"), magnitude);
put("angle", list("polar"), angle);
put("make_from_real_imag", "polar",

(x, y) => tag(make_from_real_imag(x, y)));
put("make_from_mag_ang", "polar",

(r, a) => tag(make_from_mag_ang(r, a)));
return "done";

}

Even though Ben and Alyssa both still use their original functions defined with
the same names as each other’s (e.g., real_part), these declarations are now
internal to different functions (see section 1.1.8), so there is no name conflict.

The complex-arithmetic selectors access the table by means of a general “oper-
ation” function called apply_generic, which applies a generic operation to some
arguments. The function apply_generic looks in the table under the name of the
operation and the types of the arguments and applies the resulting function if one is
present:44

44. The function apply_generic uses the function apply_in_underlying_javascript given
in section 4.1.4 (footnote 18), which takes two arguments, a function and a list, and applies the
function, using the elements in the list as arguments. For example,
apply_in_underlying_javascript(sum_of_squares, list(1, 3))

returns 10.

2.4.3 Data-Directed Programming and Additivity 161

function apply_generic(op, args) {
const type_tags = map(type_tag, args);
const fun = get(op, type_tags);
return ! is_undefined(fun)

? apply_in_underlying_javascript(fun, map(contents, args))
: error(list(op, type_tags),

"no method for these types -- apply_generic");
}

Using apply_generic, we can define our generic selectors as follows:

function real_part(z) { return apply_generic("real_part", list(z)); }
function imag_part(z) { return apply_generic("imag_part", list(z)); }
function magnitude(z) { return apply_generic("magnitude", list(z)); }
function angle(z) { return apply_generic("angle", list(z)); }

Observe that these do not change at all if a new representation is added to the system.
We can also extract from the table the constructors to be used by the programs

external to the packages in making complex numbers from real and imaginary parts
and from magnitudes and angles. As in section 2.4.2, we construct rectangular num-
bers whenever we have real and imaginary parts, and polar numbers whenever we
have magnitudes and angles:

function make_from_real_imag(x, y) {
return get("make_from_real_imag", "rectangular")(x, y);

}
function make_from_mag_ang(r, a) {

return get("make_from_mag_ang", "polar")(r, a);
}

Exercise 2.73
Section 2.3.2 described a program that performs symbolic differentiation:

function deriv(exp, variable) {
return is_number(exp)

? 0
: is_variable(exp)
? is_same_variable(exp, variable) ? 1 : 0
: is_sum(exp)
? make_sum(deriv(addend(exp), variable),

deriv(augend(exp), variable))
: is_product(exp)
? make_sum(make_product(multiplier(exp),

deriv(multiplicand(exp), variable)),
make_product(deriv(multiplier(exp), variable),

multiplicand(exp)))
// more rules can be added here
: error(exp, "unknown expression type -- deriv");

}

162 Chapter 2 Building Abstractions with Data

deriv(list("*", list("*", "x", "y"), list("+", "x", 4)), "x");
list("+", list("*", list("*", x, y), list("+", 1, 0)),

list("*", list("+", list("*", x, 0), list("*", 1, y)),
list("+", x, 4)))

We can regard this program as performing a dispatch on the type of the expression to be
differentiated. In this situation the “type tag” of the datum is the algebraic operator symbol
(such as "+") and the operation being performed is deriv. We can transform this program
into data-directed style by rewriting the basic derivative function as

function deriv(exp, variable) {
return is_number(exp)

? 0
: is_variable(exp)
? is_same_variable(exp, variable) ? 1 : 0
: get("deriv", operator(exp))(operands(exp), variable);

}
function operator(exp) { return head(exp); }
function operands(exp) { return tail(exp); }

a. Explain what was done above. Why can’t we assimilate the predicates is_number and
is_variable into the data-directed dispatch?

b. Write the functions for derivatives of sums and products, and the auxiliary code
required to install them in the table used by the program above.

c. Choose any additional differentiation rule that you like, such as the one for exponents
(exercise 2.56), and install it in this data-directed system.

d. In this simple algebraic manipulator the type of an expression is the algebraic operator
that binds it together. Suppose, however, we indexed the functions in the opposite way,
so that the dispatch line in deriv looked like

get(operator(exp), "deriv")(operands(exp), variable);

What corresponding changes to the derivative system are required?

Exercise 2.74
Insatiable Enterprises, Inc., is a highly decentralized conglomerate company consisting of a
large number of independent divisions located all over the world. The company’s computer
facilities have just been interconnected by means of a clever network-interfacing scheme
that makes the entire network appear to any user to be a single computer. Insatiable’s
president, in her first attempt to exploit the ability of the network to extract administrative
information from division files, is dismayed to discover that, although all the division files
have been implemented as data structures in JavaScript, the particular data structure used
varies from division to division. A meeting of division managers is hastily called to search
for a strategy to integrate the files that will satisfy headquarters’ needs while preserving
the existing autonomy of the divisions.

2.4.3 Data-Directed Programming and Additivity 163

Show how such a strategy can be implemented with data-directed programming. As
an example, suppose that each division’s personnel records consist of a single file, which
contains a set of records keyed on employees’ names. The structure of the set varies from
division to division. Furthermore, each employee’s record is itself a set (structured differ-
ently from division to division) that contains information keyed under identifiers such as
address and salary. In particular:

a. Implement for headquarters a get_record function that retrieves a specified em-
ployee’s record from a specified personnel file. The function should be applicable to
any division’s file. Explain how the individual divisions’ files should be structured. In
particular, what type information must be supplied?

b. Implement for headquarters a get_salary function that returns the salary information
from a given employee’s record from any division’s personnel file. How should the
record be structured in order to make this operation work?

c. Implement for headquarters a find_employee_record function. This should search all
the divisions’ files for the record of a given employee and return the record. Assume
that this function takes as arguments an employee’s name and a list of all the divisions’
files.

d. When Insatiable takes over a new company, what changes must be made in order to
incorporate the new personnel information into the central system?

Message passing
The key idea of data-directed programming is to handle generic operations in pro-
grams by dealing explicitly with operation-and-type tables, such as the table in
figure 2.22. The style of programming we used in section 2.4.2 organized the re-
quired dispatching on type by having each operation take care of its own dispatching.
In effect, this decomposes the operation-and-type table into rows, with each generic
operation function representing a row of the table.

An alternative implementation strategy is to decompose the table into columns
and, instead of using “intelligent operations” that dispatch on data types, to work
with “intelligent data objects” that dispatch on operation names. We can do this by
arranging things so that a data object, such as a rectangular number, is represented as
a function that takes as input the required operation name and performs the operation
indicated. In such a discipline, make_from_real_imag could be written as

function make_from_real_imag(x, y) {
function dispatch(op) {

return op === "real_part"
? x
: op === "imag_part"
? y
: op === "magnitude"
? math_sqrt(square(x) + square(y))
: op === "angle"
? math_atan(y, x)
: error(op, "unknown op -- make_from_real_imag");

}
return dispatch;

}

164 Chapter 2 Building Abstractions with Data

The corresponding apply_generic function, which applies a generic operation to
an argument, now simply feeds the operation’s name to the data object and lets the
object do the work:45

function apply_generic(op, arg) { return head(arg)(op); }

Note that the value returned by make_from_real_imag is a function—the inter-
nal dispatch function. This is the function that is invoked when apply_generic
requests an operation to be performed.

This style of programming is called message passing. The name comes from the
image that a data object is an entity that receives the requested operation name as
a “message.” We have already seen an example of message passing in section 2.1.3,
where we saw how pair, head, and tail could be defined with no data objects but
only functions. Here we see that message passing is not a mathematical trick but a
useful technique for organizing systems with generic operations. In the remainder
of this chapter we will continue to use data-directed programming, rather than mes-
sage passing, to discuss generic arithmetic operations. In chapter 3 we will return
to message passing, and we will see that it can be a powerful tool for structuring
simulation programs.

Exercise 2.75
Implement the constructor make_from_mag_ang in message-passing style. This function
should be analogous to the make_from_real_imag function given above.

Exercise 2.76
As a large system with generic operations evolves, new types of data objects or new op-
erations may be needed. For each of the three strategies—generic operations with explicit
dispatch, data-directed style, and message-passing-style—describe the changes that must
be made to a system in order to add new types or new operations. Which organization
would be most appropriate for a system in which new types must often be added? Which
would be most appropriate for a system in which new operations must often be added?

2.5 Systems with Generic Operations
In the previous section, we saw how to design systems in which data objects can be
represented in more than one way. The key idea is to link the code that specifies
the data operations to the several representations by means of generic interface
functions. Now we will see how to use this same idea not only to define opera-
tions that are generic over different representations but also to define operations
that are generic over different kinds of arguments. We have already seen several
different packages of arithmetic operations: the primitive arithmetic (+, -, *, /) built
into our language, the rational-number arithmetic (add_rat, sub_rat, mul_rat,
div_rat) of section 2.1.1, and the complex-number arithmetic that we implemented
in section 2.4.3. We will now use data-directed techniques to construct a package of

45. One limitation of this organization is it permits only generic functions of one argument.

2.5.1 Generic Arithmetic Operations 165

add sub mul div

add_complex
mul_complex

sub_complex
div_complex

Programs that use numbers

Generic arithmetic package

Complex arithmetic

Rectangular Polar

sub_rat
div_rat

add_rat
mul_rat

Rational

arithmetic

List structure and primitive machine arithmetic

+ -- * /

Ordinary

arithmetic

Figure 2.23 Generic arithmetic system.

arithmetic operations that incorporates all the arithmetic packages we have already
constructed.

Figure 2.23 shows the structure of the system we shall build. Notice the abstrac-
tion barriers. From the perspective of someone using “numbers,” there is a single
function add that operates on whatever numbers are supplied. The function add
is part of a generic interface that allows the separate ordinary-arithmetic, rational-
arithmetic, and complex-arithmetic packages to be accessed uniformly by programs
that use numbers. Any individual arithmetic package (such as the complex pack-
age) may itself be accessed through generic functions (such as add_complex) that
combine packages designed for different representations (such as rectangular and
polar). Moreover, the structure of the system is additive, so that one can design the
individual arithmetic packages separately and combine them to produce a generic
arithmetic system.

2.5.1 Generic Arithmetic Operations
The task of designing generic arithmetic operations is analogous to that of design-
ing the generic complex-number operations. We would like, for instance, to have a
generic addition function add that acts like ordinary primitive addition + on ordinary
numbers, like add_rat on rational numbers, and like add_complex on complex
numbers. We can implement add, and the other generic arithmetic operations, by

166 Chapter 2 Building Abstractions with Data

following the same strategy we used in section 2.4.3 to implement the generic
selectors for complex numbers. We will attach a type tag to each kind of number
and cause the generic function to dispatch to an appropriate package according to
the data type of its arguments.

The generic arithmetic functions are defined as follows:

function add(x, y) { return apply_generic("add", list(x, y)); }
function sub(x, y) { return apply_generic("sub", list(x, y)); }
function mul(x, y) { return apply_generic("mul", list(x, y)); }
function div(x, y) { return apply_generic("div", list(x, y)); }

We begin by installing a package for handling ordinary numbers, that is, the prim-
itive numbers of our language. We tag these with the string "javascript_number".
The arithmetic operations in this package are the primitive arithmetic functions (so
there is no need to define extra functions to handle the untagged numbers). Since
these operations each take two arguments, they are installed in the table keyed by
the list list("javascript_number", "javascript_number"):

function install_javascript_number_package() {
function tag(x) {

return attach_tag("javascript_number", x);
}
put("add", list("javascript_number", "javascript_number"),

(x, y) => tag(x + y));
put("sub", list("javascript_number", "javascript_number"),

(x, y) => tag(x - y));
put("mul", list("javascript_number", "javascript_number"),

(x, y) => tag(x * y));
put("div", list("javascript_number", "javascript_number"),

(x, y) => tag(x / y));
put("make", "javascript_number",

x => tag(x));
return "done";

}

Users of the JavaScript-number package will create (tagged) ordinary numbers
by means of the function:

function make_javascript_number(n) {
return get("make", "javascript_number")(n);

}

Now that the framework of the generic arithmetic system is in place, we can
readily include new kinds of numbers. Here is a package that performs rational
arithmetic. Notice that, as a benefit of additivity, we can use without modification
the rational-number code from section 2.1.1 as the internal functions in the package:

2.5.1 Generic Arithmetic Operations 167

function install_rational_package() {
// internal functions
function numer(x) { return head(x); }
function denom(x) { return tail(x); }
function make_rat(n, d) {

const g = gcd(n, d);
return pair(n / g, d / g);

}
function add_rat(x, y) {

return make_rat(numer(x) * denom(y) + numer(y) * denom(x),
denom(x) * denom(y));

}
function sub_rat(x, y) {

return make_rat(numer(x) * denom(y) - numer(y) * denom(x),
denom(x) * denom(y));

}
function mul_rat(x, y) {

return make_rat(numer(x) * numer(y),
denom(x) * denom(y));

}
function div_rat(x, y) {

return make_rat(numer(x) * denom(y),
denom(x) * numer(y));

}
// interface to rest of the system
function tag(x) {

return attach_tag("rational", x);
}
put("add", list("rational", "rational"),

(x, y) => tag(add_rat(x, y)));
put("sub", list("rational", "rational"),

(x, y) => tag(sub_rat(x, y)));
put("mul", list("rational", "rational"),

(x, y) => tag(mul_rat(x, y)));
put("div", list("rational", "rational"),

(x, y) => tag(div_rat(x, y)));
put("make", "rational",

(n, d) => tag(make_rat(n, d)));
return "done";

}

function make_rational(n, d) {
return get("make", "rational")(n, d);

}

We can install a similar package to handle complex numbers, using the tag
"complex". In creating the package, we extract from the table the operations
make_from_real_imag and make_from_mag_ang that were defined by the rect-
angular and polar packages. Additivity permits us to use, as the internal operations,
the same add_complex, sub_complex, mul_complex, and div_complex functions
from section 2.4.1.

168 Chapter 2 Building Abstractions with Data

function install_complex_package() {
// imported functions from rectangular and polar packages
function make_from_real_imag(x, y) {

return get("make_from_real_imag", "rectangular")(x, y);
}
function make_from_mag_ang(r, a) {

return get("make_from_mag_ang", "polar")(r, a);
}
// internal functions
function add_complex(z1, z2) {

return make_from_real_imag(real_part(z1) + real_part(z2),
imag_part(z1) + imag_part(z2));

}
function sub_complex(z1, z2) {

return make_from_real_imag(real_part(z1) - real_part(z2),
imag_part(z1) - imag_part(z2));

}
function mul_complex(z1, z2) {

return make_from_mag_ang(magnitude(z1) * magnitude(z2),
angle(z1) + angle(z2));

}
function div_complex(z1, z2) {

return make_from_mag_ang(magnitude(z1) / magnitude(z2),
angle(z1) - angle(z2));

}
// interface to rest of the system
function tag(z) { return attach_tag("complex", z); }
put("add", list("complex", "complex"),

(z1, z2) => tag(add_complex(z1, z2)));
put("sub", list("complex", "complex"),

(z1, z2) => tag(sub_complex(z1, z2)));
put("mul", list("complex", "complex"),

(z1, z2) => tag(mul_complex(z1, z2)));
put("div", list("complex", "complex"),

(z1, z2) => tag(div_complex(z1, z2)));
put("make_from_real_imag", "complex",

(x, y) => tag(make_from_real_imag(x, y)));
put("make_from_mag_ang", "complex",

(r, a) => tag(make_from_mag_ang(r, a)));
return "done";

}

Programs outside the complex-number package can construct complex numbers
either from real and imaginary parts or from magnitudes and angles. Notice how the
underlying functions, originally defined in the rectangular and polar packages, are
exported to the complex package, and exported from there to the outside world.

function make_complex_from_real_imag(x, y){
return get("make_from_real_imag", "complex")(x, y);

}
function make_complex_from_mag_ang(r, a){

return get("make_from_mag_ang", "complex")(r, a);
}

2.5.1 Generic Arithmetic Operations 169

3 4"complex" "rectangular"

Figure 2.24 Representation of 3 + 4i in rectangular form.

What we have here is a two-level tag system. A typical complex number, such
as 3 + 4i in rectangular form, would be represented as shown in figure 2.24. The
outer tag ("complex") is used to direct the number to the complex package. Once
within the complex package, the next tag ("rectangular") is used to direct the
number to the rectangular package. In a large and complicated system there might
be many levels, each interfaced with the next by means of generic operations. As
a data object is passed “downward,” the outer tag that is used to direct it to the
appropriate package is stripped off (by applying contents) and the next level of
tag (if any) becomes visible to be used for further dispatching.

In the above packages, we used add_rat, add_complex, and the other arith-
metic functions exactly as originally written. Once these declarations are internal
to different installation functions, however, they no longer need names that are
distinct from each other: we could simply name them add, sub, mul, and div in
both packages.

Exercise 2.77
Louis Reasoner tries to evaluate the expression magnitude(z) where z is the object shown
in figure 2.24. To his surprise, instead of the answer 5 he gets an error message from
apply_generic, saying there is no method for the operation magnitude on the types
list("complex"). He shows this interaction to Alyssa P. Hacker, who says “The problem
is that the complex-number selectors were never defined for "complex" numbers, just for
"polar" and "rectangular" numbers. All you have to do to make this work is add the
following to the complex package:”

put("real_part", list("complex"), real_part);
put("imag_part", list("complex"), imag_part);
put("magnitude", list("complex"), magnitude);
put("angle", list("complex"), angle);

Describe in detail why this works. As an example, trace through all the functions called
in evaluating the expression magnitude(z) where z is the object shown in figure 2.24. In
particular, how many times is apply_generic invoked? What function is dispatched to in
each case?

Exercise 2.78
The internal functions in the javascript_number package are essentially nothing more
than calls to the primitive functions +, -, etc. It was not possible to use the primitives of
the language directly because our type-tag system requires that each data object have a
type attached to it. In fact, however, all JavaScript implementations do have a type sys-
tem, which they use internally. Primitive predicates such as is_string and is_number
determine whether data objects have particular types. Modify the definitions of type_tag,
contents, and attach_tag from section 2.4.2 so that our generic system takes advantage
of JavaScript’s internal type system. That is to say, the system should work as before except

170 Chapter 2 Building Abstractions with Data

that ordinary numbers should be represented simply as JavaScript numbers rather than as
pairs whose head is the string "javascript_number".

Exercise 2.79
Define a generic equality predicate is_equal that tests the equality of two numbers, and in-
stall it in the generic arithmetic package. This operation should work for ordinary numbers,
rational numbers, and complex numbers.

Exercise 2.80
Define a generic predicate is_equal_to_zero that tests if its argument is zero, and install
it in the generic arithmetic package. This operation should work for ordinary numbers,
rational numbers, and complex numbers.

2.5.2 Combining Data of Different Types
We have seen how to define a unified arithmetic system that encompasses ordinary
numbers, complex numbers, rational numbers, and any other type of number we
might decide to invent, but we have ignored an important issue. The operations we
have defined so far treat the different data types as being completely independent.
Thus, there are separate packages for adding, say, two ordinary numbers, or two
complex numbers. What we have not yet considered is the fact that it is meaning-
ful to define operations that cross the type boundaries, such as the addition of a
complex number to an ordinary number. We have gone to great pains to introduce
barriers between parts of our programs so that they can be developed and understood
separately. We would like to introduce the cross-type operations in some carefully
controlled way, so that we can support them without seriously violating our module
boundaries.

One way to handle cross-type operations is to design a different function for
each possible combination of types for which the operation is valid. For example,
we could extend the complex-number package so that it provides a function for
adding complex numbers to ordinary numbers and installs this in the table using the
tag list("complex", "javascript_number"):46

// to be included in the complex package
function add_complex_to_javascript_num(z, x) {

return make_complex_from_real_imag(real_part(z) + x, imag_part(z));
}
put("add", list("complex", "javascript_number"),

(z, x) => tag(add_complex_to_javascript_num(z, x)));

This technique works, but it is cumbersome. With such a system, the cost of in-
troducing a new type is not just the construction of the package of functions for that
type but also the construction and installation of the functions that implement the
cross-type operations. This can easily be much more code than is needed to define
the operations on the type itself. The method also undermines our ability to combine

46. We also have to supply an almost identical function to handle the types
list("javascript_number", "complex").

2.5.2 Combining Data of Different Types 171

separate packages additively, or least to limit the extent to which the implementors
of the individual packages need to take account of other packages. For instance, in
the example above, it seems reasonable that handling mixed operations on complex
numbers and ordinary numbers should be the responsibility of the complex-number
package. Combining rational numbers and complex numbers, however, might be
done by the complex package, by the rational package, or by some third package that
uses operations extracted from these two packages. Formulating coherent policies
on the division of responsibility among packages can be an overwhelming task in
designing systems with many packages and many cross-type operations.

Coercion
In the general situation of completely unrelated operations acting on completely
unrelated types, implementing explicit cross-type operations, cumbersome though
it may be, is the best that one can hope for. Fortunately, we can usually do better
by taking advantage of additional structure that may be latent in our type system.
Often the different data types are not completely independent, and there may be
ways by which objects of one type may be viewed as being of another type. This
process is called coercion. For example, if we are asked to arithmetically combine
an ordinary number with a complex number, we can view the ordinary number as a
complex number whose imaginary part is zero. This transforms the problem to that
of combining two complex numbers, which can be handled in the ordinary way by
the complex-arithmetic package.

In general, we can implement this idea by designing coercion functions that
transform an object of one type into an equivalent object of another type. Here is
a typical coercion function, which transforms a given ordinary number to a complex
number with that real part and zero imaginary part:

function javascript_number_to_complex(n) {
return make_complex_from_real_imag(contents(n), 0);

}

We install these coercion functions in a special coercion table, indexed under the
names of the two types:

put_coercion("javascript_number", "complex",
javascript_number_to_complex);

(We assume that there are put_coercion and get_coercion functions avail-
able for manipulating this table.) Generally some of the slots in the table will
be empty, because it is not generally possible to coerce an arbitrary data object
of each type into all other types. For example, there is no way to coerce an
arbitrary complex number to an ordinary number, so there will be no general
complex_to_javascript_number function included in the table.

Once the coercion table has been set up, we can handle coercion in a uniform
manner by modifying the apply_generic function of section 2.4.3. When asked to
apply an operation, we first check whether the operation is defined for the arguments’
types, just as before. If so, we dispatch to the function found in the operation-and-
type table. Otherwise, we try coercion. For simplicity, we consider only the case

172 Chapter 2 Building Abstractions with Data

where there are two arguments.47 We check the coercion table to see if objects of
the first type can be coerced to the second type. If so, we coerce the first argument
and try the operation again. If objects of the first type cannot in general be coerced
to the second type, we try the coercion the other way around to see if there is a way
to coerce the second argument to the type of the first argument. Finally, if there is no
known way to coerce either type to the other type, we give up. Here is the function:

function apply_generic(op, args) {
const type_tags = map(type_tag, args);
const fun = get(op, type_tags);
if (! is_undefined(fun)) {

return apply(fun, map(contents, args));
} else {

if (length(args) === 2) {
const type1 = head(type_tags);
const type2 = head(tail(type_tags));
const a1 = head(args);
const a2 = head(tail(args));
const t1_to_t2 = get_coercion(type1, type2);
const t2_to_t1 = get_coercion(type2, type1);
return ! is_undefined(t1_to_t2)

? apply_generic(op, list(t1_to_t2(a1), a2))
: ! is_undefined(t2_to_t1)
? apply_generic(op, list(a1, t2_to_t1(a2)))
: error(list(op, type_tags),

"no method for these types");
} else {

return error(list(op, type_tags),
"no method for these types");

}
}

}

This coercion scheme has many advantages over the method of defining explicit
cross-type operations, as outlined above. Although we still need to write coercion
functions to relate the types (possibly n2 functions for a system with n types), we
need to write only one function for each pair of types rather than a different function
for each collection of types and each generic operation.48 What we are counting on
here is the fact that the appropriate transformation between types depends only on
the types themselves, not on the operation to be applied.

47. See exercise 2.82 for generalizations.

48. If we are clever, we can usually get by with fewer than n2 coercion functions. For instance,
if we know how to convert from type 1 to type 2 and from type 2 to type 3, then we can
use this knowledge to convert from type 1 to type 3. This can greatly decrease the number of
coercion functions we need to supply explicitly when we add a new type to the system. If we
are willing to build the required amount of sophistication into our system, we can have it search
the “graph” of relations among types and automatically generate those coercion functions that
can be inferred from the ones that are supplied explicitly.

2.5.2 Combining Data of Different Types 173

complex

real

rational

integer

Figure 2.25 A tower of types.

On the other hand, there may be applications for which our coercion scheme
is not general enough. Even when neither of the objects to be combined can be
converted to the type of the other it may still be possible to perform the operation
by converting both objects to a third type. In order to deal with such complexity and
still preserve modularity in our programs, it is usually necessary to build systems
that take advantage of still further structure in the relations among types, as we
discuss next.

Hierarchies of types
The coercion scheme presented above relied on the existence of natural relations
between pairs of types. Often there is more “global” structure in how the different
types relate to each other. For instance, suppose we are building a generic arithmetic
system to handle integers, rational numbers, real numbers, and complex numbers.
In such a system, it is quite natural to regard an integer as a special kind of rational
number, which is in turn a special kind of real number, which is in turn a special
kind of complex number. What we actually have is a so-called hierarchy of types, in
which, for example, integers are a subtype of rational numbers (i.e., any operation
that can be applied to a rational number can automatically be applied to an integer).
Conversely, we say that rational numbers form a supertype of integers. The particu-
lar hierarchy we have here is of a very simple kind, in which each type has at most
one supertype and at most one subtype. Such a structure, called a tower, is illustrated
in figure 2.25.

If we have a tower structure, then we can greatly simplify the problem of adding
a new type to the hierarchy, for we need only specify how the new type is embedded
in the next supertype above it and how it is the supertype of the type below it. For
example, if we want to add an integer to a complex number, we need not explicitly
define a special coercion function integer_to_complex. Instead, we define how
an integer can be transformed into a rational number, how a rational number is

174 Chapter 2 Building Abstractions with Data

transformed into a real number, and how a real number is transformed into a complex
number. We then allow the system to transform the integer into a complex number
through these steps and then add the two complex numbers.

We can redesign our apply_generic function in the following way: For each
type, we need to supply a raise function, which “raises” objects of that type one
level in the tower. Then when the system is required to operate on objects of different
types it can successively raise the lower types until all the objects are at the same
level in the tower. (Exercises 2.83 and 2.84 concern the details of implementing
such a strategy.)

Another advantage of a tower is that we can easily implement the notion that
every type “inherits” all operations defined on a supertype. For instance, if we
do not supply a special function for finding the real part of an integer, we should
nevertheless expect that real_part will be defined for integers by virtue of the fact
that integers are a subtype of complex numbers. In a tower, we can arrange for this to
happen in a uniform way by modifying apply_generic. If the required operation
is not directly defined for the type of the object given, we raise the object to its
supertype and try again. We thus crawl up the tower, transforming our argument as
we go, until we either find a level at which the desired operation can be performed
or hit the top (in which case we give up).

Yet another advantage of a tower over a more general hierarchy is that it gives us
a simple way to “lower” a data object to the simplest representation. For example, if
we add 2 + 3i to 4 – 3i, it would be nice to obtain the answer as the integer 6 rather
than as the complex number 6 + 0i. Exercise 2.85 discusses a way to implement such
a lowering operation. (The trick is that we need a general way to distinguish those
objects that can be lowered, such as 6 + 0i, from those that cannot, such as 6 + 2i.)

Inadequacies of hierarchies
If the data types in our system can be naturally arranged in a tower, this greatly
simplifies the problems of dealing with generic operations on different types, as we
have seen. Unfortunately, this is usually not the case. Figure 2.26 illustrates a more
complex arrangement of mixed types, this one showing relations among different
types of geometric figures. We see that, in general, a type may have more than one
subtype. Triangles and quadrilaterals, for instance, are both subtypes of polygons.
In addition, a type may have more than one supertype. For example, an isosceles
right triangle may be regarded either as an isosceles triangle or as a right triangle.
This multiple-supertypes issue is particularly thorny, since it means that there is
no unique way to “raise” a type in the hierarchy. Finding the “correct” supertype
in which to apply an operation to an object may involve considerable searching
through the entire type network on the part of a function such as apply_generic.
Since there generally are multiple subtypes for a type, there is a similar problem in

2.5.2 Combining Data of Different Types 175

polygon

quadrilateral

kite

trapezoid

parallelogram

rectangle rhombus

square

triangle

isosceles

triangle

right

triangle

isosceles

right triangle

equilateral

triangle

Figure 2.26 Relations among types of geometric figures.

coercing a value “down” the type hierarchy. Dealing with large numbers of interre-
lated types while still preserving modularity in the design of large systems is very
difficult, and is an area of much current research.49

Exercise 2.81
Louis Reasoner has noticed that apply_generic may try to coerce the arguments to each
other’s type even if they already have the same type. Therefore, he reasons, we need to put
functions in the coercion table to “coerce” arguments of each type to their own type. For
example, in addition to the javascript_number_to_complex coercion shown above, he
would do:

49. This statement, which also appears in the first edition of this book, is just as true now
as it was when we wrote it in 1984. Developing a useful, general framework for expressing the
relations among different types of entities (what philosophers call “ontology”) seems intractably
difficult. The main difference between the confusion that existed in 1984 and the confusion
that exists now is that now a variety of inadequate ontological theories have been embodied
in a plethora of correspondingly inadequate programming languages. For example, much of
the complexity of object-oriented programming languages—and the subtle and confusing dif-
ferences among contemporary object-oriented languages—centers on the treatment of generic
operations on interrelated types. Our own discussion of computational objects in chapter 3
avoids these issues entirely. Readers familiar with object-oriented programming will notice that
we have much to say in chapter 3 about local state, but we do not even mention “classes” or
“inheritance.” In fact, we suspect that these problems cannot be adequately addressed in terms
of computer-language design alone, without also drawing on work in knowledge representation
and automated reasoning.

176 Chapter 2 Building Abstractions with Data

function javascript_number_to_javascript_number(n) { return n; }
function complex_to_complex(n) { return n; }
put_coercion("javascript_number", "javascript_number",

javascript_number_to_javascript_number);
put_coercion("complex", "complex", complex_to_complex);

a. With Louis’s coercion functions installed, what happens if apply_generic is called
with two arguments of type "complex" or two arguments of type "javascript_
number" for an operation that is not found in the table for those types? For example,
assume that we’ve defined a generic exponentiation operation:

function exp(x, y) {
return apply_generic("exp", list(x, y));

}

and have put a function for exponentiation in the JavaScript-number package but not in
any other package:

// following added to JavaScript-number package
put("exp", list("javascript_number", "javascript_number"),

(x, y) => tag(math_exp(x, y))); // using primitive math_exp

What happens if we call exp with two complex numbers as arguments?

b. Is Louis correct that something had to be done about coercion with arguments of the
same type, or does apply_generic work correctly as is?

c. Modify apply_generic so that it doesn’t try coercion if the two arguments have the
same type.

Exercise 2.82
Show how to generalize apply_generic to handle coercion in the general case of multiple
arguments. One strategy is to attempt to coerce all the arguments to the type of the first
argument, then to the type of the second argument, and so on. Give an example of a
situation where this strategy (and likewise the two-argument version given above) is not
sufficiently general. (Hint: Consider the case where there are some suitable mixed-type
operations present in the table that will not be tried.)

Exercise 2.83
Suppose you are designing a generic arithmetic system for dealing with the tower of types
shown in figure 2.25: integer, rational, real, complex. For each type (except complex),
design a function that raises objects of that type one level in the tower. Show how to install
a generic raise operation that will work for each type (except complex).

Exercise 2.84
Using the raise operation of exercise 2.83, modify the apply_generic function so that
it coerces its arguments to have the same type by the method of successive raising, as
discussed in this section. You will need to devise a way to test which of two types is higher
in the tower. Do this in a manner that is “compatible” with the rest of the system and will
not lead to problems in adding new levels to the tower.

2.5.3 Example: Symbolic Algebra 177

Exercise 2.85
This section mentioned a method for “simplifying” a data object by lowering it in the
tower of types as far as possible. Design a function drop that accomplishes this for the
tower described in exercise 2.83. The key is to decide, in some general way, whether an
object can be lowered. For example, the complex number 1.5 + 0i can be lowered as far as
"real", the complex number 1 + 0i can be lowered as far as "integer", and the complex
number 2 + 3i cannot be lowered at all. Here is a plan for determining whether an object can
be lowered: Begin by defining a generic operation project that “pushes” an object down
in the tower. For example, projecting a complex number would involve throwing away the
imaginary part. Then a number can be dropped if, when we project it and raise the
result back to the type we started with, we end up with something equal to what we started
with. Show how to implement this idea in detail, by writing a drop function that drops an
object as far as possible. You will need to design the various projection operations50 and
install project as a generic operation in the system. You will also need to make use of a
generic equality predicate, such as described in exercise 2.79. Finally, use drop to rewrite
apply_generic from exercise 2.84 so that it “simplifies” its answers.

Exercise 2.86
Suppose we want to handle complex numbers whose real parts, imaginary parts, magni-
tudes, and angles can be either ordinary numbers, rational numbers, or other numbers we
might wish to add to the system. Describe and implement the changes to the system needed
to accommodate this. You will have to define operations such as sine and cosine that are
generic over ordinary numbers and rational numbers.

2.5.3 Example: Symbolic Algebra
The manipulation of symbolic algebraic expressions is a complex process that illus-
trates many of the hardest problems that occur in the design of large-scale systems.
An algebraic expression, in general, can be viewed as a hierarchical structure, a tree
of operators applied to operands. We can construct algebraic expressions by starting
with a set of primitive objects, such as constants and variables, and combining these
by means of algebraic operators, such as addition and multiplication. As in other
languages, we form abstractions that enable us to refer to compound objects in
simple terms. Typical abstractions in symbolic algebra are ideas such as linear com-
bination, polynomial, rational function, or trigonometric function. We can regard
these as compound “types,” which are often useful for directing the processing of
expressions. For example, we could describe the expression

x2 sin(y2 + 1) + x cos 2y + cos(y3 – 2y2)

as a polynomial in x with coefficients that are trigonometric functions of polynomi-
als in y whose coefficients are integers.

We will not attempt to develop a complete algebraic-manipulation system here.
Such systems are exceedingly complex programs, embodying deep algebraic knowl-
edge and elegant algorithms. What we will do is look at a simple but important

50. A real number can be projected to an integer using the math_round primitive, which returns
the closest integer to its argument.

178 Chapter 2 Building Abstractions with Data

part of algebraic manipulation: the arithmetic of polynomials. We will illustrate the
kinds of decisions the designer of such a system faces, and how to apply the ideas
of abstract data and generic operations to help organize this effort.

Arithmetic on polynomials
Our first task in designing a system for performing arithmetic on polynomials is
to decide just what a polynomial is. Polynomials are normally defined relative to
certain variables (the indeterminates of the polynomial). For simplicity, we will
restrict ourselves to polynomials having just one indeterminate (univariate polyno-
mials).51 We will define a polynomial to be a sum of terms, each of which is either
a coefficient, a power of the indeterminate, or a product of a coefficient and a power
of the indeterminate. A coefficient is defined as an algebraic expression that is not
dependent upon the indeterminate of the polynomial. For example,

5x2 + 3x + 7

is a simple polynomial in x, and

(y2 + 1)x3 + (2y)x + 1

is a polynomial in x whose coefficients are polynomials in y.
Already we are skirting some thorny issues. Is the first of these polynomials the

same as the polynomial 5y2 + 3y + 7, or not? A reasonable answer might be “yes,
if we are considering a polynomial purely as a mathematical function, but no, if
we are considering a polynomial to be a syntactic form.” The second polynomial is
algebraically equivalent to a polynomial in y whose coefficients are polynomials in
x. Should our system recognize this, or not? Furthermore, there are other ways to
represent a polynomial—for example, as a product of factors, or (for a univariate
polynomial) as the set of roots, or as a listing of the values of the polynomial at
a specified set of points.52 We can finesse these questions by deciding that in our
algebraic-manipulation system a “polynomial” will be a particular syntactic form,
not its underlying mathematical meaning.

Now we must consider how to go about doing arithmetic on polynomials. In this
simple system, we will consider only addition and multiplication. Moreover, we will
insist that two polynomials to be combined must have the same indeterminate.

We will approach the design of our system by following the familiar discipline
of data abstraction. We will represent polynomials using a data structure called a
poly, which consists of a variable and a collection of terms. We assume that we

51. On the other hand, we will allow polynomials whose coefficients are themselves polyno-
mials in other variables. This will give us essentially the same representational power as a full
multivariate system, although it does lead to coercion problems, as discussed below.

52. For univariate polynomials, giving the value of a polynomial at a given set of points can
be a particularly good representation. This makes polynomial arithmetic extremely simple. To
obtain, for example, the sum of two polynomials represented in this way, we need only add
the values of the polynomials at corresponding points. To transform back to a more familiar
representation, we can use the Lagrange interpolation formula, which shows how to recover the
coefficients of a polynomial of degree n given the values of the polynomial at n + 1 points.

2.5.3 Example: Symbolic Algebra 179

have selectors variable and term_list that extract those parts from a poly and
a constructor make_poly that assembles a poly from a given variable and a term
list. A variable will be just a string, so we can use the is_same_variable function
of section 2.3.2 to compare variables. The following functions define addition and
multiplication of polys:

function add_poly(p1, p2) {
return is_same_variable(variable(p1), variable(p2))

? make_poly(variable(p1),
add_terms(term_list(p1), term_list(p2)))

: error(list(p1, p2), "polys not in same var -- add_poly");
}
function mul_poly(p1, p2) {

return is_same_variable(variable(p1), variable(p2))
? make_poly(variable(p1),

mul_terms(term_list(p1), term_list(p2)))
: error(list(p1, p2), "polys not in same var -- mul_poly");

}

To incorporate polynomials into our generic arithmetic system, we need to sup-
ply them with type tags. We’ll use the tag "polynomial", and install appropriate
operations on tagged polynomials in the operation table. We’ll embed all our code
in an installation function for the polynomial package, similar to the installation
functions in section 2.5.1:

function install_polynomial_package() {
// internal functions
// representation of poly
function make_poly(variable, term_list) {

return pair(variable, term_list);
}
function variable(p) { return head(p); }
function term_list(p) { return tail(p); }
〈functions is_same_variable and is_variable from section 2.3.2〉

// representation of terms and term lists
〈functions adjoin_term...coeff from text below〉

function add_poly(p1, p2) { ... }
〈functions used by add_poly〉
function mul_poly(p1, p2) { ... }
〈functions used by mul_poly〉

// interface to rest of the system
function tag(p) { return attach_tag("polynomial", p); }
put("add", list("polynomial", "polynomial"),

(p1, p2) => tag(add_poly(p1, p2)));
put("mul", list("polynomial", "polynomial"),

(p1, p2) => tag(mul_poly(p1, p2)));
put("make", "polynomial",

(variable, terms) => tag(make_poly(variable, terms)));
return "done";

}

180 Chapter 2 Building Abstractions with Data

Polynomial addition is performed termwise. Terms of the same order (i.e., with
the same power of the indeterminate) must be combined. This is done by forming a
new term of the same order whose coefficient is the sum of the coefficients of the
addends. Terms in one addend for which there are no terms of the same order in the
other addend are simply accumulated into the sum polynomial being constructed.

In order to manipulate term lists, we will assume that we have a constructor
the_empty_termlist that returns an empty term list and a constructor adjoin_
term that adjoins a new term to a term list. We will also assume that we have a
predicate is_empty_termlist that tells if a given term list is empty, a selector
first_term that extracts the highest-order term from a term list, and a selector
rest_terms that returns all but the highest-order term. To manipulate terms, we
will suppose that we have a constructor make_term that constructs a term with given
order and coefficient, and selectors order and coeff that return, respectively, the
order and the coefficient of the term. These operations allow us to consider both
terms and term lists as data abstractions, whose concrete representations we can
worry about separately.

Here is the function that constructs the term list for the sum of two polynomi-
als;53 note that we slightly extend the syntax of conditional statements described
in section 1.3.2 by admitting another conditional statement in place of the block
following else:

function add_terms(L1, L2) {
if (is_empty_termlist(L1)) {

return L2;
} else if (is_empty_termlist(L2)) {

return L1;
} else {

const t1 = first_term(L1);
const t2 = first_term(L2);
return order(t1) > order(t2)

? adjoin_term(t1, add_terms(rest_terms(L1), L2))
: order(t1) < order(t2)
? adjoin_term(t2, add_terms(L1, rest_terms(L2)))
: adjoin_term(make_term(order(t1),

add(coeff(t1), coeff(t2))),
add_terms(rest_terms(L1),

rest_terms(L2)));
}

}

The most important point to note here is that we used the generic addition function
add to add together the coefficients of the terms being combined. This has powerful
consequences, as we will see below.

53. This operation is very much like the ordered union_set operation we developed in exer-
cise 2.62. In fact, if we think of the terms of the polynomial as a set ordered according to the
power of the indeterminate, then the program that produces the term list for a sum is almost
identical to union_set.

2.5.3 Example: Symbolic Algebra 181

In order to multiply two term lists, we multiply each term of the first list by
all the terms of the other list, repeatedly using mul_term_by_all_terms, which
multiplies a given term by all terms in a given term list. The resulting term lists
(one for each term of the first list) are accumulated into a sum. Multiplying two
terms forms a term whose order is the sum of the orders of the factors and whose
coefficient is the product of the coefficients of the factors:

function mul_terms(L1, L2) {
return is_empty_termlist(L1)

? the_empty_termlist
: add_terms(mul_term_by_all_terms(

first_term(L1), L2),
mul_terms(rest_terms(L1), L2));

}
function mul_term_by_all_terms(t1, L) {

if (is_empty_termlist(L)) {
return the_empty_termlist;

} else {
const t2 = first_term(L);
return adjoin_term(

make_term(order(t1) + order(t2),
mul(coeff(t1), coeff(t2))),

mul_term_by_all_terms(t1, rest_terms(L)));
}

}

This is really all there is to polynomial addition and multiplication. Notice that,
since we operate on terms using the generic functions add and mul, our polynomial
package is automatically able to handle any type of coefficient that is known about
by the generic arithmetic package. If we include a coercion mechanism such as one
of those discussed in section 2.5.2, then we also are automatically able to handle
operations on polynomials of different coefficient types, such as[

3x2 + (2 + 3i)x + 7
]
·
[
x4 + 2

3 x2 + (5 + 3i)
]

Because we installed the polynomial addition and multiplication functions add_
poly and mul_poly in the generic arithmetic system as the add and mul operations
for type polynomial, our system is also automatically able to handle polynomial
operations such as[

(y + 1)x2 + (y2 + 1)x + (y – 1)
]
·
[
(y – 2)x + (y3 + 7)

]
The reason is that when the system tries to combine coefficients, it will dispatch
through add and mul. Since the coefficients are themselves polynomials (in y), these
will be combined using add_poly and mul_poly. The result is a kind of “data-
directed recursion” in which, for example, a call to mul_poly will result in recursive
calls to mul_poly in order to multiply the coefficients. If the coefficients of the co-
efficients were themselves polynomials (as might be used to represent polynomials
in three variables), the data direction would ensure that the system would follow

182 Chapter 2 Building Abstractions with Data

through another level of recursive calls, and so on through as many levels as the
structure of the data dictates.54

Representing term lists
Finally, we must confront the job of implementing a good representation for term
lists. A term list is, in effect, a set of coefficients keyed by the order of the term.
Hence, any of the methods for representing sets, as discussed in section 2.3.3, can
be applied to this task. On the other hand, our functions add_terms and mul_terms
always access term lists sequentially from highest to lowest order. Thus, we will use
some kind of ordered list representation.

How should we structure the list that represents a term list? One consideration is
the “density” of the polynomials we intend to manipulate. A polynomial is said to
be dense if it has nonzero coefficients in terms of most orders. If it has many zero
terms it is said to be sparse. For example,

A : x5 + 2x4 + 3x2 – 2x – 5

is a dense polynomial, whereas

B : x100 + 2x2 + 1

is sparse.
The term list of a dense polynomial is most efficiently represented as a list of

the coefficients. For example, the polynomial A above would be nicely represented
as list(1, 2, 0, 3, -2, -5). The order of a term in this representation is the
length of the sublist beginning with that term’s coefficient, decremented by 1.55

This would be a terrible representation for a sparse polynomial such as B: There
would be a giant list of zeros punctuated by a few lonely nonzero terms. A more
reasonable representation of the term list of a sparse polynomial is as a list of the
nonzero terms, where each term is a list containing the order of the term and the
coefficient for that order. In such a scheme, polynomial B is efficiently represented
as list(list(100, 1), list(2, 2), list(0, 1)). As most polynomial ma-
nipulations are performed on sparse polynomials, we will use this method. We will
assume that term lists are represented as lists of terms, arranged from highest-order

54. To make this work completely smoothly, we should also add to our generic arithmetic
system the ability to coerce a “number” to a polynomial by regarding it as a polynomial of
degree zero whose coefficient is the number. This is necessary if we are going to perform
operations such as[

x2 + (y + 1)x + 5
]

+
[
x2 + 2x + 1

]
which requires adding the coefficient y + 1 to the coefficient 2.

55. In these polynomial examples, we assume that we have implemented the generic arithmetic
system using the type mechanism suggested in exercise 2.78. Thus, coefficients that are ordinary
numbers will be represented as the numbers themselves rather than as pairs whose head is the
string "javascript_number".

2.5.3 Example: Symbolic Algebra 183

to lowest-order term. Once we have made this decision, implementing the selectors
and constructors for terms and term lists is straightforward:56

function adjoin_term(term, term_list) {
return is_equal_to_zero(coeff(term))

? term_list
: pair(term, term_list);

}

const the_empty_termlist = null;
function first_term(term_list) { return head(term_list); }
function rest_terms(term_list) { return tail(term_list); }
function is_empty_termlist(term_list) { return is_null(term_list); }

function make_term(order, coeff) { return list(order, coeff); }
function order(term) { return head(term); }
function coeff(term) { return head(tail(term)); }

where is_equal_to_zero is as defined in exercise 2.80. (See also exercise 2.87
below.)

Users of the polynomial package will create (tagged) polynomials by means of
the function:

function make_polynomial(variable, terms) {
return get("make", "polynomial")(variable, terms);

}

Exercise 2.87
Install is_equal_to_zero for polynomials in the generic arithmetic package. This will
allow adjoin_term to work for polynomials with coefficients that are themselves polyno-
mials.

Exercise 2.88
Extend the polynomial system to include subtraction of polynomials. (Hint: You may find
it helpful to define a generic negation operation.)

Exercise 2.89
Declare functions that implement the term-list representation described above as appropri-
ate for dense polynomials.

56. Although we are assuming that term lists are ordered, we have implemented adjoin_term
to simply adjoin the new term to the front of the existing term list. We can get away with this so
long as we guarantee that the functions (such as add_terms) that use adjoin_term always call
it with a higher-order term than appears in the list. If we did not want to make such a guarantee,
we could have implemented adjoin_term to be similar to the adjoin_set constructor for the
ordered-list representation of sets (exercise 2.61).

184 Chapter 2 Building Abstractions with Data

Exercise 2.90
Suppose we want to have a polynomial system that is efficient for both sparse and dense
polynomials. One way to do this is to allow both kinds of term-list representations in our
system. The situation is analogous to the complex-number example of section 2.4, where
we allowed both rectangular and polar representations. To do this we must distinguish
different types of term lists and make the operations on term lists generic. Redesign the
polynomial system to implement this generalization. This is a major effort, not a local
change.

Exercise 2.91
A univariate polynomial can be divided by another one to produce a polynomial quotient
and a polynomial remainder. For example,

x5 – 1
x2 – 1

= x3 + x, remainder x – 1

Division can be performed via long division. That is, divide the highest-order term of the
dividend by the highest-order term of the divisor. The result is the first term of the quotient.
Next, multiply the result by the divisor, subtract that from the dividend, and produce the
rest of the answer by recursively dividing the difference by the divisor. Stop when the order
of the divisor exceeds the order of the dividend and declare the dividend to be the remainder.
Also, if the dividend ever becomes zero, return zero as both quotient and remainder.

We can design a div_poly function on the model of add_poly and mul_poly. The
function checks to see if the two polys have the same variable. If so, div_poly strips off
the variable and passes the problem to div_terms, which performs the division operation
on term lists. The function div_poly finally reattaches the variable to the result supplied
by div_terms. It is convenient to design div_terms to compute both the quotient and the
remainder of a division. The function div_terms can take two term lists as arguments and
return a list of the quotient term list and the remainder term list.

Complete the following definition of div_terms by filling in the missing parts. Use
this to implement div_poly, which takes two polys as arguments and returns a list of the
quotient and remainder polys.

function div_terms(L1, L2) {
if (is_empty_termlist(L1)) {

return list(the_empty_termlist, the_empty_termlist);
} else {

const t1 = first_term(L1);
const t2 = first_term(L2);
if (order(t2) > order(t1)) {

return list(the_empty_termlist, L1);
} else {

const new_c = div(coeff(t1), coeff(t2));
const new_o = order(t1) - order(t2);
const rest_of_result = 〈compute rest of result recursively〉;
〈form and return complete result〉

}
}

}

2.5.3 Example: Symbolic Algebra 185

Hierarchies of types in symbolic algebra
Our polynomial system illustrates how objects of one type (polynomials) may in fact
be complex objects that have objects of many different types as parts. This poses
no real difficulty in defining generic operations. We need only install appropriate
generic operations for performing the necessary manipulations of the parts of the
compound types. In fact, we saw that polynomials form a kind of “recursive data ab-
straction,” in that parts of a polynomial may themselves be polynomials. Our generic
operations and our data-directed programming style can handle this complication
without much trouble.

On the other hand, polynomial algebra is a system for which the data types can-
not be naturally arranged in a tower. For instance, it is possible to have polynomials
in x whose coefficients are polynomials in y. It is also possible to have polynomials
in y whose coefficients are polynomials in x. Neither of these types is “above” the
other in any natural way, yet it is often necessary to add together elements from each
set. There are several ways to do this. One possibility is to convert one polynomial
to the type of the other by expanding and rearranging terms so that both polynomials
have the same principal variable. One can impose a towerlike structure on this by
ordering the variables and thus always converting any polynomial to a “canonical
form” with the highest-priority variable dominant and the lower-priority variables
buried in the coefficients. This strategy works fairly well, except that the conversion
may expand a polynomial unnecessarily, making it hard to read and perhaps less
efficient to work with. The tower strategy is certainly not natural for this domain or
for any domain where the user can invent new types dynamically using old types
in various combining forms, such as trigonometric functions, power series, and
integrals.

It should not be surprising that controlling coercion is a serious problem in the
design of large-scale algebraic-manipulation systems. Much of the complexity of
such systems is concerned with relationships among diverse types. Indeed, it is fair
to say that we do not yet completely understand coercion. In fact, we do not yet
completely understand the concept of a data type. Nevertheless, what we know pro-
vides us with powerful structuring and modularity principles to support the design
of large systems.

Exercise 2.92
By imposing an ordering on variables, extend the polynomial package so that addition and
multiplication of polynomials works for polynomials in different variables. (This is not
easy!)

Extended exercise: Rational functions
We can extend our generic arithmetic system to include rational functions. These
are “fractions” whose numerator and denominator are polynomials, such as

x + 1
x3 – 1

186 Chapter 2 Building Abstractions with Data

The system should be able to add, subtract, multiply, and divide rational functions,
and to perform such computations as

x + 1
x3 – 1

+
x

x2 – 1
=

x3 + 2x2 + 3x + 1
x4 + x3 – x – 1

(Here the sum has been simplified by removing common factors. Ordinary “cross
multiplication” would have produced a fourth-degree polynomial over a fifth-degree
polynomial.)

If we modify our rational-arithmetic package so that it uses generic operations,
then it will do what we want, except for the problem of reducing fractions to lowest
terms.

Exercise 2.93
Modify the rational-arithmetic package to use generic operations, but change make_rat so
that it does not attempt to reduce fractions to lowest terms. Test your system by calling
make_rational on two polynomials to produce a rational function

const p1 = make_polynomial("x", list(make_term(2, 1), make_term(0, 1)));
const p2 = make_polynomial("x", list(make_term(3, 1), make_term(0, 1)));
const rf = make_rational(p2, p1);

Now add rf to itself, using add. You will observe that this addition function does not
reduce fractions to lowest terms.

We can reduce polynomial fractions to lowest terms using the same idea we used
with integers: modifying make_rat to divide both the numerator and the denomi-
nator by their greatest common divisor. The notion of “greatest common divisor”
makes sense for polynomials. In fact, we can compute the GCD of two polynomials
using essentially the same Euclid’s Algorithm that works for integers.57 The integer
version is

function gcd(a, b) {
return b === 0

? a
: gcd(b, a % b);

}

57. The fact that Euclid’s Algorithm works for polynomials is formalized in algebra by saying
that polynomials form a kind of algebraic domain called a Euclidean ring. A Euclidean ring
is a domain that admits addition, subtraction, and commutative multiplication, together with
a way of assigning to each element x of the ring a positive integer “measure” m(x) with the
properties that m(xy)≥m(x) for any nonzero x and y and that, given any x and y, there exists a
q such that y = qx + r and either r = 0 or m(r) < m(x). From an abstract point of view, this is what
is needed to prove that Euclid’s Algorithm works. For the domain of integers, the measure m of
an integer is the absolute value of the integer itself. For the domain of polynomials, the measure
of a polynomial is its degree.

2.5.3 Example: Symbolic Algebra 187

Using this, we could make the obvious modification to define a GCD operation that
works on term lists:

function gcd_terms(a, b) {
return is_empty_termlist(b)

? a
: gcd_terms(b, remainder_terms(a, b));

}

where remainder_terms picks out the remainder component of the list returned by
the term-list division operation div_terms that was implemented in exercise 2.91.

Exercise 2.94
Using div_terms, implement the function remainder_terms and use this to define gcd_
terms as above. Now write a function gcd_poly that computes the polynomial GCD of
two polys. (The function should signal an error if the two polys are not in the same vari-
able.) Install in the system a generic operation greatest_common_divisor that reduces to
gcd_poly for polynomials and to ordinary gcd for ordinary numbers. As a test, try

const p1 = make_polynomial("x", list(make_term(4, 1), make_term(3, -1),
make_term(2, -2), make_term(1, 2)));

const p2 = make_polynomial("x", list(make_term(3, 1), make_term(1, -1)));
greatest_common_divisor(p1, p2);

and check your result by hand.

Exercise 2.95
Define P1, P2, and P3 to be the polynomials

P1: x2 – 2x + 1

P2: 11x2 + 7

P3: 13x + 5

Now define Q1 to be the product of P1 and P2 and Q2 to be the product of P1 and P3,
and use greatest_common_divisor (exercise 2.94) to compute the GCD of Q1 and Q2.
Note that the answer is not the same as P1. This example introduces noninteger operations
into the computation, causing difficulties with the GCD algorithm.58 To understand what is
happening, try tracing gcd_terms while computing the GCD or try performing the division
by hand.

We can solve the problem exhibited in exercise 2.95 if we use the following
modification of the GCD algorithm (which really works only in the case of polyno-
mials with integer coefficients). Before performing any polynomial division in the
GCD computation, we multiply the dividend by an integer constant factor, chosen
to guarantee that no fractions will arise during the division process. Our answer
will thus differ from the actual GCD by an integer constant factor, but this does not

58. In JavaScript, division of integers can produce limited-precision decimal numbers, and thus
we may fail to get a valid divisor.

188 Chapter 2 Building Abstractions with Data

matter in the case of reducing rational functions to lowest terms; the GCD will be
used to divide both the numerator and denominator, so the integer constant factor
will cancel out.

More precisely, if P and Q are polynomials, let O1 be the order of P (i.e., the
order of the largest term of P) and let O2 be the order of Q. Let c be the leading
coefficient of Q. Then it can be shown that, if we multiply P by the integerizing fac-
tor c1+O1–O2 , the resulting polynomial can be divided by Q by using the div_terms
algorithm without introducing any fractions. The operation of multiplying the divi-
dend by this constant and then dividing is sometimes called the pseudodivision of P
by Q. The remainder of the division is called the pseudoremainder.

Exercise 2.96
a. Implement the function pseudoremainder_terms, which is just like remainder_terms

except that it multiplies the dividend by the integerizing factor described above before
calling div_terms. Modify gcd_terms to use pseudoremainder_terms, and verify
that greatest_common_divisor now produces an answer with integer coefficients on
the example in exercise 2.95.

b. The GCD now has integer coefficients, but they are larger than those of P1. Modify
gcd_terms so that it removes common factors from the coefficients of the answer by
dividing all the coefficients by their (integer) greatest common divisor.

Thus, here is how to reduce a rational function to lowest terms:

• Compute the GCD of the numerator and denominator, using the version of gcd_
terms from exercise 2.96.

• When you obtain the GCD, multiply both numerator and denominator by the same
integerizing factor before dividing through by the GCD, so that division by the
GCD will not introduce any noninteger coefficients. As the factor you can use
the leading coefficient of the GCD raised to the power 1 + O1 – O2, where O2 is
the order of the GCD and O1 is the maximum of the orders of the numerator and
denominator. This will ensure that dividing the numerator and denominator by the
GCD will not introduce any fractions.

• The result of this operation will be a numerator and denominator with integer
coefficients. The coefficients will normally be very large because of all of the inte-
gerizing factors, so the last step is to remove the redundant factors by computing
the (integer) greatest common divisor of all the coefficients of the numerator and
the denominator and dividing through by this factor.

Exercise 2.97
a. Implement this algorithm as a function reduce_terms that takes two term lists n and

d as arguments and returns a list nn, dd, which are n and d reduced to lowest terms via
the algorithm given above. Also write a function reduce_poly, analogous to add_poly,
that checks to see if the two polys have the same variable. If so, reduce_poly strips
off the variable and passes the problem to reduce_terms, then reattaches the variable
to the two term lists supplied by reduce_terms.

2.5.3 Example: Symbolic Algebra 189

b. Define a function analogous to reduce_terms that does what the original make_rat
did for integers:

function reduce_integers(n, d) {
const g = gcd(n, d);
return list(n / g, d / g);

}

and define reduce as a generic operation that calls apply_generic to dispatch either to
reduce_poly (for polynomial arguments) or to reduce_integers (for javascript_
number arguments). You can now easily make the rational-arithmetic package reduce
fractions to lowest terms by having make_rat call reduce before combining the given
numerator and denominator to form a rational number. The system now handles rational
expressions in either integers or polynomials. To test your program, try the example at
the beginning of this extended exercise:

const p1 = make_polynomial("x", list(make_term(1, 1), make_term(0, 1)));
const p2 = make_polynomial("x", list(make_term(3, 1), make_term(0, -1)));
const p3 = make_polynomial("x", list(make_term(1, 1)));
const p4 = make_polynomial("x", list(make_term(2, 1), make_term(0, -1)));

const rf1 = make_rational(p1, p2);
const rf2 = make_rational(p3, p4);

add(rf1, rf2);

See if you get the correct answer, correctly reduced to lowest terms.

The GCD computation is at the heart of any system that does operations on
rational functions. The algorithm used above, although mathematically straightfor-
ward, is extremely slow. The slowness is due partly to the large number of division
operations and partly to the enormous size of the intermediate coefficients generated
by the pseudodivisions. One of the active areas in the development of algebraic-
manipulation systems is the design of better algorithms for computing polynomial
GCDs.59

59. One extremely efficient and elegant method for computing polynomial GCDs was discov-
ered by Richard Zippel (1979). The method is a probabilistic algorithm, as is the fast test for
primality that we discussed in chapter 1. Zippel’s book (1993) describes this method, together
with other ways to compute polynomial GCDs.

3 Modularity, Objects, and State

Mεταβάλλoν αναπαύεται

(Even while it changes, it stands still.)

—Heraclitus

Plus ça change, plus c’est la même chose.

—Alphonse Karr

The preceding chapters introduced the basic elements from which programs are
made. We saw how primitive functions and primitive data are combined to construct
compound entities, and we learned that abstraction is vital in helping us to cope
with the complexity of large systems. But these tools are not sufficient for designing
programs. Effective program synthesis also requires organizational principles that
can guide us in formulating the overall design of a program. In particular, we need
strategies to help us structure large systems so that they will be modular, that is,
so that they can be divided “naturally” into coherent parts that can be separately
developed and maintained.

One powerful design strategy, which is particularly appropriate to the construc-
tion of programs for modeling physical systems, is to base the structure of our
programs on the structure of the system being modeled. For each object in the
system, we construct a corresponding computational object. For each system action,
we define a symbolic operation in our computational model. Our hope in using this
strategy is that extending the model to accommodate new objects or new actions
will require no strategic changes to the program, only the addition of the new sym-
bolic analogs of those objects or actions. If we have been successful in our system
organization, then to add a new feature or debug an old one we will have to work on
only a localized part of the system.

To a large extent, then, the way we organize a large program is dictated by
our perception of the system to be modeled. In this chapter we will investigate
two prominent organizational strategies arising from two rather different “world
views” of the structure of systems. The first organizational strategy concentrates on
objects, viewing a large system as a collection of distinct objects whose behaviors
may change over time. An alternative organizational strategy concentrates on the
streams of information that flow in the system, much as an electrical engineer views
a signal-processing system.

Both the object-based approach and the stream-processing approach raise signif-
icant linguistic issues in programming. With objects, we must be concerned with
how a computational object can change and yet maintain its identity. This will
force us to abandon our old substitution model of computation (section 1.1.5) in

192 Chapter 3 Modularity, Objects, and State

favor of a more mechanistic but less theoretically tractable environment model of
computation. The difficulties of dealing with objects, change, and identity are a
fundamental consequence of the need to grapple with time in our computational
models. These difficulties become even greater when we allow the possibility of
concurrent execution of programs. The stream approach can be most fully exploited
when we decouple simulated time in our model from the order of the events that take
place in the computer during evaluation. We will accomplish this using a technique
known as delayed evaluation.

3.1 Assignment and Local State
We ordinarily view the world as populated by independent objects, each of which
has a state that changes over time. An object is said to “have state” if its behavior
is influenced by its history. A bank account, for example, has state in that the an-
swer to the question “Can I withdraw $100?” depends upon the history of deposit
and withdrawal transactions. We can characterize an object’s state by one or more
state variables, which among them maintain enough information about history to
determine the object’s current behavior. In a simple banking system, we could char-
acterize the state of an account by a current balance rather than by remembering the
entire history of account transactions.

In a system composed of many objects, the objects are rarely completely inde-
pendent. Each may influence the states of others through interactions, which serve
to couple the state variables of one object to those of other objects. Indeed, the view
that a system is composed of separate objects is most useful when the state variables
of the system can be grouped into closely coupled subsystems that are only loosely
coupled to other subsystems.

This view of a system can be a powerful framework for organizing computational
models of the system. For such a model to be modular, it should be decomposed
into computational objects that model the actual objects in the system. Each compu-
tational object must have its own local state variables describing the actual object’s
state. Since the states of objects in the system being modeled change over time, the
state variables of the corresponding computational objects must also change. If we
choose to model the flow of time in the system by the elapsed time in the computer,
then we must have a way to construct computational objects whose behaviors change
as our programs run. In particular, if we wish to model state variables by ordinary
symbolic names in the programming language, then the language must provide an
assignment operation to enable us to change the value associated with a name.

3.1.1 Local State Variables
To illustrate what we mean by having a computational object with time-varying
state, let us model the situation of withdrawing money from a bank account. We
will do this using a function withdraw, which takes as argument an amount to be
withdrawn. If there is enough money in the account to accommodate the withdrawal,
then withdraw should return the balance remaining after the withdrawal. Otherwise,
withdraw should return the message Insufficient funds. For example, if we begin

3.1.1 Local State Variables 193

with $100 in the account, we should obtain the following sequence of responses
using withdraw:

withdraw(25);
75

withdraw(25);
50

withdraw(60);
"Insufficient funds"

withdraw(15);
35

Observe that the expression withdraw(25), evaluated twice, yields different values.
This is a new kind of behavior for a function. Until now, all our JavaScript functions
could be viewed as specifications for computing mathematical functions. A call to
a function computed the value of the function applied to the given arguments, and
two calls to the same function with the same arguments always produced the same
result.1

So far, all our names have been immutable. When a function was applied, the
values that its parameters referred to never changed, and once a declaration was
evaluated, the declared name never changed its value. To implement functions like
withdraw, we introduce variable declarations, which use the keyword let, in
addition to constant declarations, which use the keyword const. We can declare
a variable balance to indicate the balance of money in the account and define
withdraw as a function that accesses balance. The withdraw function checks
to see if balance is at least as large as the requested amount. If so, withdraw
decrements balance by amount and returns the new value of balance. Other-
wise, withdraw returns the Insufficient funds message. Here are the declarations
of balance and withdraw:

let balance = 100;

function withdraw(amount) {
if (balance >= amount) {

balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}

1. Actually, this is not quite true. One exception was the random-number generator in sec-
tion 1.2.6. Another exception involved the operation/type tables we introduced in section 2.4.3,
where the values of two calls to get with the same arguments depended on intervening calls to
put. On the other hand, until we introduce assignment, we have no way to create such functions
ourselves.

194 Chapter 3 Modularity, Objects, and State

Decrementing balance is accomplished by the expression statement

balance = balance - amount;

The syntax of assignment expressions is

name = new-value

Here name has been declared with let or as a function parameter and new-value is
any expression. The assignment changes name so that its value is the result obtained
by evaluating new-value. In the case at hand, we are changing balance so that
its new value will be the result of subtracting amount from the previous value of
balance.2

The function withdraw also uses a sequence of statements to cause two state-
ments to be evaluated in the case where the if test is true: first decrementing
balance and then returning the value of balance. In general, executing a sequence

stmt1 stmt2 . . .stmtn

causes the statements stmt1 through stmtn to be evaluated in sequence.3

Although withdraw works as desired, the variable balance presents a problem.
As specified above, balance is a name defined in the program environment and is
freely accessible to be examined or modified by any function. It would be much
better if we could somehow make balance internal to withdraw, so that withdraw
would be the only function that could access balance directly and any other func-
tion could access balance only indirectly (through calls to withdraw). This would
more accurately model the notion that balance is a local state variable used by
withdraw to keep track of the state of the account.

2. The value of an assignment is the value being assigned to the name. Assignment expression
statements look similar to and should not be confused with constant and variable declarations
of the form
const name = value;

and
let name = value;

in which a newly declared name is associated with a value. Assignment expressions look similar
to and should not be confused with expressions of the form
expression1 === expression2

which evaluate to true if expression1 evaluates to the same value as expression2 and to false
otherwise.

3. We have already used sequences implicitly in our programs, because in JavaScript the body
block of a function can contain a sequence of function declarations followed by a return
statement, not just a single return statement, as discussed in section 1.1.8.

3.1.1 Local State Variables 195

We can make balance internal to withdraw by rewriting the definition as
follows:

function make_withdraw_balance_100() {
let balance = 100;
return amount => {

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
};

}
const new_withdraw = make_withdraw_balance_100();

What we have done here is use let to establish an environment with a local variable
balance, bound to the initial value 100. Within this local environment, we use
a lambda expression4 to create a function that takes amount as an argument and
behaves like our previous withdraw function. This function—returned as the result
of evaluating the body of the make_withdraw_balance_100 function—behaves in
precisely the same way as withdraw, but its variable balance is not accessible by
any other function.5

Combining assignments with variable declarations is the general programming
technique we will use for constructing computational objects with local state. Un-
fortunately, using this technique raises a serious problem: When we first introduced
functions, we also introduced the substitution model of evaluation (section 1.1.5) to
provide an interpretation of what function application means. We said that applying
a function whose body is a return statement should be interpreted as evaluating the
return expression of the function with the parameters replaced by their values. For
functions with more complex bodies, we need to evaluate the whole body with the
parameters replaced by their values. The trouble is that, as soon as we introduce
assignment into our language, substitution is no longer an adequate model of func-
tion application. (We will see why this is so in section 3.1.3.) As a consequence,
we technically have at this point no way to understand why the new_withdraw
function behaves as claimed above. In order to really understand a function such
as new_withdraw, we will need to develop a new model of function application.

4. Blocks as bodies of lambda expressions were introduced in section 2.2.4.

5. In programming-language jargon, the variable balance is said to be encapsulated within the
new_withdraw function. Encapsulation reflects the general system-design principle known as
the hiding principle: One can make a system more modular and robust by protecting parts of
the system from each other; that is, by providing information access only to those parts of the
system that have a “need to know.”

196 Chapter 3 Modularity, Objects, and State

In section 3.2 we will introduce such a model, together with an explanation of
assignments and variable declarations. First, however, we examine some variations
on the theme established by new_withdraw.

Parameters of functions as well as names declared with let are variables. The
following function, make_withdraw, creates “withdrawal processors.” The param-
eter balance in make_withdraw specifies the initial amount of money in the
account.6

function make_withdraw(balance) {
return amount => {

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
};

}

The function make_withdraw can be used as follows to create two objects W1
and W2:

const W1 = make_withdraw(100);
const W2 = make_withdraw(100);

W1(50);
50

W2(70);
30

W2(40);
"Insufficient funds"

W1(40);
10

Observe that W1 and W2 are completely independent objects, each with its own local
state variable balance. Withdrawals from one do not affect the other.

We can also create objects that handle deposits as well as withdrawals, and thus
we can represent simple bank accounts. Here is a function that returns a “bank-
account object” with a specified initial balance:

6. In contrast with make_withdraw_balance_100 above, we do not have to use let to make
balance a local variable, since parameters are already local. This will be clearer after the
discussion of the environment model of evaluation in section 3.2. (See also exercise 3.10.)

3.1.1 Local State Variables 197

function make_account(balance) {
function withdraw(amount) {

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}
function deposit(amount) {

balance = balance + amount;
return balance;

}
function dispatch(m) {

return m === "withdraw"
? withdraw
: m === "deposit"
? deposit
: error(m, "unknown request -- make_account");

}
return dispatch;

}

Each call to make_account sets up an environment with a local state variable
balance. Within this environment, make_account defines functions deposit and
withdraw that access balance and an additional function dispatch that takes
a “message” as input and returns one of the two local functions. The dispatch
function itself is returned as the value that represents the bank-account object.
This is precisely the message-passing style of programming that we saw in sec-
tion 2.4.3, although here we are using it in conjunction with the ability to modify
local variables.

The function make_account can be used as follows:

const acc = make_account(100);

acc("withdraw")(50);
50

acc("withdraw")(60);
"Insufficient funds"

acc("deposit")(40);
90

acc("withdraw")(60);
30

198 Chapter 3 Modularity, Objects, and State

Each call to acc returns the locally defined deposit or withdraw function, which is
then applied to the specified amount. As was the case with make_withdraw, another
call to make_account

const acc2 = make_account(100);

will produce a completely separate account object, which maintains its own local
balance.

Exercise 3.1
An accumulator is a function that is called repeatedly with a single numeric argument
and accumulates its arguments into a sum. Each time it is called, it returns the currently
accumulated sum. Write a function make_accumulator that generates accumulators, each
maintaining an independent sum. The input to make_accumulator should specify the
initial value of the sum; for example

const a = make_accumulator(5);

a(10);
15

a(10);
25

Exercise 3.2
In software-testing applications, it is useful to be able to count the number of times a given
function is called during the course of a computation. Write a function make_monitored
that takes as input a function, f, that itself takes one input. The result returned by
make_monitored is a third function, say mf, that keeps track of the number of times
it has been called by maintaining an internal counter. If the input to mf is the string
"how many calls", then mf returns the value of the counter. If the input is the string
"reset count", then mf resets the counter to zero. For any other input, mf returns the
result of calling f on that input and increments the counter. For instance, we could make a
monitored version of the sqrt function:

const s = make_monitored(math_sqrt);

s(100);
10

s("how many calls");
1

Exercise 3.3
Modify the make_account function so that it creates password-protected accounts. That is,
make_account should take a string as an additional argument, as in

const acc = make_account(100, "secret password");

The resulting account object should process a request only if it is accompanied by the
password with which the account was created, and should otherwise return a complaint:

3.1.2 The Benefits of Introducing Assignment 199

acc("secret password", "withdraw")(40);
60

acc("some other password", "deposit")(40);
"Incorrect password"

Exercise 3.4
Modify the make_account function of exercise 3.3 by adding another local state variable
so that, if an account is accessed more than seven consecutive times with an incorrect
password, it invokes the function call_the_cops.

3.1.2 The Benefits of Introducing Assignment
As we shall see, introducing assignment into our programming language leads us
into a thicket of difficult conceptual issues. Nevertheless, viewing systems as collec-
tions of objects with local state is a powerful technique for maintaining a modular
design. As a simple example, consider the design of a function rand that, whenever
it is called, returns an integer chosen at random.

It is not at all clear what is meant by “chosen at random.” What we presumably
want is for successive calls to rand to produce a sequence of numbers that has statis-
tical properties of uniform distribution. We will not discuss methods for generating
suitable sequences here. Rather, let us assume that we have a function rand_update
that has the property that if we start with a given number x1 and form

x2 = rand_update(x1);
x3 = rand_update(x2);

then the sequence of values x1, x2, x3, . . ., will have the desired statistical properties.7

We can implement rand as a function with a local state variable x that is initial-
ized to some fixed value random_init. Each call to rand computes rand_update
of the current value of x, returns this as the random number, and also stores this as
the new value of x.

function make_rand() {
let x = random_init;
return () => {

x = rand_update(x);
return x;

};
}
const rand = make_rand();

7. One common way to implement rand_update is to use the rule that x is updated to ax + b
modulo m, where a, b, and m are appropriately chosen integers. Chapter 3 of Knuth 1997b
includes an extensive discussion of techniques for generating sequences of random numbers
and establishing their statistical properties. Notice that the rand_update function computes a
mathematical function: Given the same input twice, it produces the same output. Therefore,
the number sequence produced by rand_update certainly is not “random,” if by “random” we
insist that each number in the sequence is unrelated to the preceding number. The relation
between “real randomness” and so-called pseudo-random sequences, which are produced by
well-determined computations and yet have suitable statistical properties, is a complex question
involving difficult issues in mathematics and philosophy. Kolmogorov, Solomonoff, and Chaitin
have made great progress in clarifying these issues; a discussion can be found in Chaitin 1975.

200 Chapter 3 Modularity, Objects, and State

Of course, we could generate the same sequence of random numbers without
using assignment by simply calling rand_update directly. However, this would
mean that any part of our program that used random numbers would have to explic-
itly remember the current value of x to be passed as an argument to rand_update.
To realize what an annoyance this would be, consider using random numbers to
implement a technique called Monte Carlo simulation.

The Monte Carlo method consists of choosing sample experiments at random
from a large set and then making deductions on the basis of the probabilities
estimated from tabulating the results of those experiments. For example, we can
approximate π using the fact that 6/π2 is the probability that two integers chosen
at random will have no factors in common; that is, that their greatest common
divisor will be 1.8 To obtain the approximation to π , we perform a large number
of experiments. In each experiment we choose two integers at random and perform
a test to see if their GCD is 1. The fraction of times that the test is passed gives us
our estimate of 6/π2, and from this we obtain our approximation to π .

The heart of our program is a function monte_carlo, which takes as arguments
the number of times to try an experiment, together with the experiment, represented
as a no-argument function that will return either true or false each time it is run. The
function monte_carlo runs the experiment for the designated number of trials and
returns a number telling the fraction of the trials in which the experiment was found
to be true.

function estimate_pi(trials) {
return math_sqrt(6 / monte_carlo(trials, dirichlet_test));

}
function dirichlet_test() {

return gcd(rand(), rand()) === 1;
}
function monte_carlo(trials, experiment) {

function iter(trials_remaining, trials_passed) {
return trials_remaining === 0

? trials_passed / trials
: experiment()
? iter(trials_remaining - 1, trials_passed + 1)
: iter(trials_remaining - 1, trials_passed);

}
return iter(trials, 0);

}

Now let us try the same computation using rand_update directly rather than
rand, the way we would be forced to proceed if we did not use assignment to model
local state:

8. This theorem is due to G. Lejeune Dirichlet. See section 4.5.2 of Knuth 1997b for a
discussion and a proof.

3.1.2 The Benefits of Introducing Assignment 201

function estimate_pi(trials) {
return math_sqrt(6 / random_gcd_test(trials, random_init));

}
function random_gcd_test(trials, initial_x) {

function iter(trials_remaining, trials_passed, x) {
const x1 = rand_update(x);
const x2 = rand_update(x1);
return trials_remaining === 0

? trials_passed / trials
: gcd(x1, x2) === 1
? iter(trials_remaining - 1, trials_passed + 1, x2)
: iter(trials_remaining - 1, trials_passed, x2);

}
return iter(trials, 0, initial_x);

}

While the program is still simple, it betrays some painful breaches of modularity.
In our first version of the program, using rand, we can express the Monte Carlo
method directly as a general monte_carlo function that takes as an argument an
arbitrary experiment function. In our second version of the program, with no
local state for the random-number generator, random_gcd_test must explicitly
manipulate the random numbers x1 and x2 and recycle x2 through the iterative loop
as the new input to rand_update. This explicit handling of the random numbers
intertwines the structure of accumulating test results with the fact that our particu-
lar experiment uses two random numbers, whereas other Monte Carlo experiments
might use one random number or three. Even the top-level function estimate_pi
has to be concerned with supplying an initial random number. The fact that the
random-number generator’s insides are leaking out into other parts of the program
makes it difficult for us to isolate the Monte Carlo idea so that it can be applied to
other tasks. In the first version of the program, assignment encapsulates the state
of the random-number generator within the rand function, so that the details of
random-number generation remain independent of the rest of the program.

The general phenomenon illustrated by the Monte Carlo example is this: From
the point of view of one part of a complex process, the other parts appear to change
with time. They have hidden time-varying local state. If we wish to write com-
puter programs whose structure reflects this decomposition, we make computational
objects (such as bank accounts and random-number generators) whose behavior
changes with time. We model state with local state variables, and we model the
changes of state with assignments to those variables.

It is tempting to conclude this discussion by saying that, by introducing assign-
ment and the technique of hiding state in local variables, we are able to structure
systems in a more modular fashion than if all state had to be manipulated explicitly,
by passing additional parameters. Unfortunately, as we shall see, the story is not so
simple.

202 Chapter 3 Modularity, Objects, and State

Exercise 3.5
Monte Carlo integration is a method of estimating definite integrals by means of Monte
Carlo simulation. Consider computing the area of a region of space described by a predicate
P(x, y) that is true for points (x, y) in the region and false for points not in the region. For
example, the region contained within a circle of radius 3 centered at (5, 7) is described by
the predicate that tests whether (x – 5)2 + (y – 7)2≤ 32. To estimate the area of the region
described by such a predicate, begin by choosing a rectangle that contains the region. For
example, a rectangle with diagonally opposite corners at (2, 4) and (8, 10) contains the
circle above. The desired integral is the area of that portion of the rectangle that lies in
the region. We can estimate the integral by picking, at random, points (x, y) that lie in the
rectangle, and testing P(x, y) for each point to determine whether the point lies in the region.
If we try this with many points, then the fraction of points that fall in the region should give
an estimate of the proportion of the rectangle that lies in the region. Hence, multiplying this
fraction by the area of the entire rectangle should produce an estimate of the integral.

Implement Monte Carlo integration as a function estimate_integral that takes as
arguments a predicate P, upper and lower bounds x1, x2, y1, and y2 for the rectangle,
and the number of trials to perform in order to produce the estimate. Your function
should use the same monte_carlo function that was used above to estimate π . Use your
estimate_integral to produce an estimate of π by measuring the area of a unit circle.

You will find it useful to have a function that returns a number chosen at random
from a given range. The following random_in_range function implements this in terms
of the math_random function used in section 1.2.6, which returns a nonnegative number
less than 1.

function random_in_range(low, high) {
const range = high - low;
return low + math_random() * range;

}

Exercise 3.6
It is useful to be able to reset a random-number generator to produce a sequence starting
from a given value. Design a new rand function that is called with an argument that is either
the string "generate" or the string "reset" and behaves as follows: rand("generate")
produces a new random number; rand("reset")(new-value) resets the internal state vari-
able to the designated new-value. Thus, by resetting the state, one can generate repeatable
sequences. These are very handy to have when testing and debugging programs that use
random numbers.

3.1.3 The Costs of Introducing Assignment
As we have seen, assignment enables us to model objects that have local state. How-
ever, this advantage comes at a price. Our programming language can no longer
be interpreted in terms of the substitution model of function application that we
introduced in section 1.1.5. Moreover, no simple model with “nice” mathematical
properties can be an adequate framework for dealing with objects and assignment in
programming languages.

So long as we do not use assignments, two evaluations of the same function with
the same arguments will produce the same result, so that functions can be viewed as
computing mathematical functions. Programming without any use of assignments,
as we did throughout the first two chapters of this book, is accordingly known as
functional programming.

3.1.3 The Costs of Introducing Assignment 203

To understand how assignment complicates matters, consider a simplified ver-
sion of the make_withdraw function of section 3.1.1 that does not bother to check
for an insufficient amount:

function make_simplified_withdraw(balance) {
return amount => {

balance = balance - amount;
return balance;

};
}

const W = make_simplified_withdraw(25);

W(20);
5

W(10);
-5

Compare this function with the following make_decrementer function, which does
not use assignment:

function make_decrementer(balance) {
return amount => balance - amount;

}

The function make_decrementer returns a function that subtracts its input from
a designated amount balance, but there is no accumulated effect over successive
calls, as with make_simplified_withdraw:

const D = make_decrementer(25);

D(20);
5

D(10);
15

We can use the substitution model to explain how make_decrementer works. For
instance, let us analyze the evaluation of the expression

make_decrementer(25)(20)

We first simplify the function expression of the application by substituting 25 for
balance in the body of make_decrementer. This reduces the expression to

(amount => 25 - amount)(20)

Now we apply the function by substituting 20 for amount in the body of the lambda
expression:

25 - 20

The final answer is 5.

204 Chapter 3 Modularity, Objects, and State

Observe, however, what happens if we attempt a similar substitution analysis
with make_simplified_withdraw:

make_simplified_withdraw(25)(20)

We first simplify the function expression by substituting 25 for balance in the body
of make_simplified_withdraw. This reduces the expression to9

(amount => {
balance = 25 - amount;
return 25;

})(20)

Now we apply the function by substituting 20 for amount in the body of the lambda
expression:

balance = 25 - 20;
return 25;

If we adhered to the substitution model, we would have to say that the meaning of
the function application is to first set balance to 5 and then return 25 as the value
of the expression. This gets the wrong answer. In order to get the correct answer,
we would have to somehow distinguish the first occurrence of balance (before the
effect of the assignment) from the second occurrence of balance (after the effect of
the assignment), and the substitution model cannot do this.

The trouble here is that substitution is based ultimately on the notion that the
name in our language are essentially symbols for values. This worked well for
constants. But a variable, whose value can change with assignment, cannot simply
be a name for a value. A variable somehow refers to a place where a value can be
stored, and the value stored at this place can change. In section 3.2 we will see how
environments play this role of “place” in our computational model.

Sameness and change
The issue surfacing here is more profound than the mere breakdown of a particular
model of computation. As soon as we introduce change into our computational
models, many notions that were previously straightforward become problematical.
Consider the concept of two things being “the same.”

Suppose we call make_decrementer twice with the same argument to create
two functions:

const D1 = make_decrementer(25);
const D2 = make_decrementer(25);

Are D1 and D2 the same? An acceptable answer is yes, because D1 and D2 have the
same computational behavior—each is a function that subtracts its input from 25. In
fact, D1 could be substituted for D2 in any computation without changing the result.

9. We don’t substitute for the occurrence of balance in the assignment because the name in
an assignment is not evaluated. If we did substitute for it, we would get 25 = 25 - amount;,
which makes no sense.

3.1.3 The Costs of Introducing Assignment 205

Contrast this with making two calls to make_simplified_withdraw:

const W1 = make_simplified_withdraw(25);
const W2 = make_simplified_withdraw(25);

Are W1 and W2 the same? Surely not, because calls to W1 and W2 have distinct effects,
as shown by the following sequence of interactions:

W1(20);
5

W1(20);
-15

W2(20);
5

Even though W1 and W2 are “equal” in the sense that they are both created by
evaluating the same expression, make_simplified_withdraw(25), it is not true
that W1 could be substituted for W2 in any expression without changing the result of
evaluating the expression.

A language that supports the concept that “equals can be substituted for equals”
in an expression without changing the value of the expression is said to be referen-
tially transparent. Referential transparency is violated when we include assignment
in our computer language. This makes it tricky to determine when we can simplify
expressions by substituting equivalent expressions. Consequently, reasoning about
programs that use assignment becomes drastically more difficult.

Once we forgo referential transparency, the notion of what it means for com-
putational objects to be “the same” becomes difficult to capture in a formal way.
Indeed, the meaning of “same” in the real world that our programs model is hardly
clear in itself. In general, we can determine that two apparently identical objects are
indeed “the same one” only by modifying one object and then observing whether
the other object has changed in the same way. But how can we tell if an object has
“changed” other than by observing the “same” object twice and seeing whether some
property of the object differs from one observation to the next? Thus, we cannot
determine “change” without some a priori notion of “sameness,” and we cannot
determine sameness without observing the effects of change.

As an example of how this issue arises in programming, consider the situation
where Peter and Paul have a bank account with $100 in it. There is a substantial
difference between modeling this as

const peter_acc = make_account(100);
const paul_acc = make_account(100);

and modeling it as

const peter_acc = make_account(100);
const paul_acc = peter_acc;

In the first situation, the two bank accounts are distinct. Transactions made by Peter
will not affect Paul’s account, and vice versa. In the second situation, however, we
have defined paul_acc to be the same thing as peter_acc. In effect, Peter and Paul

206 Chapter 3 Modularity, Objects, and State

now have a joint bank account, and if Peter makes a withdrawal from peter_acc
Paul will observe less money in paul_acc. These two similar but distinct situations
can cause confusion in building computational models. With the shared account, in
particular, it can be especially confusing that there is one object (the bank account)
that has two different names (peter_acc and paul_acc); if we are searching for all
the places in our program where paul_acc can be changed, we must remember to
look also at things that change peter_acc.10

With reference to the above remarks on “sameness” and “change,” observe that
if Peter and Paul could only examine their bank balances, and could not perform
operations that changed the balance, then the issue of whether the two accounts are
distinct would be moot. In general, so long as we never modify data objects, we can
regard a compound data object to be precisely the totality of its pieces. For example,
a rational number is determined by giving its numerator and its denominator. But
this view is no longer valid in the presence of change, where a compound data object
has an “identity” that is something different from the pieces of which it is composed.
A bank account is still “the same” bank account even if we change the balance by
making a withdrawal; conversely, we could have two different bank accounts with
the same state information. This complication is a consequence, not of our program-
ming language, but of our perception of a bank account as an object. We do not, for
example, ordinarily regard a rational number as a changeable object with identity,
such that we could change the numerator and still have “the same” rational number.

Pitfalls of imperative programming
In contrast to functional programming, programming that makes extensive use of as-
signment is known as imperative programming. In addition to raising complications
about computational models, programs written in imperative style are susceptible
to bugs that cannot occur in functional programs. For example, recall the iterative
factorial program from section 1.2.1 (here using a conditional statement instead of
a conditional expression):

function factorial(n) {
function iter(product, counter) {

if (counter > n) {
return product;

} else {
return iter(counter * product,

counter + 1);
}

}
return iter(1, 1);

}

10. The phenomenon of a single computational object being accessed by more than one name
is known as aliasing. The joint bank account situation illustrates a very simple example of an
alias. In section 3.3 we will see much more complex examples, such as “distinct” compound
data structures that share parts. Bugs can occur in our programs if we forget that a change to
an object may also, as a “side effect,” change a “different” object because the two “different”
objects are actually a single object appearing under different aliases. These so-called side-effect
bugs are so difficult to locate and to analyze that some people have proposed that programming
languages be designed in such a way as to not allow side effects or aliasing (Lampson et al. 1981;
Morris, Schmidt, and Wadler 1980).

3.1.3 The Costs of Introducing Assignment 207

Instead of passing arguments in the internal iterative loop, we could adopt a more
imperative style by using explicit assignment to update the values of the variables
product and counter:

function factorial(n) {
let product = 1;
let counter = 1;
function iter() {

if (counter > n) {
return product;

} else {
product = counter * product;
counter = counter + 1;
return iter();

}
}
return iter();

}

This does not change the results produced by the program, but it does introduce
a subtle trap. How do we decide the order of the assignments? As it happens, the
program is correct as written. But writing the assignments in the opposite order

counter = counter + 1;
product = counter * product;

would have produced a different, incorrect result. In general, programming with
assignment forces us to carefully consider the relative orders of the assignments to
make sure that each statement is using the correct version of the variables that have
been changed. This issue simply does not arise in functional programs.11

The complexity of imperative programs becomes even worse if we consider ap-
plications in which several processes execute concurrently. We will return to this in
section 3.4. First, however, we will address the issue of providing a computational
model for expressions that involve assignment, and explore the uses of objects with
local state in designing simulations.

Exercise 3.7
Consider the bank account objects created by make_account, with the password modifi-
cation described in exercise 3.3. Suppose that our banking system requires the ability to
make joint accounts. Define a function make_joint that accomplishes this. The function
make_joint should take three arguments. The first is a password-protected account. The
second argument must match the password with which the account was defined in order
for the make_joint operation to proceed. The third argument is a new password. The
function make_joint is to create an additional access to the original account using the new

11. In view of this, it is ironic that introductory programming is most often taught in a highly
imperative style. This may be a vestige of a belief, common throughout the 1960s and 1970s,
that programs that call functions must inherently be less efficient than programs that perform
assignments. (Steele (1977) debunks this argument.) Alternatively it may reflect a view that
step-by-step assignment is easier for beginners to visualize than function call. Whatever the
reason, it often saddles beginning programmers with “should I set this variable before or after
that one” concerns that can complicate programming and obscure the important ideas.

208 Chapter 3 Modularity, Objects, and State

password. For example, if peter_acc is a bank account with password "open sesame",
then

const paul_acc = make_joint(peter_acc, "open sesame", "rosebud");

will allow one to make transactions on peter_acc using the name paul_acc and the pass-
word "rosebud". You may wish to modify your solution to exercise 3.3 to accommodate
this new feature.

Exercise 3.8
When we defined the evaluation model in section 1.1.3, we said that the first step in eval-
uating an expression is to evaluate its subexpressions. But we never specified the order in
which the subexpressions should be evaluated (e.g., left to right or right to left). When
we introduce assignment, the order in which the operands of an operator combination
are evaluated can make a difference to the result. Define a simple function f such that
evaluating f(0) + f(1) will return 0 if the operands of + are evaluated from left to right
but will return 1 if the operands are evaluated from right to left.

3.2 The Environment Model of Evaluation
When we introduced compound functions in chapter 1, we used the substitution
model of evaluation (section 1.1.5) to define what is meant by applying a function
to arguments:

• To apply a compound function to arguments, evaluate the return expression of
the function (more generally, the body) with each parameter replaced by the
corresponding argument.

Once we admit assignment into our programming language, such a definition is
no longer adequate. In particular, section 3.1.3 argued that, in the presence of assign-
ment, a name cannot be considered to be merely representing a value. Rather, a name
must somehow designate a “place” in which values can be stored. In our new model
of evaluation, these places will be maintained in structures called environments.

An environment is a sequence of frames. Each frame is a table (possibly empty)
of bindings, which associate names with their corresponding values. (A single frame
may contain at most one binding for any name.) Each frame also has a pointer
to its enclosing environment, unless, for the purposes of discussion, the frame is
considered to be global. The value of a name with respect to an environment is the
value given by the binding of the name in the first frame in the environment that
contains a binding for that name. If no frame in the sequence specifies a binding for
the name, then the name is said to be unbound in the environment.

Figure 3.1 shows a simple environment structure consisting of three frames, la-
beled I, II, and III. In the diagram, A, B, C, and D are pointers to environments.
C and D point to the same environment. The names z and x are bound in frame II,
while y and x are bound in frame I. The value of x in environment D is 3. The value
of x with respect to environment B is also 3. This is determined as follows: We
examine the first frame in the sequence (frame III) and do not find a binding for x,
so we proceed to the enclosing environment D and find the binding in frame I. On
the other hand, the value of x in environment A is 7, because the first frame in the

3.2.1 The Rules for Evaluation 209

II

z: 6
x: 7

m: 1
y: 2

x: 3
y: 5

III

I

A B

C D

Figure 3.1 A simple environment structure.

sequence (frame II) contains a binding of x to 7. With respect to environment A, the
binding of x to 7 in frame II is said to shadow the binding of x to 3 in frame I.

The environment is crucial to the evaluation process, because it determines the
context in which an expression should be evaluated. Indeed, one could say that
expressions in a programming language do not, in themselves, have any meaning.
Rather, an expression acquires a meaning only with respect to some environment in
which it is evaluated. Even the interpretation of an expression as straightforward
as display(1) depends on an understanding that one is operating in a context
in which the name display refers to the primitive function that displays a value.
Thus, in our model of evaluation we will always speak of evaluating an expression
with respect to some environment. To describe interactions with the interpreter, we
will suppose that there is a global environment, consisting of a single frame (with
no enclosing environment) that includes values for the names associated with the
primitive functions. For example, the idea that display is the name for the primitive
display function is captured by saying that the name display is bound in the global
environment to the primitive display function.

Before we evaluate a program, we extend the global environment with a new
frame, the program frame, resulting in the program environment. We will add the
names that are declared at the top level of the program, outside of any block,
to this frame. The given program is then evaluated with respect to the program
environment.

3.2.1 The Rules for Evaluation
The overall specification of how the interpreter evaluates a function application
remains the same as when we first introduced it in section 1.1.4:

• To evaluate an application:
1. Evaluate the subexpressions of the application.12

12. Assignment introduces a subtlety into step 1 of the evaluation rule. As shown in exercise 3.8,
the presence of assignment allows us to write expressions that will produce different values
depending on the order in which the subexpressions in a combination are evaluated. To elim-
inate such ambiguities, JavaScript specifies left-to-right evaluation of the subexpressions of
combinations and of the argument expressions of applications.

210 Chapter 3 Modularity, Objects, and State

2. Apply the value of the function subexpression to the values of the argument
subexpressions.

The environment model of evaluation replaces the substitution model in specifying
what it means to apply a compound function to arguments.

In the environment model of evaluation, a function is always a pair consisting of
some code and a pointer to an environment. Functions are created in one way only:
by evaluating a lambda expression. This produces a function whose code is obtained
from the text of the lambda expression and whose environment is the environment
in which the lambda expression was evaluated to produce the function. For example,
consider the function declaration

function square(x) {
return x * x;

}

evaluated in the program environment. The function declaration syntax is equivalent
to an underlying implicit lambda expression. It would have been equivalent to have
used13

const square = x => x * x;

which evaluates x => x * x and binds square to the resulting value, all in the
program environment.

Figure 3.2 shows the result of evaluating this declaration statement. The global
environment encloses the program environment. To reduce clutter, after this figure
we will not display the global environment (as it is always the same), but we are
reminded of its existence by the pointer from the program environment upward. The
function object is a pair whose code specifies that the function has one parameter,
namely x, and a function body return x * x;. The environment part of the func-
tion is a pointer to the program environment, since that is the environment in which
the lambda expression was evaluated to produce the function. A new binding, which
associates the function object with the name square, has been added to the program
frame.

In general, const, function, and let add bindings to frames. Assignment is
forbidden on constants, so our environment model needs to distinguish names that
refer to constants from names that refer to variables. We indicate that a name is a
constant by writing an equal sign after the colon that follows the name. We consider
function declarations as equivalent to constant declarations;14 observe the equal
signs after the colons in figure 3.2.

Now that we have seen how functions are created, we can describe how functions
are applied. The environment model specifies: To apply a function to arguments, cre-
ate a new environment containing a frame that binds the parameters to the values of

13. Footnote 54 in chapter 1 mentions subtle differences between the two in full JavaScript,
which we will ignore in this book.

14. We mentioned in footnote 54 in chapter 1 that the full JavaScript language allows
assignment to names that are declared with function declarations.

3.2.1 The Rules for Evaluation 211

other names

square:=

program

env

parameters: x
body: return x * x;

global

env

function square(x) {
 return x * x;
}

pair:= …

other names of primitives

Figure 3.2 Environment structure produced by evaluating
function square(x) { return x * x; } in the program environment.

the arguments. The enclosing environment of this frame is the environment specified
by the function. Now, within this new environment, evaluate the function body.

To show how this rule is followed, figure 3.3 illustrates the environment structure
created by evaluating the expression square(5) in the program environment, where
square is the function generated in figure 3.2. Applying the function results in the
creation of a new environment, labeled E1 in the figure, that begins with a frame in
which x, the parameter for the function, is bound to the argument 5. Note that name
x in environment E1 is followed by a colon with no equal sign, which indicates
that the parameter x is treated as a variable.15 The pointer leading upward from this
frame shows that the frame’s enclosing environment is the program environment.
The program environment is chosen here, because this is the environment that is
indicated as part of the square function object. Within E1, we evaluate the body of
the function, return x * x;. Since the value of x in E1 is 5, the result is 5 * 5,
or 25.

The environment model of function application can be summarized by two rules:

• A function object is applied to a set of arguments by constructing a frame, binding
the parameters of the function to the arguments of the call, and then evaluating the
body of the function in the context of the new environment constructed. The new
frame has as its enclosing environment the environment part of the function object
being applied. The result of the application is the result of evaluating the return

15. This example does not make use of the fact that the parameter x is a variable, but recall the
function make_withdraw in section 3.1.1, which relied on its parameter being a variable.

212 Chapter 3 Modularity, Objects, and State

E1

return x * x;
parameters: x
body: return x * x;

square(5)

program

env

other names

square:=

x: 5

Figure 3.3 Environment created by evaluating square(5) in the program environment.

expression of the first return statement encountered while evaluating the function
body.

• A function is created by evaluating a lambda expression relative to a given envi-
ronment. The resulting function object is a pair consisting of the text of the lambda
expression and a pointer to the environment in which the function was created.

Finally, we specify the behavior of assignment, the operation that forced us
to introduce the environment model in the first place. Evaluating the expression
name = value in some environment locates the binding of the name in the environ-
ment. That is, one finds the first frame in the environment that contains a binding
for the name. If the binding is a variable binding—indicated in the frame by just
: after the name—that binding is changed to reflect the new value of the variable.
Otherwise, if the binding in the frame is a constant binding—indicated in the frame
by := after the name—the assignment signals an "assignment to constant"
error. If the name is unbound in the environment, then the assignment signals a
"variable undeclared" error.

These evaluation rules, though considerably more complex than the substitution
model, are still reasonably straightforward. Moreover, the evaluation model, though
abstract, provides a correct description of how the interpreter evaluates expressions.
In chapter 4 we shall see how this model can serve as a blueprint for implementing
a working interpreter. The following sections elaborate the details of the model by
analyzing some illustrative programs.

3.2.2 Applying Simple Functions
When we introduced the substitution model in section 1.1.5 we showed how the
application f(5) evaluates to 136, given the following function declarations:

3.2.2 Applying Simple Functions 213

square:=

sum_of_squares:=

f:=
program

env

parameters: x
body: return x * x;

parameters: x, y
body: return square(x) +

parameters: a
body: return sum_of_squares(a + 1, a + 2);

 square(y);

Figure 3.4 Function objects in the program frame.

function square(x) {
return x * x;

}
function sum_of_squares(x, y) {

return square(x) + square(y);
}
function f(a) {

return sum_of_squares(a + 1, a * 2);
}

We can analyze the same example using the environment model. Figure 3.4 shows
the three function objects created by evaluating the definitions of f, square, and
sum_of_squares in the program environment. Each function object consists of
some code, together with a pointer to the program environment.

In figure 3.5 we see the environment structure created by evaluating the expres-
sion f(5). The call to f creates a new environment, E1, beginning with a frame in
which a, the parameter of f, is bound to the argument 5. In E1, we evaluate the body
of f:

return sum_of_squares(a + 1, a * 2);

To evaluate the return statement, we first evaluate the subexpressions of the return
expression. The first subexpression, sum_of_squares, has a value that is a function
object. (Notice how this value is found: We first look in the first frame of E1, which
contains no binding for sum_of_squares. Then we proceed to the enclosing envi-
ronment, i.e., the program environment, and find the binding shown in figure 3.4.)

214 Chapter 3 Modularity, Objects, and State

The other two subexpressions are evaluated by applying the primitive operations
+ and * to evaluate the two combinations a + 1 and a * 2 to obtain 6 and 10,
respectively.

Now we apply the function object sum_of_squares to the arguments 6 and 10.
This results in a new environment, E2, in which the parameters x and y are bound to
the arguments. Within E2 we evaluate the statement

return square(x) + square(y);

This leads us to evaluate square(x), where square is found in the program frame
and x is 6. Once again, we set up a new environment, E3, in which x is bound
to 6, and within this we evaluate the body of square, which is return x * x;.
Also as part of applying sum_of_squares, we must evaluate the subexpression
square(y), where y is 10. This second call to square creates another environment,
E4, in which x, the parameter of square, is bound to 10. And within E4 we must
evaluate return x * x;.

The important point to observe is that each call to square creates a new envi-
ronment containing a binding for x. We can see here how the different frames serve
to keep separate the different local variables all named x. Notice that each frame
created by square points to the program environment, since this is the environment
indicated by the square function object.

After the subexpressions are evaluated, the results are returned. The values gen-
erated by the two calls to square are added by sum_of_squares, and this result
is returned by f. Since our focus here is on the environment structures, we will not
dwell on how these returned values are passed from call to call; however, this is also
an important aspect of the evaluation process, and we will return to it in detail in
chapter 5.

Exercise 3.9
In section 1.2.1 we used the substitution model to analyze two functions for computing
factorials, a recursive version

function factorial(n) {
return n === 1

? 1
: n * factorial(n - 1);

}

and an iterative version

function factorial(n) {
return fact_iter(1, 1, n);

}
function fact_iter(product, counter, max_count) {

return counter > max_count
? product
: fact_iter(counter * product,

counter + 1,
max_count);

}

3.2.3 Frames as the Repository of Local State 215

x * x

x: 10
E4

x * x

x: 6
E3

square(x)

x: 6
y: 10

E2

sum_of_squares(

a: 5
E1

f(5)

program

env

+
square(y)

 a + 1, a * 2)

Figure 3.5 Environments created by evaluating f(5) using the functions in figure 3.4.

Show the environment structures created by evaluating factorial(6) using each version
of the factorial function.16

3.2.3 Frames as the Repository of Local State
We can turn to the environment model to see how functions and assignment can be
used to represent objects with local state. As an example, consider the “withdrawal
processor” from section 3.1.1 created by calling the function

function make_withdraw(balance) {
return amount => {

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {
return "insufficient funds";

}
};

}

Let us describe the evaluation of

const W1 = make_withdraw(100);

followed by

W1(50);
50

16. The environment model will not clarify our claim in section 1.2.1 that the interpreter can
execute a function such as fact_iter in a constant amount of space using tail recursion. We will
discuss tail recursion when we deal with the control structure of the interpreter in section 5.4.

216 Chapter 3 Modularity, Objects, and State

program

env make_withdraw:=

parameters: balance
body: return amount => {

 if (balance >= amount) {
 balance = balance - amount;
 return balance;
 } else {
 return "insufficient funds";
 }
 };

Figure 3.6 Result of defining make_withdraw in the program environment.

Figure 3.6 shows the result of declaring the make_withdraw function in the program
environment. This produces a function object that contains a pointer to the program
environment. So far, this is no different from the examples we have already seen,
except that the return expression in the body of the function is itself a lambda
expression.

The interesting part of the computation happens when we apply the function
make_withdraw to an argument:

const W1 = make_withdraw(100);

We begin, as usual, by setting up an environment E1 in which the parameter
balance is bound to the argument 100. Within this environment, we evaluate the
body of make_withdraw, namely the return statement whose return expression is
a lambda expression. The evaluation of this lambda expression constructs a new
function object, whose code is as specified by the lambda expression and whose
environment is E1, the environment in which the lambda expression was evaluated
to produce the function. The resulting function object is the value returned by the
call to make_withdraw. This is bound to W1 in the program environment, since the
constant declaration itself is being evaluated in the program environment. Figure 3.7
shows the resulting environment structure.

Now we can analyze what happens when W1 is applied to an argument:

W1(50);
50

We begin by constructing a frame in which amount, the parameter of W1, is bound to
the argument 50. The crucial point to observe is that this frame has as its enclosing

3.2.3 Frames as the Repository of Local State 217

E1

make_withdraw:=

W1:=
program

env

balance: 100

parameters: balance
body: …parameters: amount

body: if (balance >= amount) {
 balance = balance - amount;
 return balance;
 } else {
 return "insufficient funds";
 }

Figure 3.7 Result of evaluating const W1 = make_withdraw(100);.

environment not the program environment, but rather the environment E1, because
this is the environment that is specified by the W1 function object. Within this new
environment, we evaluate the body of the function:

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {
return "insufficient funds";

}

The resulting environment structure is shown in figure 3.8. The expression being
evaluated references both amount and balance. The variable amount will be found
in the first frame in the environment, and balance will be found by following the
enclosing-environment pointer to E1.

When the assignment is executed, the binding of balance in E1 is changed. At
the completion of the call to W1, balance is 50, and the frame that contains balance
is still pointed to by the function object W1. The frame that binds amount (in which
we executed the code that changed balance) is no longer relevant, since the function
call that constructed it has terminated, and there are no pointers to that frame from
other parts of the environment. The next time W1 is called, this will build a new
frame that binds amount and whose enclosing environment is E1. We see that E1
serves as the “place” that holds the local state variable for the function object W1.
Figure 3.9 shows the situation after the call to W1.

218 Chapter 3 Modularity, Objects, and State

E1

make_withdraw:= ...

W1:=

balance: 100

amount: 50

if (balance >= amount) {
 balance = balance - amount;
 return balance;
} else {
 return "insufficient funds";
}

parameters: amount
body: …

E1

make_withdraw:= …

W1:=
program

env

balance: 100

amount: 50

Here is the balance

that will be changed

by the assignment

Figure 3.8 Environments created by applying the function object W1.

E1

make_withdraw:= …

W1:=

program

env

balance: 50

parameters: amount
body: …

Figure 3.9 Environments after the call to W1.

Observe what happens when we create a second “withdraw” object by making
another call to make_withdraw:

const W2 = make_withdraw(100);

This produces the environment structure of figure 3.10, which shows that W2 is a
function object, that is, a pair with some code and an environment. The environment
E2 for W2 was created by the call to make_withdraw. It contains a frame with its

3.2.3 Frames as the Repository of Local State 219

E1

W2:=

W1:=
program

env

balance: 50

parameters: amount
body: …

E2 balance: 100

make_withdraw:= …

Figure 3.10 Using const W2 = make_withdraw(100); to create a second object.

own local binding for balance. On the other hand, W1 and W2 have the same code:
the code specified by the lambda expression in the body of make_withdraw.17 We
see here why W1 and W2 behave as independent objects. Calls to W1 reference the
state variable balance stored in E1, whereas calls to W2 reference the balance
stored in E2. Thus, changes to the local state of one object do not affect the other
object.

Exercise 3.10
In the make_withdraw function the local variable balance is created as a parameter of
make_withdraw. We could also create the local state variable separately, using what we
might call an immediately invoked lambda expression as follows:

function make_withdraw(initial_amount) {
return (balance =>

amount => {
if (balance >= amount) {

balance = balance - amount;
return balance;

} else {
return "insufficient funds";

}
})(initial_amount);

}

17. Whether W1 and W2 share the same physical code stored in the computer, or whether they
each keep a copy of the code, is a detail of the implementation. For the interpreter we implement
in chapter 4, the code is in fact shared.

220 Chapter 3 Modularity, Objects, and State

The outer lambda expression is invoked immediately after it is evaluated. Its only purpose
is to create a local variable balance and initialize it to initial_amount. Use the environ-
ment model to analyze this alternate version of make_withdraw, drawing figures like the
ones above to illustrate the interactions

const W1 = make_withdraw(100);

W1(50);

const W2 = make_withdraw(100);

Show that the two versions of make_withdraw create objects with the same behavior. How
do the environment structures differ for the two versions?

3.2.4 Internal Declarations
In this section we handle the evaluation of function bodies or other blocks (such as
the branches of conditional statements) that contain declarations. Each block opens
a new scope for names declared in the block. In order to evaluate a block in a given
environment, we extend that environment by a new frame that contains all names
declared directly (that is, outside of nested blocks) in the body of the block and then
evaluate the body in the newly constructed environment.

Section 1.1.8 introduced the idea that functions can have internal declarations,
thus leading to a block structure as in the following function to compute square
roots:

function sqrt(x) {
function is_good_enough(guess) {

return abs(square(guess) - x) < 0.001;
}
function improve(guess) {

return average(guess, x / guess);
}
function sqrt_iter(guess){

return is_good_enough(guess)
? guess
: sqrt_iter(improve(guess));

}
return sqrt_iter(1);

}

Now we can use the environment model to see why these internal declarations be-
have as desired. Figure 3.11 shows the point in the evaluation of the expression
sqrt(2) where the internal function is_good_enough has been called for the first
time with guess equal to 1.

Observe the structure of the environment. The name sqrt is bound in the pro-
gram environment to a function object whose associated environment is the program
environment. When sqrt was called, a new environment, E1, was formed, subor-
dinate to the program environment, in which the parameter x is bound to 2. The
body of sqrt was then evaluated in E1. That body is a block with local function
declarations and therefore E1 was extended with a new frame for those declarations,
resulting in the new environment E2. The body of the block was then evaluated in
E2. Since the first statement in the body is

3.2.4 Internal Declarations 221

program
env

sqrt:=

E2

x: 2

is_good_enough:=
improve:= …

sqrt_iter:= …

guess: 1

guess: 1

call to sqrt_iter

E3

call to is_good_enough

E4

parameters: guess
body: return abs(…) < …;

E1

parameters: x
body:

function is_good_enough …
function improve …

function sqrt_iter …

return sqrt_iter(1);

Figure 3.11 The sqrt function with internal declarations.

function is_good_enough(guess) {
return abs(square(guess) - x) < 0.001;

}

evaluating this declaration created the function is_good_enough in the environ-
ment E2. To be more precise, the name is_good_enough in the first frame of E2 was
bound to a function object whose associated environment is E2. Similarly, improve
and sqrt_iter were defined as functions in E2. For conciseness, figure 3.11 shows
only the function object for is_good_enough.

After the local functions were defined, the expression sqrt_iter(1) was eval-
uated, still in environment E2. So the function object bound to sqrt_iter in E2
was called with 1 as an argument. This created an environment E3 in which guess,
the parameter of sqrt_iter, is bound to 1. The function sqrt_iter in turn called

222 Chapter 3 Modularity, Objects, and State

is_good_enough with the value of guess (from E3) as the argument for is_good_
enough. This set up another environment, E4, in which guess (the parameter of
is_good_enough) is bound to 1. Although sqrt_iter and is_good_enough both
have a parameter named guess, these are two distinct local variables located in dif-
ferent frames. Also, E3 and E4 both have E2 as their enclosing environment, because
the sqrt_iter and is_good_enough functions both have E2 as their environment
part. One consequence of this is that the name x that appears in the body of is_
good_enough will reference the binding of x that appears in E1, namely the value
of x with which the original sqrt function was called.

The environment model thus explains the two key properties that make local
function declarations a useful technique for modularizing programs:

• The names of the local functions do not interfere with names external to the
enclosing function, because the local function names will be bound in the frame
that the block creates when it is evaluated, rather than being bound in the program
environment.

• The local functions can access the arguments of the enclosing function, simply
by using parameter names as free names. This is because the body of the lo-
cal function is evaluated in an environment that is subordinate to the evaluation
environment for the enclosing function.

Exercise 3.11
In section 3.2.3 we saw how the environment model described the behavior of functions
with local state. Now we have seen how internal declarations work. A typical message-
passing function contains both of these aspects. Consider the bank account function of
section 3.1.1:

function make_account(balance) {
function withdraw(amount) {

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}
function deposit(amount) {

balance = balance + amount;
return balance;

}
function dispatch(m) {

return m === "withdraw"
? withdraw
: m === "deposit"
? deposit
: error(m, "Unknown request: make_account");

}
return dispatch;

}

3.2.4 Internal Declarations 223

Show the environment structure generated by the sequence of interactions

const acc = make_account(50);

acc("deposit")(40);
90

acc("withdraw")(60);
30

Where is the local state for acc kept? Suppose we define another account

const acc2 = make_account(100);

How are the local states for the two accounts kept distinct? Which parts of the environment
structure are shared between acc and acc2?

More about blocks
As we saw, the scope of the names declared in sqrt is the whole body of sqrt. This
explains why mutual recursion works, as in this (quite wasteful) way of checking
whether a nonnegative integer is even.

function f(x) {
function is_even(n) {

return n === 0
? true
: is_odd(n - 1);

}
function is_odd(n) {

return n === 0
? false
: is_even(n - 1);

}
return is_even(x);

}

At the time when is_even is called during a call to f, the environment diagram
looks like the one in figure 3.11 when sqrt_iter is called. The functions is_even
and is_odd are bound in E2 to function objects that point to E2 as the environment
in which to evaluate calls to those functions. Thus is_odd in the body of is_even
refers to the right function. Although is_odd is defined after is_even, this is no
different from how in the body of sqrt_iter the name improve and the name
sqrt_iter itself refer to the right functions.

Equipped with a way to handle declarations within blocks, we can revisit decla-
rations of names at the top level. In section 3.2.1, we saw that the names declared at
the top level are added to the program frame. A better explanation is that the whole
program is placed in an implicit block, which is evaluated in the global environment.
The treatment of blocks described above then handles the top level: The global
environment is extended by a frame that contains the bindings of all names declared
in the implicit block. That frame is the program frame and the resulting environment
is the program environment.

224 Chapter 3 Modularity, Objects, and State

We said that a block’s body is evaluated in an environment that contains all
names declared directly in the body of the block. A locally declared name is put into
the environment when the block is entered, but without an associated value. The
evaluation of its declaration during evaluation of the block body then assigns to the
name the result of evaluating the expression to the right of the =, as if the declaration
were an assignment. Since the addition of the name to the environment is separate
from the evaluation of the declaration, and the whole block is in the scope of the
name, an erroneous program could attempt to access the value of a name before its
declaration is evaluated; the evaluation of an unassigned name signals an error.18

3.3 Modeling with Mutable Data
Chapter 2 dealt with compound data as a means for constructing computational
objects that have several parts, in order to model real-world objects that have several
aspects. In that chapter we introduced the discipline of data abstraction, according
to which data structures are specified in terms of constructors, which create data
objects, and selectors, which access the parts of compound data objects. But we now
know that there is another aspect of data that chapter 2 did not address. The desire to
model systems composed of objects that have changing state leads us to the need to
modify compound data objects, as well as to construct and select from them. In order
to model compound objects with changing state, we will design data abstractions to
include, in addition to selectors and constructors, operations called mutators, which
modify data objects. For instance, modeling a banking system requires us to change
account balances. Thus, a data structure for representing bank accounts might admit
an operation

set_balance(account, new-value)

that changes the balance of the designated account to the designated new value. Data
objects for which mutators are defined are known as mutable data objects.

Chapter 2 introduced pairs as a general-purpose “glue” for synthesizing com-
pound data. We begin this section by defining basic mutators for pairs, so that pairs
can serve as building blocks for constructing mutable data objects. These mutators
greatly enhance the representational power of pairs, enabling us to build data struc-
tures other than the sequences and trees that we worked with in section 2.2. We also
present some examples of simulations in which complex systems are modeled as
collections of objects with local state.

3.3.1 Mutable List Structure
The basic operations on pairs—pair, head, and tail—can be used to construct list
structure and to select parts from list structure, but they are incapable of modifying
list structure. The same is true of the list operations we have used so far, such as

18. This explains why the program in footnote 56 of chapter 1 goes wrong. The time between
creating the binding for a name and evaluating the declaration of the name is called the temporal
dead zone (TDZ).

3.3.1 Mutable List Structure 225

"c" "d"

y

x

"e" "f"

"a" "b"

Figure 3.12 Lists x: list(list("a", "b"), "c", "d") and y: list("e", "f").

"c" "d"

y

x

"e" "f"

"a" "b"

Figure 3.13 Effect of set_head(x, y) on the lists in figure 3.12.

append and list, since these can be defined in terms of pair, head, and tail. To
modify list structures we need new operations.

The primitive mutators for pairs are set_head and set_tail. The function
set_head takes two arguments, the first of which must be a pair. It modifies this
pair, replacing the head pointer by a pointer to the second argument of set_head.19

As an example, suppose that x is bound to list(list("a", "b"), "c", "d")
and y to list("e", "f") as illustrated in figure 3.12. Evaluating the expression
set_head(x, y) modifies the pair to which x is bound, replacing its head by
the value of y. The result of the operation is shown in figure 3.13. The structure x
has been modified and is now equivalent to list(list("e", "f"), "c", "d").
The pairs representing the list list("a", "b"), identified by the pointer that was
replaced, are now detached from the original structure.20

19. The functions set_head and set_tail return the value undefined. They should be used
only for their effect.

20. We see from this that mutation operations on lists can create “garbage” that is not part
of any accessible structure. We will see in section 5.3.2 that JavaScript memory-management
systems include a garbage collector, which identifies and recycles the memory space used by
unneeded pairs.

226 Chapter 3 Modularity, Objects, and State

"c" "d"

y

x

"e" "f"

"a" "b"

z

Figure 3.14 Effect of const z = pair(y, tail(x)); on the lists in figure 3.12.

"c" "d"

y

x

"e" "f"

"a" "b"

Figure 3.15 Effect of set_tail(x, y) on the lists in figure 3.12.

Compare figure 3.13 with figure 3.14, which illustrates the result of executing

const z = pair(y, tail(x));

with x and y bound to the original lists of figure 3.12. The name z is now bound to
a new pair created by the pair operation; the list to which x is bound is unchanged.

The set_tail operation is similar to set_head. The only difference is that the
tail pointer of the pair, rather than the head pointer, is replaced. The effect of
executing set_tail(x, y) on the lists of figure 3.12 is shown in figure 3.15. Here
the tail pointer of x has been replaced by the pointer to list("e", "f"). Also,
the list list("c", "d"), which used to be the tail of x, is now detached from the
structure.

The function pair builds new list structure by creating new pairs, whereas set_
head and set_tail modify existing pairs. Indeed, we could implement pair in
terms of the two mutators, together with a function get_new_pair, which returns
a new pair that is not part of any existing list structure. We obtain the new pair, set
its head and tail pointers to the designated objects, and return the new pair as the
result of the pair.21

21. Section 5.3.1 will show how a memory-management system can implement get_new_pair.

3.3.1 Mutable List Structure 227

function pair(x, y) {
const fresh = get_new_pair();
set_head(fresh, x);
set_tail(fresh, y);
return fresh;

}

Exercise 3.12
The following function for appending lists was introduced in section 2.2.1:

function append(x, y) {
return is_null(x)

? y
: pair(head(x), append(tail(x), y));

}

The function append forms a new list by successively adjoining the elements of x to the
front of y. The function append_mutator is similar to append, but it is a mutator rather
than a constructor. It appends the lists by splicing them together, modifying the final pair
of x so that its tail is now y. (It is an error to call append_mutator with an empty x.)

function append_mutator(x, y) {
set_tail(last_pair(x), y);
return x;

}

Here last_pair is a function that returns the last pair in its argument:

function last_pair(x) {
return is_null(tail(x))

? x
: last_pair(tail(x));

}

Consider the interaction

const x = list("a", "b");

const y = list("c", "d");

const z = append(x, y);

z;
["a", ["b", ["c", ["d, null]]]]

tail(x);
response

const w = append_mutator(x, y);

w;
["a", ["b", ["c", ["d", null]]]]

tail(x);
response

What are the missing responses? Draw box-and-pointer diagrams to explain your answer.

228 Chapter 3 Modularity, Objects, and State

Exercise 3.13
Consider the following make_cycle function, which uses the last_pair function defined
in exercise 3.12:

function make_cycle(x) {
set_tail(last_pair(x), x);
return x;

}

Draw a box-and-pointer diagram that shows the structure z created by

const z = make_cycle(list("a", "b", "c"));

What happens if we try to compute last_pair(z)?

Exercise 3.14
The following function is quite useful, although obscure:

function mystery(x) {
function loop(x, y) {

if (is_null(x)) {
return y;

} else {
const temp = tail(x);
set_tail(x, y);
return loop(temp, x);

}
}
return loop(x, null);

}

The function loop uses the “temporary” name temp to hold the old value of the tail of x,
since the set_tail on the next line destroys the tail. Explain what mystery does in
general. Suppose v is defined by

const v = list("a", "b", "c", "d");

Draw the box-and-pointer diagram that represents the list to which v is bound. Suppose
that we now evaluate

const w = mystery(v);

Draw box-and-pointer diagrams that show the structures v and w after evaluating this
program. What would be printed as the values of v and w?

Sharing and identity
We mentioned in section 3.1.3 the theoretical issues of “sameness” and “change”
raised by the introduction of assignment. These issues arise in practice when in-
dividual pairs are shared among different data objects. For example, consider the
structure formed by

const x = list("a", "b");
const z1 = pair(x, x);

3.3.1 Mutable List Structure 229

z1

x "a" "b"

Figure 3.16 The list z1 formed by pair(x, x).

z2 "a" "b"

"a" "b"

Figure 3.17 The list z2 formed by pair(list("a", "b"), list("a", "b")).

As shown in figure 3.16, z1 is a pair whose head and tail both point to the same
pair x. This sharing of x by the head and tail of z1 is a consequence of the straight-
forward way in which pair is implemented. In general, using pair to construct lists
will result in an interlinked structure of pairs in which many individual pairs are
shared by many different structures.

In contrast to figure 3.16, figure 3.17 shows the structure created by

const z2 = pair(list("a", "b"), list("a", "b"));

In this structure, the pairs in the two list("a", "b") lists are distinct, although
they contain the same strings.22

When thought of as a list, z1 and z2 both represent “the same” list:

list(list("a", "b"), "a", "b")

In general, sharing is completely undetectable if we operate on lists using only pair,
head, and tail. However, if we allow mutators on list structure, sharing becomes
significant. As an example of the difference that sharing can make, consider the
following function, which modifies the head of the structure to which it is applied:

function set_to_wow(x) {
set_head(head(x), "wow");
return x;

}

22. The two pairs are distinct because each call to pair returns a new pair. The strings are “the
same” in the sense that they are primitive data (just like numbers) that are composed of the
same characters in the same order. Since JavaScript provides no way to mutate a string, any
sharing that the designers of a JavaScript interpreter might decide to implement for strings is
undetectable. We consider primitive data such as numbers, booleans, and strings to be identical
if and only if they are indistinguishable.

230 Chapter 3 Modularity, Objects, and State

Even though z1 and z2 are “the same” structure, applying set_to_wow to them
yields different results. With z1, altering the head also changes the tail, because
in z1 the head and the tail are the same pair. With z2, the head and tail are
distinct, so set_to_wow modifies only the head:

z1;
[["a", ["b", null]], ["a", ["b", null]]]

set_to_wow(z1);
[["wow", ["b", null]], ["wow", ["b", null]]]

z2;
[["a", ["b", null]], ["a", ["b", null]]]

set_to_wow(z2);
[["wow", ["b", null]], ["a", ["b", null]]]

One way to detect sharing in list structures is to use the primitive predicate ===,
which we introduced in section 1.1.6 to test whether two numbers are equal and
extended in section 2.3.1 to test whether two strings are equal. When applied to
two nonprimitive values, x === y tests whether x and y are the same object (that is,
whether x and y are equal as pointers). Thus, with z1 and z2 as defined in figure 3.16
and 3.17, head(z1) === tail(z1) is true and head(z2) === tail(z2) is false.

As will be seen in the following sections, we can exploit sharing to greatly ex-
tend the repertoire of data structures that can be represented by pairs. On the other
hand, sharing can also be dangerous, since modifications made to structures will
also affect other structures that happen to share the modified parts. The mutation op-
erations set_head and set_tail should be used with care; unless we have a good
understanding of how our data objects are shared, mutation can have unanticipated
results.23

Exercise 3.15
Draw box-and-pointer diagrams to explain the effect of set_to_wow on the structures z1
and z2 above.

23. The subtleties of dealing with sharing of mutable data objects reflect the underlying is-
sues of “sameness” and “change” that were raised in section 3.1.3. We mentioned there that
admitting change to our language requires that a compound object must have an “identity” that
is something different from the pieces from which it is composed. In JavaScript, we consider
this “identity” to be the quality that is tested by ===, i.e., by equality of pointers. Since in
most JavaScript implementations a pointer is essentially a memory address, we are “solving
the problem” of defining the identity of objects by stipulating that a data object “itself” is the
information stored in some particular set of memory locations in the computer. This suffices for
simple JavaScript programs, but is hardly a general way to resolve the issue of “sameness” in
computational models.

3.3.1 Mutable List Structure 231

Exercise 3.16
Ben Bitdiddle decides to write a function to count the number of pairs in any list structure.
“It’s easy,” he reasons. “The number of pairs in any structure is the number in the head
plus the number in the tail plus one more to count the current pair.” So Ben writes the
following function

function count_pairs(x) {
return ! is_pair(x)

? 0
: count_pairs(head(x)) +

count_pairs(tail(x)) +
1;

}

Show that this function is not correct. In particular, draw box-and-pointer diagrams rep-
resenting list structures made up of exactly three pairs for which Ben’s function would
return 3; return 4; return 7; never return at all.

Exercise 3.17
Devise a correct version of the count_pairs function of exercise 3.16 that returns the num-
ber of distinct pairs in any structure. (Hint: Traverse the structure, maintaining an auxiliary
data structure that is used to keep track of which pairs have already been counted.)

Exercise 3.18
Write a function that examines a list and determines whether it contains a cycle, that is,
whether a program that tried to find the end of the list by taking successive tails would
go into an infinite loop. Exercise 3.13 constructed such lists.

Exercise 3.19
Redo exercise 3.18 using an algorithm that takes only a constant amount of space. (This
requires a very clever idea.)

Mutation is just assignment
When we introduced compound data, we observed in section 2.1.3 that pairs can be
represented purely in terms of functions:

function pair(x, y) {
function dispatch(m) {

return m === "head"
? x
: m === "tail"
? y
: error(m, "undefined operation -- pair");

}
return dispatch;

}
function head(z) { return z("head"); }
function tail(z) { return z("tail"); }

232 Chapter 3 Modularity, Objects, and State

The same observation is true for mutable data. We can implement mutable data
objects as functions using assignment and local state. For instance, we can extend
the above pair implementation to handle set_head and set_tail in a manner
analogous to the way we implemented bank accounts using make_account in
section 3.1.1:

function pair(x, y) {
function set_x(v) { x = v; }
function set_y(v) { y = v; }
return m => m === "head"

? x
: m === "tail"
? y
: m === "set_head"
? set_x
: m === "set_tail"
? set_y
: error(m, "undefined operation -- pair");

}
function head(z) { return z("head"); }
function tail(z) { return z("tail"); }
function set_head(z, new_value) {

z("set_head")(new_value);
return z;

}
function set_tail(z, new_value) {

z("set_tail")(new_value);
return z;

}

Assignment is all that is needed, theoretically, to account for the behavior of
mutable data. As soon as we admit assignment to our language, we raise all the
issues, not only of assignment, but of mutable data in general.24

Exercise 3.20
Draw environment diagrams to illustrate the evaluation of the sequence of statements

const x = pair(1, 2);
const z = pair(x, x);
set_head(tail(z), 17);

head(x);
17

using the functional implementation of pairs given above. (Compare exercise 3.11.)

24. On the other hand, from the viewpoint of implementation, assignment requires us to modify
the environment, which is itself a mutable data structure. Thus, assignment and mutation are
equipotent: Each can be implemented in terms of the other.

3.3.2 Representing Queues 233

Operation Resulting Queue

const q = make_queue();

insert_queue(q, "a"); a

insert_queue(q, "b"); a b

delete_queue(q); b

insert_queue(q, "c"); b c

insert_queue(q, "d"); b c d

delete_queue(q); c d

Figure 3.18 Queue operations.

3.3.2 Representing Queues
The mutators set_head and set_tail enable us to use pairs to construct data
structures that cannot be built with pair, head, and tail alone. This section shows
how to use pairs to represent a data structure called a queue. Section 3.3.3 will show
how to represent data structures called tables.

A queue is a sequence in which items are inserted at one end (called the rear of
the queue) and deleted from the other end (the front). Figure 3.18 shows an initially
empty queue in which the items a and b are inserted. Then a is removed, c and d are
inserted, and b is removed. Because items are always removed in the order in which
they are inserted, a queue is sometimes called a FIFO (first in, first out) buffer.

In terms of data abstraction, we can regard a queue as defined by the following
set of operations:

• a constructor:
make_queue()
returns an empty queue (a queue containing no items).

• a predicate:
is_empty_queue(queue)
tests if the queue is empty.

• a selector:
front_queue(queue)
returns the object at the front of the queue, signaling an error if the queue is empty;
it does not modify the queue.

• two mutators:
insert_queue(queue, item)
inserts the item at the rear of the queue and returns the modified queue as its value.

234 Chapter 3 Modularity, Objects, and State

"c"

front_ptr

q

"a" "b"

rear_ptr

Figure 3.19 Implementation of a queue as a list with front and rear pointers.

delete_queue(queue)
removes the item at the front of the queue and returns the modified queue as its
value, signaling an error if the queue is empty before the deletion.

Because a queue is a sequence of items, we could certainly represent it as an
ordinary list; the front of the queue would be the head of the list, inserting an item
in the queue would amount to appending a new element at the end of the list, and
deleting an item from the queue would just be taking the tail of the list. However,
this representation is inefficient, because in order to insert an item we must scan
the list until we reach the end. Since the only method we have for scanning a list
is by successive tail operations, this scanning requires Θ(n) steps for a list of n
items. A simple modification to the list representation overcomes this disadvantage
by allowing the queue operations to be implemented so that they require Θ(1) steps;
that is, so that the number of steps needed is independent of the length of the queue.

The difficulty with the list representation arises from the need to scan to find the
end of the list. The reason we need to scan is that, although the standard way of rep-
resenting a list as a chain of pairs readily provides us with a pointer to the beginning
of the list, it gives us no easily accessible pointer to the end. The modification that
avoids the drawback is to represent the queue as a list, together with an additional
pointer that indicates the final pair in the list. That way, when we go to insert an
item, we can consult the rear pointer and so avoid scanning the list.

A queue is represented, then, as a pair of pointers, front_ptr and rear_ptr,
which indicate, respectively, the first and last pairs in an ordinary list. Since we
would like the queue to be an identifiable object, we can use pair to combine the
two pointers. Thus, the queue itself will be the pair of the two pointers. Figure 3.19
illustrates this representation.

To define the queue operations we use the following functions, which enable us
to select and to modify the front and rear pointers of a queue:

function front_ptr(queue) { return head(queue); }
function rear_ptr(queue) { return tail(queue); }
function set_front_ptr(queue, item) { set_head(queue, item); }
function set_rear_ptr(queue, item) { set_tail(queue, item); }

Now we can implement the actual queue operations. We will consider a queue
to be empty if its front pointer is the empty list:

function is_empty_queue(queue) { return is_null(front_ptr(queue)); }

3.3.2 Representing Queues 235

front_ptr

q

"a" "b"

rear_ptr

"c" "d"

Figure 3.20 Result of using insert_queue(q, "d") on the queue of figure 3.19.

The make_queue constructor returns, as an initially empty queue, a pair whose head
and tail are both the empty list:

function make_queue() { return pair(null, null); }

To select the item at the front of the queue, we return the head of the pair indicated
by the front pointer:

function front_queue(queue) {
return is_empty_queue(queue)

? error(queue, "front_queue called with an empty queue")
: head(front_ptr(queue));

}

To insert an item in a queue, we follow the method whose result is indicated in
figure 3.20. We first create a new pair whose head is the item to be inserted and
whose tail is the empty list. If the queue was initially empty, we set the front and
rear pointers of the queue to this new pair. Otherwise, we modify the final pair in
the queue to point to the new pair, and also set the rear pointer to the new pair.

function insert_queue(queue, item) {
const new_pair = pair(item, null);
if (is_empty_queue(queue)) {

set_front_ptr(queue, new_pair);
set_rear_ptr(queue, new_pair);

} else {
set_tail(rear_ptr(queue), new_pair);
set_rear_ptr(queue, new_pair);

}
return queue;

}

To delete the item at the front of the queue, we merely modify the front pointer so
that it now points at the second item in the queue, which can be found by following
the tail pointer of the first item (see figure 3.21):25

25. If the first item is the final item in the queue, the front pointer will be the empty list after
the deletion, which will mark the queue as empty; we needn’t worry about updating the rear
pointer, which will still point to the deleted item, because is_empty_queue looks only at the
front pointer.

236 Chapter 3 Modularity, Objects, and State

front_ptr

q

"a" "b"

rear_ptr

"c" "d"

Figure 3.21 Result of using delete_queue(q) on the queue of figure 3.20.

function delete_queue(queue) {
if (is_empty_queue(queue)) {

error(queue, "delete_queue called with an empty queue");
} else {

set_front_ptr(queue, tail(front_ptr(queue)));
return queue;

}
}

Exercise 3.21
Ben Bitdiddle decides to test the queue implementation described above. He types in the
functions to the JavaScript interpreter and proceeds to try them out:

const q1 = make_queue();

insert_queue(q1, "a");
[["a", null], ["a", null]]

insert_queue(q1, "b");
[["a", ["b", null]], ["b", null]]

delete_queue(q1);
[["b", null], ["b", null]]

delete_queue(q1);
[null, ["b", null]]

“It’s all wrong!” he complains. “The interpreter’s response shows that the last item is in-
serted into the queue twice. And when I delete both items, the second b is still there, so
the queue isn’t empty, even though it’s supposed to be.” Eva Lu Ator suggests that Ben has
misunderstood what is happening. “It’s not that the items are going into the queue twice,”
she explains. “It’s just that the standard JavaScript printer doesn’t know how to make sense
of the queue representation. If you want to see the queue printed correctly, you’ll have
to define your own print function for queues.” Explain what Eva Lu is talking about. In
particular, show why Ben’s examples produce the printed results that they do. Define a
function print_queue that takes a queue as input and prints the sequence of items in the
queue.

3.3.3 Representing Tables 237

Exercise 3.22
Instead of representing a queue as a pair of pointers, we can build a queue as a function
with local state. The local state will consist of pointers to the beginning and the end of an
ordinary list. Thus, the make_queue function will have the form

function make_queue() {
let front_ptr = . . .;
let rear_ptr = . . .;
〈declarations of internal functions〉
function dispatch(m) {. . .}
return dispatch;

}

Complete the definition of make_queue and provide implementations of the queue opera-
tions using this representation.

Exercise 3.23
A deque (“double-ended queue”) is a sequence in which items can be inserted and deleted
either at the front or at the rear. Operations on deques are the constructor make_deque,
the predicate is_empty_deque, selectors front_deque and rear_deque, and mutators
front_insert_deque, front_delete_deque, rear_insert_deque, and rear_delete_
deque. Show how to represent deques using pairs, and give implementations of the
operations.26 All operations should be accomplished in Θ(1) steps.

3.3.3 Representing Tables
When we studied various ways of representing sets in chapter 2, we mentioned in
section 2.3.3 the task of maintaining a table of records indexed by identifying keys.
In the implementation of data-directed programming in section 2.4.3, we made ex-
tensive use of two-dimensional tables, in which information is stored and retrieved
using two keys. Here we see how to build tables as mutable list structures.

We first consider a one-dimensional table, in which each value is stored under a
single key. We implement the table as a list of records, each of which is implemented
as a pair consisting of a key and the associated value. The records are glued together
to form a list by pairs whose heads point to successive records. These gluing pairs
are called the backbone of the table. In order to have a place that we can change when
we add a new record to the table, we build the table as a headed list. A headed list has
a special backbone pair at the beginning, which holds a dummy “record”—in this
case the arbitrarily chosen string "*table*". Figure 3.22 shows the box-and-pointer
diagram for the table

a: 1
b: 2
c: 3

26. Be careful not to make the interpreter try to print a structure that contains cycles. (See
exercise 3.13.)

238 Chapter 3 Modularity, Objects, and State

"a" "b" "c"1 2 3

"*table*"

table

Figure 3.22 A table represented as a headed list.

To extract information from a table we use the lookup function, which takes
a key as argument and returns the associated value (or undefined if there is no
value stored under that key). The function lookup is defined in terms of the assoc
operation, which expects a key and a list of records as arguments. Note that assoc
never sees the dummy record. The function assoc returns the record that has the
given key as its head.27 The function lookup then checks to see that the resulting
record returned by assoc is not undefined, and returns the value (the tail) of the
record.

function lookup(key, table) {
const record = assoc(key, tail(table));
return is_undefined(record)

? undefined
: tail(record);

}
function assoc(key, records) {

return is_null(records)
? undefined
: equal(key, head(head(records)))
? head(records)
: assoc(key, tail(records));

}

To insert a value in a table under a specified key, we first use assoc to see if
there is already a record in the table with this key. If not, we form a new record
by pairing the key with the value, and insert this at the head of the table’s list of
records, after the dummy record. If there already is a record with this key, we set the
tail of this record to the designated new value. The header of the table provides us
with a fixed location to modify in order to insert the new record.28

27. Because assoc uses equal, it can recognize keys that are strings, numbers, or list structure.

28. Thus, the first backbone pair is the object that represents the table “itself”; that is, a pointer
to the table is a pointer to this pair. This same backbone pair always starts the table. If we did
not arrange things in this way, insert would have to return a new value for the start of the table
when it added a new record.

3.3.3 Representing Tables 239

function insert(key, value, table) {
const record = assoc(key, tail(table));
if (is_undefined(record)) {

set_tail(table,
pair(pair(key, value), tail(table)));

} else {
set_tail(record, value);

}
return "ok";

}

To construct a new table, we simply create a list containing just the string
"*table*":

function make_table() {
return list("*table*");

}

Two-dimensional tables
In a two-dimensional table, each value is indexed by two keys. We can construct
such a table as a one-dimensional table in which each key identifies a subtable.
Figure 3.23 shows the box-and-pointer diagram for the table

"math":
"+": 43
"-": 45
"*": 42

"letters":
"a": 97
"b": 98

which has two subtables. (The subtables don’t need a special header string, since the
key that identifies the subtable serves this purpose.)

When we look up an item, we use the first key to identify the correct subtable.
Then we use the second key to identify the record within the subtable.

function lookup(key_1, key_2, table) {
const subtable = assoc(key_1, tail(table));
if (is_undefined(subtable)) {

return undefined;
} else {

const record = assoc(key_2, tail(subtable));
return is_undefined(record)

? undefined
: tail(record);

}
}

To insert a new item under a pair of keys, we use assoc to see if there is a
subtable stored under the first key. If not, we build a new subtable containing the
single record (key_2, value) and insert it into the table under the first key. If a

240 Chapter 3 Modularity, Objects, and State

"+" "-" "*"43 45 42

"a" "b"97 98

"letters"

"math"

table

"*table*"

Figure 3.23 A two-dimensional table.

subtable already exists for the first key, we insert the new record into this subtable,
using the insertion method for one-dimensional tables described above:

function insert(key_1, key_2, value, table) {
const subtable = assoc(key_1, tail(table));
if (is_undefined(subtable)) {

set_tail(table,
pair(list(key_1, pair(key_2, value)), tail(table)));

} else {
const record = assoc(key_2, tail(table));
if (is_undefined(record)) {

set_tail(subtable,
pair(pair(key_2, value), tail(subtable)));

} else {
set_tail(record, value);

}
}
return "ok";

}

Creating local tables
The lookup and insert operations defined above take the table as an argument.
This enables us to use programs that access more than one table. Another way to
deal with multiple tables is to have separate lookup and insert functions for each
table. We can do this by representing a table procedurally, as an object that maintains
an internal table as part of its local state. When sent an appropriate message, this

3.3.3 Representing Tables 241

“table object” supplies the function with which to operate on the internal table. Here
is a generator for two-dimensional tables represented in this fashion:

function make_table() {
const local_table = list("*table*");
function lookup(key_1, key_2) {

const subtable = assoc(key_1, tail(local_table));
if (is_undefined(subtable)) {

return undefined;
} else {

const record = assoc(key_2, tail(subtable));
return is_undefined(record)

? undefined
: tail(record);

}
}
function insert(key_1, key_2, value) {

const subtable = assoc(key_1, tail(local_table));
if (is_undefined(subtable)) {

set_tail(local_table,
pair(list(key_1, pair(key_2, value)),

tail(local_table)));
} else {

const record = assoc(key_2, tail(subtable));
if (is_undefined(record)) {

set_tail(subtable,
pair(pair(key_2, value), tail(subtable)));

} else {
set_tail(record, value);

}
}

}
function dispatch(m) {

return m === "lookup"
? lookup
: m === "insert"
? insert
: error(m, "unknown operation -- table");

}
return dispatch;

}

Using make_table, we could implement the get and put operations used in
section 2.4.3 for data-directed programming, as follows:

const operation_table = make_table();
const get = operation_table("lookup");
const put = operation_table("insert");

The function get takes as arguments two keys, and put takes as arguments two
keys and a value. Both operations access the same local table, which is encapsulated
within the object created by the call to make_table.

242 Chapter 3 Modularity, Objects, and State

Exercise 3.24
In the table implementations above, the keys are tested for equality using equal (called
by assoc). This is not always the appropriate test. For instance, we might have a table
with numeric keys in which we don’t need an exact match to the number we’re looking
up, but only a number within some tolerance of it. Design a table constructor make_table
that takes as an argument a same_key function that will be used to test “equality” of keys.
The function make_table should return a dispatch function that can be used to access
appropriate lookup and insert functions for a local table.

Exercise 3.25
Generalizing one- and two-dimensional tables, show how to implement a table in which
values are stored under an arbitrary number of keys and different values may be stored
under different numbers of keys. The lookup and insert functions should take as input a
list of keys used to access the table.

Exercise 3.26
To search a table as implemented above, one needs to scan through the list of records. This
is basically the unordered list representation of section 2.3.3. For large tables, it may be
more efficient to structure the table in a different manner. Describe a table implementation
where the (key, value) records are organized using a binary tree, assuming that keys can
be ordered in some way (e.g., numerically or alphabetically). (Compare exercise 2.66 of
chapter 2.)

Exercise 3.27
Memoization (also called tabulation) is a technique that enables a function to record, in
a local table, values that have previously been computed. This technique can make a vast
difference in the performance of a program. A memoized function maintains a table in
which values of previous calls are stored using as keys the arguments that produced the
values. When the memoized function is asked to compute a value, it first checks the table to
see if the value is already there and, if so, just returns that value. Otherwise, it computes the
new value in the ordinary way and stores this in the table. As an example of memoization,
recall from section 1.2.2 the exponential process for computing Fibonacci numbers:

function fib(n) {
return n === 0

? 0
: n === 1
? 1
: fib(n - 1) + fib(n - 2);

}

The memoized version of the same function is

const memo_fib = memoize(n => n === 0
? 0
: n === 1
? 1
: memo_fib(n - 1) +

memo_fib(n - 2)
);

3.3.4 A Simulator for Digital Circuits 243

where the memoizer is defined as

function memoize(f) {
const table = make_table();
return x => {

const previously_computed_result =
lookup(x, table);

if (is_undefined(previously_computed_result)) {
const result = f(x);
insert(x, result, table);
return result;

} else {
return previously_computed_result;

}
};

}

Draw an environment diagram to analyze the computation of memo_fib(3). Explain why
memo_fib computes the nth Fibonacci number in a number of steps proportional to n.
Would the scheme still work if we had simply defined memo_fib to be memoize(fib)?

3.3.4 A Simulator for Digital Circuits
Designing complex digital systems, such as computers, is an important engineering
activity. Digital systems are constructed by interconnecting simple elements. Al-
though the behavior of these individual elements is simple, networks of them can
have very complex behavior. Computer simulation of proposed circuit designs is an
important tool used by digital systems engineers. In this section we design a system
for performing digital logic simulations. This system typifies a kind of program
called an event-driven simulation, in which actions (“events”) trigger further events
that happen at a later time, which in turn trigger more events, and so on.

Our computational model of a circuit will be composed of objects that corre-
spond to the elementary components from which the circuit is constructed. There
are wires, which carry digital signals. A digital signal may at any moment have
only one of two possible values, 0 and 1. There are also various types of digital
function boxes, which connect wires carrying input signals to other output wires.
Such boxes produce output signals computed from their input signals. The output
signal is delayed by a time that depends on the type of the function box. For example,
an inverter is a primitive function box that inverts its input. If the input signal to an
inverter changes to 0, then one inverter-delay later the inverter will change its output
signal to 1. If the input signal to an inverter changes to 1, then one inverter-delay
later the inverter will change its output signal to 0. We draw an inverter symbolically
as in figure 3.24. An and-gate, also shown in figure 3.24, is a primitive function box
with two inputs and one output. It drives its output signal to a value that is the
logical and of the inputs. That is, if both of its input signals become 1, then one
and-gate-delay time later the and-gate will force its output signal to be 1; otherwise
the output will be 0. An or-gate is a similar two-input primitive function box that
drives its output signal to a value that is the logical or of the inputs. That is, the

244 Chapter 3 Modularity, Objects, and State

Inverter And-gate Or-gate

Figure 3.24 Primitive functions in the digital logic simulator.

D

E

A

B

S

C

Figure 3.25 A half-adder circuit.

output will become 1 if at least one of the input signals is 1; otherwise the output
will become 0.

We can connect primitive functions together to construct more complex func-
tions. To accomplish this we wire the outputs of some function boxes to the inputs
of other function boxes. For example, the half-adder circuit shown in figure 3.25
consists of an or-gate, two and-gates, and an inverter. It takes two input signals, A
and B, and has two output signals, S and C. S will become 1 whenever precisely one
of A and B is 1, and C will become 1 whenever A and B are both 1. We can see
from the figure that, because of the delays involved, the outputs may be generated
at different times. Many of the difficulties in the design of digital circuits arise from
this fact.

We will now build a program for modeling the digital logic circuits we wish to
study. The program will construct computational objects modeling the wires, which
will “hold” the signals. Function boxes will be modeled by functions that enforce
the correct relationships among the signals.

One basic element of our simulation will be a function make_wire, which
constructs wires. For example, we can construct six wires as follows:

const a = make_wire();
const b = make_wire();
const c = make_wire();
const d = make_wire();
const e = make_wire();
const s = make_wire();

We attach a function box to a set of wires by calling a function that constructs that
kind of box. The arguments to the constructor function are the wires to be attached to
the box. For example, given that we can construct and-gates, or-gates, and inverters,
we can wire together the half-adder shown in figure 3.25:

3.3.4 A Simulator for Digital Circuits 245

or_gate(a, b, d);
"ok"

and_gate(a, b, c);
"ok"

inverter(c, e);
"ok"

and_gate(d, e, s);
"ok"

Better yet, we can explicitly name this operation by defining a function half_
adder that constructs this circuit, given the four external wires to be attached to the
half-adder:

function half_adder(a, b, s, c) {
const d = make_wire();
const e = make_wire();
or_gate(a, b, d);
and_gate(a, b, c);
inverter(c, e);
and_gate(d, e, s);
return "ok";

}

The advantage of making this definition is that we can use half_adder itself as a
building block in creating more complex circuits. Figure 3.26, for example, shows
a full-adder composed of two half-adders and an or-gate.29 We can construct a full-
adder as follows:

function full_adder(a, b, c_in, sum, c_out) {
const s = make_wire();
const c1 = make_wire();
const c2 = make_wire();
half_adder(b, c_in, s, c1);
half_adder(a, s, sum, c2);
or_gate(c1, c2, c_out);
return "ok";

}

Having defined full_adder as a function, we can now use it as a building block for
creating still more complex circuits. (For example, see exercise 3.30.)

In essence, our simulator provides us with the tools to construct a language of
circuits. If we adopt the general perspective on languages with which we approached
the study of JavaScript in section 1.1, we can say that the primitive function boxes
form the primitive elements of the language, that wiring boxes together provides a

29. A full-adder is a basic circuit element used in adding two binary numbers. Here A and B
are the bits at corresponding positions in the two numbers to be added, and Cin is the carry bit
from the addition one place to the right. The circuit generates SUM, which is the sum bit in the
corresponding position, and Cout, which is the carry bit to be propagated to the left.

246 Chapter 3 Modularity, Objects, and State

means of combination, and that specifying wiring patterns as functions serves as a
means of abstraction.

Primitive function boxes
The primitive function boxes implement the “forces” by which a change in the signal
on one wire influences the signals on other wires. To build function boxes, we use
the following operations on wires:

• get_signal(wire)
returns the current value of the signal on the wire.

• set_signal(wire, new-value):
changes the value of the signal on the wire to the new value.

• add_action(wire, function-of -no-arguments):
asserts that the designated function should be run whenever the signal on the wire
changes value. Such functions are the vehicles by which changes in the signal
value on the wire are communicated to other wires.

In addition, we will make use of a function after_delay that takes a time delay
and a function to be run and executes the given function after the given delay.

Using these functions, we can define the primitive digital logic functions. To
connect an input to an output through an inverter, we use add_action to associate
with the input wire a function that will be run whenever the signal on the input wire
changes value. The function computes the logical_not of the input signal, and
then, after one inverter_delay, sets the output signal to be this new value:

function inverter(input, output) {
function invert_input() {

const new_value = logical_not(get_signal(input));
after_delay(inverter_delay,

() => set_signal(output, new_value));
}
add_action(input, invert_input);
return "ok";

}
function logical_not(s) {

return s === 0
? 1
: s === 1
? 0
: error(s, "invalid signal");

}

An and-gate is a little more complex. The action function must be run if either
of the inputs to the gate changes. It computes the logical_and (using a function
analogous to logical_not) of the values of the signals on the input wires and sets
up a change to the new value to occur on the output wire after one and_gate_delay.

3.3.4 A Simulator for Digital Circuits 247

half-

adder

half-

adder

A

B

C

SUM

Cor

in

out

Figure 3.26 A full-adder circuit.

function and_gate(a1, a2, output) {
function and_action_function() {

const new_value = logical_and(get_signal(a1),
get_signal(a2));

after_delay(and_gate_delay,
() => set_signal(output, new_value));

}
add_action(a1, and_action_function);
add_action(a2, and_action_function);
return "ok";

}

Exercise 3.28
Define an or-gate as a primitive function box. Your or_gate constructor should be similar
to and_gate.

Exercise 3.29
Another way to construct an or-gate is as a compound digital logic device, built from and-
gates and inverters. Define a function or_gate that accomplishes this. What is the delay
time of the or-gate in terms of and_gate_delay and inverter_delay?

Exercise 3.30
Figure 3.27 shows a ripple-carry adder formed by stringing together n full-adders. This is
the simplest form of parallel adder for adding two n-bit binary numbers. The inputs A1, A2,
A3, . . . , An and B1, B2, B3, . . . , Bn are the two binary numbers to be added (each Ak and
Bk is a 0 or a 1). The circuit generates S1, S2, S3, . . . , Sn, the n bits of the sum, and C, the
carry from the addition. Write a function ripple_carry_adder that generates this circuit.
The function should take as arguments three lists of n wires each—the Ak, the Bk, and the
Sk—and also another wire C. The major drawback of the ripple-carry adder is the need to
wait for the carry signals to propagate. What is the delay needed to obtain the complete
output from an n-bit ripple-carry adder, expressed in terms of the delays for and-gates,
or-gates, and inverters?

248 Chapter 3 Modularity, Objects, and State

A B C A B C

S
C

SC

FA FA

A B C

S

FA

A B C

S

FA

1 1 1 2 2 2 3 3 3 = 0n n n

1 2 3 n – 1 nC1 C2

Figure 3.27 A ripple-carry adder for n-bit numbers.

Representing wires
A wire in our simulation will be a computational object with two local state variables:
a signal_value (initially taken to be 0) and a collection of action_functions
to be run when the signal changes value. We implement the wire, using message-
passing style, as a collection of local functions together with a dispatch function
that selects the appropriate local operation, just as we did with the simple bank-
account object in section 3.1.1:

function make_wire() {
let signal_value = 0;
let action_functions = null;
function set_my_signal(new_value) {

if (signal_value !== new_value) {
signal_value = new_value;
return call_each(action_functions);

} else {
return "done";

}
}
function accept_action_function(fun) {

action_functions = pair(fun, action_functions);
fun();

}
function dispatch(m) {

return m === "get_signal"
? signal_value
: m === "set_signal"
? set_my_signal
: m === "add_action"
? accept_action_function
: error(m, "unknown operation -- wire");

}
return dispatch;

}

The local function set_my_signal tests whether the new signal value changes the
signal on the wire. If so, it runs each of the action functions, using the follow-
ing function call_each, which calls each of the items in a list of no-argument
functions:

3.3.4 A Simulator for Digital Circuits 249

function call_each(functions) {
if (is_null(functions)) {

return "done";
} else {

head(functions)();
return call_each(tail(functions));

}
}

The local function accept_action_function adds the given function to the list of
functions to be run, and then runs the new function once. (See exercise 3.31.)

With the local dispatch function set up as specified, we can provide the
following functions to access the local operations on wires:30

function get_signal(wire) {
return wire("get_signal");

}
function set_signal(wire, new_value) {

return wire("set_signal")(new_value);
}
function add_action(wire, action_function) {

return wire("add_action")(action_function);
}

Wires, which have time-varying signals and may be incrementally attached to
devices, are typical of mutable objects. We have modeled them as functions with
local state variables that are modified by assignment. When a new wire is created, a
new set of state variables is allocated (by the let statements in make_wire) and a
new dispatch function is constructed and returned, capturing the environment with
the new state variables.

The wires are shared among the various devices that have been connected to
them. Thus, a change made by an interaction with one device will affect all the other
devices attached to the wire. The wire communicates the change to its neighbors by
calling the action functions provided to it when the connections were established.

The agenda
The only thing needed to complete the simulator is after_delay. The idea here
is that we maintain a data structure, called an agenda, that contains a schedule of
things to do. The following operations are defined for agendas:

30. These functions are simply syntactic sugar that allow us to use ordinary functional syntax to
access the local functions of objects. It is striking that we can interchange the role of “functions”
and “data” in such a simple way. For example, if we write wire("get_signal") we think of
wire as a function that is called with the message "get_signal" as input. Alternatively, writing
get_signal(wire) encourages us to think of wire as a data object that is the input to a function
get_signal. The truth of the matter is that, in a language in which we can deal with functions as
objects, there is no fundamental difference between “functions” and “data,” and we can choose
our syntactic sugar to allow us to program in whatever style we choose.

250 Chapter 3 Modularity, Objects, and State

• make_agenda():
returns a new empty agenda.

• is_empty_agenda(agenda)
is true if the specified agenda is empty.

• first_agenda_item(agenda)
returns the first item on the agenda.

• remove_first_agenda_item(agenda)
modifies the agenda by removing the first item.

• add_to_agenda(time, action, agenda)
modifies the agenda by adding the given action function to be run at the specified
time.

• current_time(agenda)
returns the current simulation time.

The particular agenda that we use is denoted by the_agenda. The function
after_delay adds new elements to the_agenda:

function after_delay(delay, action) {
add_to_agenda(delay + current_time(the_agenda),

action,
the_agenda);

}

The simulation is driven by the function propagate, which executes each func-
tion on the_agenda in sequence. In general, as the simulation runs, new items will
be added to the agenda, and propagate will continue the simulation as long as there
are items on the agenda:

function propagate() {
if (is_empty_agenda(the_agenda)) {

return "done";
} else {

const first_item = first_agenda_item(the_agenda);
first_item();
remove_first_agenda_item(the_agenda);
return propagate();

}
}

A sample simulation
The following function, which places a “probe” on a wire, shows the simulator in
action. The probe tells the wire that, whenever its signal changes value, it should
print the new signal value, together with the current time and a name that identifies
the wire.

function probe(name, wire) {
add_action(wire,

() => display(name + " " +
stringify(current_time(the_agenda)) +
", new value = " +
stringify(get_signal(wire))));

}

3.3.4 A Simulator for Digital Circuits 251

We begin by initializing the agenda and specifying delays for the primitive
function boxes:

const the_agenda = make_agenda();
const inverter_delay = 2;
const and_gate_delay = 3;
const or_gate_delay = 5;

Now we define four wires, placing probes on two of them:

const input_1 = make_wire();
const input_2 = make_wire();
const sum = make_wire();
const carry = make_wire();

probe("sum", sum);
"sum 0, new value = 0"

probe("carry", carry);
"carry 0, new value = 0"

Next we connect the wires in a half-adder circuit (as in figure 3.25), set the signal
on input_1 to 1, and run the simulation:

half_adder(input_1, input_2, sum, carry);
"ok"

set_signal(input_1, 1);
"done"

propagate();
"sum 8, new value = 1"
"done"

The sum signal changes to 1 at time 8. We are now eight time units from the be-
ginning of the simulation. At this point, we can set the signal on input_2 to 1 and
allow the values to propagate:

set_signal(input_2, 1);
"done"

propagate();
"carry 11, new value = 1"
"sum 16, new value = 0"
"done"

The carry changes to 1 at time 11 and the sum changes to 0 at time 16.

Exercise 3.31
The internal function accept_action_function defined in make_wire specifies that when
a new action function is added to a wire, the function is immediately run. Explain why
this initialization is necessary. In particular, trace through the half-adder example in the
paragraphs above and say how the system’s response would differ if we had defined
accept_action_function as

252 Chapter 3 Modularity, Objects, and State

function accept_action_function(fun) {
action_functions = pair(fun, action_functions);

}

Implementing the agenda
Finally, we give details of the agenda data structure, which holds the functions that
are scheduled for future execution.

The agenda is made up of time segments. Each time segment is a pair consisting
of a number (the time) and a queue (see exercise 3.32) that holds the functions that
are scheduled to be run during that time segment.

function make_time_segment(time, queue) {
return pair(time, queue);

}
function segment_time(s) { return head(s); }
function segment_queue(s) { return tail(s); }

We will operate on the time-segment queues using the queue operations described
in section 3.3.2.

The agenda itself is a one-dimensional table of time segments. It differs from
the tables described in section 3.3.3 in that the segments will be sorted in order of
increasing time. In addition, we store the current time (i.e., the time of the last action
that was processed) at the head of the agenda. A newly constructed agenda has no
time segments and has a current time of 0:31

function make_agenda() { return list(0); }
function current_time(agenda) { return head(agenda); }
function set_current_time(agenda, time) {

set_head(agenda, time);
}
function segments(agenda) { return tail(agenda); }
function set_segments(agenda, segs) {

set_tail(agenda, segs);
}
function first_segment(agenda) { return head(segments(agenda)); }
function rest_segments(agenda) { return tail(segments(agenda)); }

An agenda is empty if it has no time segments:

function is_empty_agenda(agenda) {
return is_null(segments(agenda));

}

To add an action to an agenda, we first check if the agenda is empty. If so, we
create a time segment for the action and install this in the agenda. Otherwise, we
scan the agenda, examining the time of each segment. If we find a segment for our

31. The agenda is a headed list, like the tables in section 3.3.3, but since the list is headed by
the time, we do not need an additional dummy header (such as the "*table*" string used with
tables).

3.3.4 A Simulator for Digital Circuits 253

appointed time, we add the action to the associated queue. If we reach a time later
than the one to which we are appointed, we insert a new time segment into the
agenda just before it. If we reach the end of the agenda, we must create a new time
segment at the end.

function add_to_agenda(time, action, agenda) {
function belongs_before(segs) {

return is_null(segs) || time < segment_time(head(segs));
}
function make_new_time_segment(time, action) {

const q = make_queue();
insert_queue(q, action);
return make_time_segment(time, q);

}
function add_to_segments(segs) {

if (segment_time(head(segs)) === time) {
insert_queue(segment_queue(head(segs)), action);

} else {
const rest = tail(segs);
if (belongs_before(rest)) {

set_tail(segs, pair(make_new_time_segment(time, action),
tail(segs)));

} else {
add_to_segments(rest);

}
}

}
const segs = segments(agenda);
if (belongs_before(segs)) {

set_segments(agenda,
pair(make_new_time_segment(time, action), segs));

} else {
add_to_segments(segs);

}
}

The function that removes the first item from the agenda deletes the item at the
front of the queue in the first time segment. If this deletion makes the time segment
empty, we remove it from the list of segments:32

function remove_first_agenda_item(agenda) {
const q = segment_queue(first_segment(agenda));
delete_queue(q);
if (is_empty_queue(q)) {

set_segments(agenda, rest_segments(agenda));
} else {}

}

32. Observe that the conditional statement in this function has an empty block as its alternative
statement. Such a “one-armed conditional statement” is used to decide whether to do something,
rather than to select between two statements.

254 Chapter 3 Modularity, Objects, and State

The first agenda item is found at the head of the queue in the first time segment.
Whenever we extract an item, we also update the current time:33

function first_agenda_item(agenda) {
if (is_empty_agenda(agenda)) {

error("agenda is empty -- first_agenda_item");
} else {

const first_seg = first_segment(agenda);
set_current_time(agenda, segment_time(first_seg));
return front_queue(segment_queue(first_seg));

}
}

Exercise 3.32
The functions to be run during each time segment of the agenda are kept in a queue. Thus,
the functions for each segment are called in the order in which they were added to the
agenda (first in, first out). Explain why this order must be used. In particular, trace the
behavior of an and-gate whose inputs change from 0,1 to 1,0 in the same segment and say
how the behavior would differ if we stored a segment’s functions in an ordinary list, adding
and removing functions only at the front (last in, first out).

3.3.5 Propagation of Constraints
Computer programs are traditionally organized as one-directional computations,
which perform operations on prespecified arguments to produce desired outputs.
On the other hand, we often model systems in terms of relations among quantities.
For example, a mathematical model of a mechanical structure might include the
information that the deflection d of a metal rod is related to the force F on the rod,
the length L of the rod, the cross-sectional area A, and the elastic modulus E via the
equation

dAE = FL

Such an equation is not one-directional. Given any four of the quantities, we can
use it to compute the fifth. Yet translating the equation into a traditional computer
language would force us to choose one of the quantities to be computed in terms
of the other four. Thus, a function for computing the area A could not be used to
compute the deflection d, even though the computations of A and d arise from the
same equation.34

33. In this way, the current time will always be the time of the action most recently processed.
Storing this time at the head of the agenda ensures that it will still be available even if the
associated time segment has been deleted.

34. Constraint propagation first appeared in the incredibly forward-looking SKETCHPAD
system of Ivan Sutherland (1963). A beautiful constraint-propagation system based on the
Smalltalk language was developed by Alan Borning (1977) at Xerox Palo Alto Research Center.
Sussman, Stallman, and Steele applied constraint propagation to electrical circuit analysis (Suss-
man and Stallman 1975; Sussman and Steele 1980). TK!Solver (Konopasek and Jayaraman
1984) is an extensive modeling environment based on constraints.

3.3.5 Propagation of Constraints 255

m

m

p* p

m

m

*
u

v

3259

a

a

s+ F

C

w x y

1 1 1

222

Figure 3.28 The relation 9C = 5(F – 32) expressed as a constraint network.

In this section, we sketch the design of a language that enables us to work in
terms of relations themselves. The primitive elements of the language are primitive
constraints, which state that certain relations hold between quantities. For exam-
ple, adder(a, b, c) specifies that the quantities a, b, and c must be related by
the equation a + b = c, multiplier(x, y, z) expresses the constraint xy = z, and
constant(3.14, x) says that the value of x must be 3.14.

Our language provides a means of combining primitive constraints in order to
express more complex relations. We combine constraints by constructing constraint
networks, in which constraints are joined by connectors. A connector is an object
that “holds” a value that may participate in one or more constraints. For example,
we know that the relationship between Fahrenheit and Celsius temperatures is

9C = 5(F – 32)

Such a constraint can be thought of as a network consisting of primitive adder,
multiplier, and constant constraints (figure 3.28). In the figure, we see on the left
a multiplier box with three terminals, labeled m1, m2, and p. These connect the
multiplier to the rest of the network as follows: The m1 terminal is linked to a
connector C, which will hold the Celsius temperature. The m2 terminal is linked
to a connector w, which is also linked to a constant box that holds 9. The p terminal,
which the multiplier box constrains to be the product of m1 and m2, is linked to the p
terminal of another multiplier box, whose m2 is connected to a constant 5 and whose
m1 is connected to one of the terms in a sum.

Computation by such a network proceeds as follows: When a connector is given
a value (by the user or by a constraint box to which it is linked), it awakens all of its
associated constraints (except for the constraint that just awakened it) to inform them
that it has a value. Each awakened constraint box then polls its connectors to see if
there is enough information to determine a value for a connector. If so, the box sets
that connector, which then awakens all of its associated constraints, and so on. For
instance, in conversion between Celsius and Fahrenheit, w, x, and y are immediately
set by the constant boxes to 9, 5, and 32, respectively. The connectors awaken the
multipliers and the adder, which determine that there is not enough information to
proceed. If the user (or some other part of the network) sets C to a value (say 25),
the leftmost multiplier will be awakened, and it will set u to 25 · 9 = 225. Then u
awakens the second multiplier, which sets v to 45, and v awakens the adder, which
sets F to 77.

256 Chapter 3 Modularity, Objects, and State

Using the constraint system
To use the constraint system to carry out the temperature computation outlined
above, we first call the constructor make_connector to create two connectors, C
and F, and then link them in an appropriate network:

const C = make_connector();
const F = make_connector();
celsius_fahrenheit_converter(C, F);
"ok"

The function that creates the network is defined as follows:

function celsius_fahrenheit_converter(c, f) {
const u = make_connector();
const v = make_connector();
const w = make_connector();
const x = make_connector();
const y = make_connector();
multiplier(c, w, u);
multiplier(v, x, u);
adder(v, y, f);
constant(9, w);
constant(5, x);
constant(32, y);
return "ok";

}

This function creates the internal connectors u, v, w, x, and y, and links them as
shown in figure 3.28 using the primitive constraint constructors adder, multiplier,
and constant. Just as with the digital-circuit simulator of section 3.3.4, express-
ing these combinations of primitive elements in terms of functions automatically
provides our language with a means of abstraction for compound objects.

To watch the network in action, we can place probes on the connectors C and F,
using a probe function similar to the one we used to monitor wires in section 3.3.4.
Placing a probe on a connector will cause a message to be printed whenever the
connector is given a value:

probe("Celsius temp", C);
probe("Fahrenheit temp", F);

Next we set the value of C to 25. (The third argument to set_value tells C that this
directive comes from the user.)

set_value(C, 25, "user");
"Probe: Celsius temp = 25"
"Probe: Fahrenheit temp = 77"
"done"

The probe on C awakens and reports the value. C also propagates its value through
the network as described above. This sets F to 77, which is reported by the probe
on F.

Now we can try to set F to a new value, say 212:

3.3.5 Propagation of Constraints 257

set_value(F, 212, "user");
"Error! Contradiction: (77, 212)"

The connector complains that it has sensed a contradiction: Its value is 77, and
someone is trying to set it to 212. If we really want to reuse the network with new
values, we can tell C to forget its old value:

forget_value(C, "user");
"Probe: Celsius temp = ?"
"Probe: Fahrenheit temp = ?"
"done"

C finds that the "user", who set its value originally, is now retracting that value, so
C agrees to lose its value, as shown by the probe, and informs the rest of the network
of this fact. This information eventually propagates to F, which now finds that it has
no reason for continuing to believe that its own value is 77. Thus, F also gives up its
value, as shown by the probe.

Now that F has no value, we are free to set it to 212:

set_value(F, 212, "user");
"Probe: Fahrenheit temp = 212"
"Probe: Celsius temp = 100"
"done"

This new value, when propagated through the network, forces C to have a value of
100, and this is registered by the probe on C. Notice that the very same network is
being used to compute C given F and to compute F given C. This nondirectionality
of computation is the distinguishing feature of constraint-based systems.

Implementing the constraint system
The constraint system is implemented via procedural objects with local state, in a
manner very similar to the digital-circuit simulator of section 3.3.4. Although the
primitive objects of the constraint system are somewhat more complex, the overall
system is simpler, since there is no concern about agendas and logic delays.

The basic operations on connectors are the following:

• has_value(connector)
tells whether the connector has a value.

• get_value(connector)
returns the connector’s current value.

• set_value(connector, new-value, informant)
indicates that the informant is requesting the connector to set its value to the new
value.

• forget_value(connector, retractor)
tells the connector that the retractor is requesting it to forget its value.

• connect(connector, new-constraint)
tells the connector to participate in the new constraint.

258 Chapter 3 Modularity, Objects, and State

The connectors communicate with the constraints by means of the functions inform_
about_value, which tells the given constraint that the connector has a value, and
inform_about_no_value, which tells the constraint that the connector has lost its
value.

Adder constructs an adder constraint among summand connectors a1 and a2
and a sum connector. An adder is implemented as a function with local state (the
function me below):

function adder(a1, a2, sum) {
function process_new_value() {

if (has_value(a1) && has_value(a2)) {
set_value(sum, get_value(a1) + get_value(a2), me);

} else if (has_value(a1) && has_value(sum)) {
set_value(a2, get_value(sum) - get_value(a1), me);

} else if (has_value(a2) && has_value(sum)) {
set_value(a1, get_value(sum) - get_value(a2), me);

} else {}
}
function process_forget_value() {

forget_value(sum, me);
forget_value(a1, me);
forget_value(a2, me);
process_new_value();

}
function me(request) {

if (request === "I have a value.") {
process_new_value();

} else if (request === "I lost my value.") {
process_forget_value();

} else {
error(request, "unknown request -- adder");

}
}
connect(a1, me);
connect(a2, me);
connect(sum, me);
return me;

}

The function adder connects the new adder to the designated connectors and returns
it as its value. The function me, which represents the adder, acts as a dispatch to the
local functions. The following “syntax interfaces” (see footnote 30 in section 3.3.4)
are used in conjunction with the dispatch:

function inform_about_value(constraint) {
return constraint("I have a value.");

}
function inform_about_no_value(constraint) {

return constraint("I lost my value.");
}

3.3.5 Propagation of Constraints 259

The adder’s local function process_new_value is called when the adder is in-
formed that one of its connectors has a value. The adder first checks to see if both a1
and a2 have values. If so, it tells sum to set its value to the sum of the two addends.
The informant argument to set_value is me, which is the adder object itself. If a1
and a2 do not both have values, then the adder checks to see if perhaps a1 and sum
have values. If so, it sets a2 to the difference of these two. Finally, if a2 and sum
have values, this gives the adder enough information to set a1. If the adder is told
that one of its connectors has lost a value, it requests that all of its connectors now
lose their values. (Only those values that were set by this adder are actually lost.)
Then it runs process_new_value. The reason for this last step is that one or more
connectors may still have a value (that is, a connector may have had a value that was
not originally set by the adder), and these values may need to be propagated back
through the adder.

A multiplier is very similar to an adder. It will set its product to 0 if either of
the factors is 0, even if the other factor is not known.

function multiplier(m1, m2, product) {
function process_new_value() {

if ((has_value(m1) && get_value(m1) === 0)
|| (has_value(m2) && get_value(m2) === 0)) {

set_value(product, 0, me);
} else if (has_value(m1) && has_value(m2)) {

set_value(product, get_value(m1) * get_value(m2), me);
} else if (has_value(product) && has_value(m1)) {

set_value(m2, get_value(product) / get_value(m1), me);
} else if (has_value(product) && has_value(m2)) {

set_value(m1, get_value(product) / get_value(m2), me);
} else {}

}
function process_forget_value() {

forget_value(product, me);
forget_value(m1, me);
forget_value(m2, me);
process_new_value();

}
function me(request) {

if (request === "I have a value.") {
process_new_value();

} else if (request === "I lost my value.") {
process_forget_value();

} else {
error(request, "unknown request -- multiplier");

}
}
connect(m1, me);
connect(m2, me);
connect(product, me);
return me;

}

260 Chapter 3 Modularity, Objects, and State

A constant constructor simply sets the value of the designated connector. Any
"I have a value." or "I lost my value." message sent to the constant box
will produce an error.

function constant(value, connector) {
function me(request) {

error(request, "unknown request -- constant");
}
connect(connector, me);
set_value(connector, value, me);
return me;

}

Finally, a probe prints a message about the setting or unsetting of the designated
connector:

function probe(name, connector) {
function print_probe(value) {

display("Probe: " + name + " = " + stringify(value));
}
function process_new_value() {

print_probe(get_value(connector));
}
function process_forget_value() {

print_probe("?");
}
function me(request) {

return request === "I have a value."
? process_new_value()
: request === "I lost my value."
? process_forget_value()
: error(request, "unknown request -- probe");

}
connect(connector, me);
return me;

}

Representing connectors
A connector is represented as a procedural object with local state variables value,
the current value of the connector; informant, the object that set the connec-
tor’s value; and constraints, a list of the constraints in which the connector
participates.

3.3.5 Propagation of Constraints 261

function make_connector() {
let value = false;
let informant = false;
let constraints = null;
function set_my_value(newval, setter) {

if (!has_value(me)) {
value = newval;
informant = setter;
return for_each_except(setter,

inform_about_value,
constraints);

} else if (value !== newval) {
error(list(value, newval), "contradiction");

} else {
return "ignored";

}
}
function forget_my_value(retractor) {

if (retractor === informant) {
informant = false;
return for_each_except(retractor,

inform_about_no_value,
constraints);

} else {
return "ignored";

}
}
function connect(new_constraint) {

if (is_null(member(new_constraint, constraints))) {
constraints = pair(new_constraint, constraints);

} else {}
if (has_value(me)) {

inform_about_value(new_constraint);
} else {}
return "done";

}
function me(request) {

if (request === "has_value") {
return informant !== false;

} else if (request === "value") {
return value;

} else if (request === "set_value") {
return set_my_value;

} else if (request === "forget") {
return forget_my_value;

} else if (request === "connect") {
return connect;

} else {
error(request, "unknown operation -- connector");

}
}
return me;

}

262 Chapter 3 Modularity, Objects, and State

The connector’s local function set_my_value is called when there is a request
to set the connector’s value. If the connector does not currently have a value, it will
set its value and remember as informant the constraint that requested the value
to be set.35 Then the connector will notify all of its participating constraints except
the constraint that requested the value to be set. This is accomplished using the
following iterator, which applies a designated function to all items in a list except a
given one:

function for_each_except(exception, fun, list) {
function loop(items) {

if (is_null(items)) {
return "done";

} else if (head(items) === exception) {
return loop(tail(items));

} else {
fun(head(items));
return loop(tail(items));

}
}
return loop(list);

}

If a connector is asked to forget its value, it runs forget_my_value, a local func-
tion that first checks to make sure that the request is coming from the same object
that set the value originally. If so, the connector informs its associated constraints
about the loss of the value.

The local function connect adds the designated new constraint to the list of
constraints if it is not already in that list.36 Then, if the connector has a value, it
informs the new constraint of this fact.

The connector’s function me serves as a dispatch to the other internal functions
and also represents the connector as an object. The following functions provide a
syntax interface for the dispatch:

function has_value(connector) {
return connector("has_value");

}
function get_value(connector) {

return connector("value");
}
function set_value(connector, new_value, informant) {

return connector("set_value")(new_value, informant);
}
function forget_value(connector, retractor) {

return connector("forget")(retractor);
}

35. The setter might not be a constraint. In our temperature example, we used "user" as the
setter.

36. We can use the function member from section 2.3.1 to test whether new_constraint is
already in constraints, although member was introduced as being limited to numbers and
strings, because we extended === to pointer equality in section 3.3.1.

3.3.5 Propagation of Constraints 263

function connect(connector, new_constraint) {
return connector("connect")(new_constraint);

}

Exercise 3.33
Using primitive multiplier, adder, and constant constraints, define a function averager that
takes three connectors a, b, and c as inputs and establishes the constraint that the value of
c is the average of the values of a and b.

Exercise 3.34
Louis Reasoner wants to build a squarer, a constraint device with two terminals such that
the value of connector b on the second terminal will always be the square of the value a on
the first terminal. He proposes the following simple device made from a multiplier:

function squarer(a, b) {
return multiplier(a, a, b);

}

There is a serious flaw in this idea. Explain.

Exercise 3.35
Ben Bitdiddle tells Louis that one way to avoid the trouble in exercise 3.34 is to define a
squarer as a new primitive constraint. Fill in the missing portions in Ben’s outline for a
function to implement such a constraint:

function squarer(a, b) {
function process_new_value() {

if (has_value(b)) {
if (get_value(b) < 0) {

error(get_value(b), "square less than 0 -- squarer");
} else {

alternative1
}

} else {
alternative2

}
}
function process_forget_value() {

body1
}
function me(request) {

body2
}
statements
return me;

}

Exercise 3.36
Suppose we evaluate the following sequence of statements in the program environment:

const a = make_connector();
const b = make_connector();
set_value(a, 10, "user");

264 Chapter 3 Modularity, Objects, and State

At some time during evaluation of the set_value, the following expression from the
connector’s local function is evaluated:

for_each_except(setter, inform_about_value, constraints);

Draw an environment diagram showing the environment in which the above expression is
evaluated.

Exercise 3.37
The celsius_fahrenheit_converter function is cumbersome when compared with a
more expression-oriented style of definition, such as

function celsius_fahrenheit_converter(x) {
return cplus(cmul(cdiv(cv(9), cv(5)), x), cv(32));

}

const C = make_connector();
const F = celsius_fahrenheit_converter(C);

Here cplus, cmul, etc. are the “constraint” versions of the arithmetic operations. For ex-
ample, cplus takes two connectors as arguments and returns a connector that is related to
these by an adder constraint:

function cplus(x, y) {
const z = make_connector();
adder(x, y, z);
return z;

}

Define analogous functions cminus, cmul, cdiv, and cv (constant value) that enable us to
define compound constraints as in the converter example above.37

37. The expression-oriented format is convenient because it avoids the need to name the inter-
mediate expressions in a computation. Our original formulation of the constraint language is
cumbersome in the same way that many languages are cumbersome when dealing with oper-
ations on compound data. For example, if we wanted to compute the product (a + b) · (c + d),
where the variables represent vectors, we could work in “imperative style,” using functions that
set the values of designated vector arguments but do not themselves return vectors as values:
v_sum("a", "b", temp1);
v_sum("c", "d", temp2);
v_prod(temp1, temp2, answer);

Alternatively, we could deal with expressions, using functions that return vectors as values, and
thus avoid explicitly mentioning temp1 and temp2:
const answer = v_prod(v_sum("a", "b"), v_sum("c", "d"));

Since JavaScript allows us to return compound objects as values of functions, we can trans-
form our imperative-style constraint language into an expression-oriented style as shown in
this exercise. Given the advantage of the expression-oriented format, one might ask if there is
any reason to have implemented the system in imperative style, as we did in this section. One
reason is that the non-expression-oriented constraint language provides a handle on constraint
objects (e.g., the value of the adder function) as well as on connector objects. This is useful if
we wish to extend the system with new operations that communicate with constraints directly
rather than only indirectly via operations on connectors. Although it is easy to implement the
expression-oriented style in terms of the imperative implementation, it is very difficult to do the
converse.

3.4 Concurrency: Time Is of the Essence 265

3.4 Concurrency: Time Is of the Essence
We’ve seen the power of computational objects with local state as tools for modeling.
Yet, as section 3.1.3 warned, this power extracts a price: the loss of referential trans-
parency, giving rise to a thicket of questions about sameness and change, and the
need to abandon the substitution model of evaluation in favor of the more intricate
environment model.

The central issue lurking beneath the complexity of state, sameness, and change
is that by introducing assignment we are forced to admit time into our computational
models. Before we introduced assignment, all our programs were timeless, in the
sense that any expression that has a value always has the same value. In contrast,
recall the example of modeling withdrawals from a bank account and returning the
resulting balance, introduced at the beginning of section 3.1.1:

withdraw(25);
75

withdraw(25);
50

Here successive evaluations of the same expression yield different values. This
behavior arises from the fact that the execution of assignments (in this case, as-
signments to the variable balance) delineates moments in time when values change.
The result of evaluating an expression depends not only on the expression itself,
but also on whether the evaluation occurs before or after these moments. Building
models in terms of computational objects with local state forces us to confront time
as an essential concept in programming.

We can go further in structuring computational models to match our perception
of the physical world. Objects in the world do not change one at a time in sequence.
Rather we perceive them as acting concurrently—all at once. So it is often natural
to model systems as collections of threads (sequences of computational steps) that
execute concurrently.38 Just as we can make our programs modular by organizing
models in terms of objects with separate local state, it is often appropriate to divide
computational models into parts that evolve separately and concurrently. Even if
the programs are to be executed on a sequential computer, the practice of writing
programs as if they were to be executed concurrently forces the programmer to
avoid inessential timing constraints and thus makes programs more modular.

In addition to making programs more modular, concurrent computation can pro-
vide a speed advantage over sequential computation. Sequential computers execute
only one operation at a time, so the amount of time it takes to perform a task is
proportional to the total number of operations performed.39 However, if it is possi-
ble to decompose a problem into pieces that are relatively independent and need to

38. Such sequential threads are called “processes” throughout the book, but in this section we
use the term “thread” to emphasize their access to shared memory.

39. Most real processors actually execute a few operations at a time, following a strategy called
pipelining. Although this technique greatly improves the effective utilization of the hardware,
it is used only to speed up the execution of a sequential instruction stream, while retaining the
behavior of the sequential program.

266 Chapter 3 Modularity, Objects, and State

communicate only rarely, it may be possible to allocate pieces to separate computing
processors, producing a speed advantage proportional to the number of processors
available.

Unfortunately, the complexities introduced by assignment become even more
problematic in the presence of concurrency. The fact of concurrent execution, ei-
ther because the world operates in parallel or because our computers do, entails
additional complexity in our understanding of time.

3.4.1 The Nature of Time in Concurrent Systems
On the surface, time seems straightforward. It is an ordering imposed on events.40

For any events A and B, either A occurs before B, A and B are simultaneous, or A
occurs after B. For instance, returning to the bank account example, suppose that
Peter withdraws $10 and Paul withdraws $25 from a joint account that initially
contains $100, leaving $65 in the account. Depending on the order of the two
withdrawals, the sequence of balances in the account is either $100→ $90→ $65
or $100→ $75→ $65. In a computer implementation of the banking system, this
changing sequence of balances could be modeled by successive assignments to a
variable balance.

In complex situations, however, such a view can be problematic. Suppose that
Peter and Paul, and other people besides, are accessing the same bank account
through a network of banking machines distributed all over the world. The actual
sequence of balances in the account will depend critically on the detailed timing of
the accesses and the details of the communication among the machines.

This indeterminacy in the order of events can pose serious problems in the design
of concurrent systems. For instance, suppose that the withdrawals made by Peter and
Paul are implemented as two separate threads sharing a common variable balance,
each thread specified by the function given in section 3.1.1:

function withdraw(amount) {
if (balance >= amount) {

balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}

If the two threads operate independently, then Peter might test the balance and at-
tempt to withdraw a legitimate amount. However, Paul might withdraw some funds
in between the time that Peter checks the balance and the time Peter completes the
withdrawal, thus invalidating Peter’s test.

Things can be worse still. Consider the statement

balance = balance - amount;

40. To quote some graffiti seen on a building wall in Cambridge, Massachusetts: “Time is a
device that was invented to keep everything from happening at once.”

3.4.1 The Nature of Time in Concurrent Systems 267

Peter

Access balance: $100

new value: 100 – 10 = 90

update balance to $90

time

Bank Paul

$100

$90

$75

Access balance: $100

new value: 100 – 25 = 75

update balance to $75

Figure 3.29 Timing diagram showing how interleaving the order of events in two
banking withdrawals can lead to an incorrect final balance.

executed as part of each withdrawal process. This consists of three steps: (1) access-
ing the value of the balance variable; (2) computing the new balance; (3) setting
balance to this new value. If Peter and Paul’s withdrawals execute this statement
concurrently, then the two withdrawals might interleave the order in which they
access balance and set it to the new value.

The timing diagram in figure 3.29 depicts an order of events where balance
starts at 100, Peter withdraws 10, Paul withdraws 25, and yet the final value of
balance is 75. As shown in the diagram, the reason for this anomaly is that
Paul’s assignment of 75 to balance is made under the assumption that the value
of balance to be decremented is 100. That assumption, however, became invalid
when Peter changed balance to 90. This is a catastrophic failure for the banking
system, because the total amount of money in the system is not conserved. Before
the transactions, the total amount of money was $100. Afterwards, Peter has $10,
Paul has $25, and the bank has $75.41

The general phenomenon illustrated here is that several threads may share a
common state variable. What makes this complicated is that more than one thread
may be trying to manipulate the shared state at the same time. For the bank account

41. An even worse failure for this system could occur if the two assignments attempt to change
the balance simultaneously, in which case the actual data appearing in memory might end up
being a random combination of the information being written by the two threads. Most com-
puters have interlocks on the primitive memory-write operations, which protect against such
simultaneous access. Even this seemingly simple kind of protection, however, raises implemen-
tation challenges in the design of multiprocessing computers, where elaborate cache-coherence
protocols are required to ensure that the various processors will maintain a consistent view of
memory contents, despite the fact that data may be replicated (“cached”) among the different
processors to increase the speed of memory access.

268 Chapter 3 Modularity, Objects, and State

example, during each transaction, each customer should be able to act as if the other
customers did not exist. When customers change the balance in a way that depends
on the balance, they must be able to assume that, just before the moment of change,
the balance is still what they thought it was.

Correct behavior of concurrent programs
The above example typifies the subtle bugs that can creep into concurrent programs.
The root of this complexity lies in the assignments to variables that are shared
among the different threads. We already know that we must be careful in writing
programs that use assignment, because the results of a computation depend on the
order in which the assignments occur.42 With concurrent threads we must be espe-
cially careful about assignments, because we may not be able to control the order
of the assignments made by the different threads. If several such changes might
be made concurrently (as with two depositors accessing a joint account) we need
some way to ensure that our system behaves correctly. For example, in the case of
withdrawals from a joint bank account, we must ensure that money is conserved. To
make concurrent programs behave correctly, we may have to place some restrictions
on concurrent execution.

One possible restriction on concurrency would stipulate that no two operations
that change any shared state variables can occur at the same time. This is an ex-
tremely stringent requirement. For distributed banking, it would require the system
designer to ensure that only one transaction could proceed at a time. This would be
both inefficient and overly conservative. Figure 3.30 shows Peter and Paul sharing a
bank account, where Paul has a private account as well. The diagram illustrates two
withdrawals from the shared account (one by Peter and one by Paul) and a deposit
to Paul’s private account.43 The two withdrawals from the shared account must not
be concurrent (since both access and update the same account), and Paul’s deposit
and withdrawal must not be concurrent (since both access and update the amount
in Paul’s wallet). But there should be no problem permitting Paul’s deposit to his
private account to proceed concurrently with Peter’s withdrawal from the shared
account.

A less stringent restriction on concurrency would ensure that a concurrent system
produces the same result as if the threads had run sequentially in some order. There
are two important aspects to this requirement. First, it does not require the threads to
actually run sequentially, but only to produce results that are the same as if they had
run sequentially. For the example in figure 3.30, the designer of the bank account
system can safely allow Paul’s deposit and Peter’s withdrawal to happen concur-
rently, because the net result will be the same as if the two operations had happened
sequentially. Second, there may be more than one possible “correct” result produced
by a concurrent program, because we require only that the result be the same as for

42. The factorial program in section 3.1.3 illustrates this for a single sequential thread.

43. The columns show the contents of Peter’s wallet, the joint account (in Bank1), Paul’s wallet,
and Paul’s private account (in Bank2), before and after each withdrawal (W) and deposit (D).
Peter withdraws $10 from Bank1; Paul deposits $5 in Bank2, then withdraws $25 from Bank1.

3.4.1 The Nature of Time in Concurrent Systems 269

$100$7 $5 $300

$0 $305

$305$25$65$17

$17 $90

W

W

D

time

Peter Bank1 Paul Bank2

Figure 3.30 Concurrent deposits and withdrawals from a joint account in Bank1 and a
private account in Bank2.

some sequential order. For example, suppose that Peter and Paul’s joint account
starts out with $100, and Peter deposits $40 while Paul concurrently withdraws half
the money in the account. Then sequential execution could result in the account
balance being either $70 or $90 (see exercise 3.38).44

There are still weaker requirements for correct execution of concurrent programs.
A program for simulating diffusion (say, the flow of heat in an object) might consist
of a large number of threads, each one representing a small volume of space, that
update their values concurrently. Each thread repeatedly changes its value to the
average of its own value and its neighbors’ values. This algorithm converges to the
right answer independent of the order in which the operations are done; there is no
need for any restrictions on concurrent use of the shared values.

Exercise 3.38
Suppose that Peter, Paul, and Mary share a joint bank account that initially contains $100.
Concurrently, Peter deposits $10, Paul withdraws $20, and Mary withdraws half the money
in the account, by executing the following commands:

Peter: balance = balance + 10
Paul: balance = balance - 20
Mary: balance = balance - (balance / 2)

a. List all the different possible values for balance after these three transactions have
been completed, assuming that the banking system forces the three threads to run
sequentially in some order.

44. A more formal way to express this idea is to say that concurrent programs are inherently
nondeterministic. That is, they are described not by single-valued functions, but by functions
whose results are sets of possible values. In section 4.3 we will study a language for expressing
nondeterministic computations.

270 Chapter 3 Modularity, Objects, and State

b. What are some other values that could be produced if the system allows the threads to
be interleaved? Draw timing diagrams like the one in figure 3.29 to explain how these
values can occur.

3.4.2 Mechanisms for Controlling Concurrency
We’ve seen that the difficulty in dealing with concurrent threads is rooted in the
need to consider the interleaving of the order of events in the different threads. For
example, suppose we have two threads, one with three ordered events (a, b, c) and
one with three ordered events (x, y, z). If the two threads run concurrently, with no
constraints on how their execution is interleaved, then there are 20 different possible
orderings for the events that are consistent with the individual orderings for the two
threads:

(a, b, c, x, y, z) (a, x, b, y, c, z) (x, a, b, c, y, z) (x, a, y, z, b, c)
(a, b, x, c, y, z) (a, x, b, y, z, c) (x, a, b, y, c, z) (x, y, a, b, c, z)
(a, b, x, y, c, z) (a, x, y, b, c, z) (x, a, b, y, z, c) (x, y, a, b, z, c)
(a, b, x, y, z, c) (a, x, y, b, z, c) (x, a, y, b, c, z) (x, y, a, z, b, c)
(a, x, b, c, y, z) (a, x, y, z, b, c) (x, a, y, b, z, c) (x, y, z, a, b, c)

As programmers designing this system, we would have to consider the effects of
each of these 20 orderings and check that each behavior is acceptable. Such an
approach rapidly becomes unwieldy as the numbers of threads and events increase.

A more practical approach to the design of concurrent systems is to devise gen-
eral mechanisms that allow us to constrain the interleaving of concurrent threads
so that we can be sure that the program behavior is correct. Many mechanisms
have been developed for this purpose. In this section, we describe one of them, the
serializer.

Serializing access to shared state
Serialization implements the following idea: Threads will execute concurrently, but
there will be certain collections of functions that cannot be executed concurrently.
More precisely, serialization creates distinguished sets of functions such that only
one execution of a function in each serialized set is permitted to happen at a time. If
some function in the set is being executed, then a thread that attempts to execute any
function in the set will be forced to wait until the first execution has finished.

We can use serialization to control access to shared variables. For example, if
we want to update a shared variable based on the previous value of that variable, we
put the access to the previous value of the variable and the assignment of the new
value to the variable in the same function. We then ensure that no other function
that assigns to the variable can run concurrently with this function by serializing
all of these functions with the same serializer. This guarantees that the value of the
variable cannot be changed between an access and the corresponding assignment.

3.4.2 Mechanisms for Controlling Concurrency 271

Serializers
To make the above mechanism more concrete, suppose that we have extended
JavaScript to include a function called concurrent_execute:

concurrent_execute(f1, f2, . . ., fk)

Each f must be a function of no arguments. The function concurrent_execute
creates a separate thread for each f , which applies f (to no arguments). These threads
all run concurrently.45

As an example of how this is used, consider

let x = 10;
concurrent_execute(() => { x = x * x; },

() => { x = x + 1; });

This creates two concurrent threads—T1, which sets x to x times x, and T2, which
increments x. After execution is complete, x will be left with one of five possible
values, depending on the interleaving of the events of T1 and T2:

101: T1 sets x to 100 and then T2 increments x to 101.

121: T2 increments x to 11 and then T1 sets x to x times x.

110: T2 changes x from 10 to 11 between the two times that T1
accesses the value of x during the evaluation of x * x.

11: T2 accesses x, then T1 sets x to 100, then T2 sets x.

100: T1 accesses x (twice), then T2 sets x to 11, then T1 sets x.

We can constrain the concurrency by using serialized functions, which are
created by serializers. Serializers are constructed by make_serializer, whose im-
plementation is given below. A serializer takes a function as argument and returns
a serialized function that behaves like the original function. All calls to a given
serializer return serialized functions in the same set.

Thus, in contrast to the example above, executing

let x = 10;
const s = make_serializer();
concurrent_execute(s(() => { x = x * x; }),

s(() => { x = x + 1; }));

can produce only two possible values for x, 101 or 121. The other possibilities are
eliminated, because the execution of T1 and T2 cannot be interleaved.

Here is a version of the make_account function from section 3.1.1, where the
deposits and withdrawals have been serialized:

45. The function concurrent_execute is not part of the JavaScript standard, but the examples
in this section can be implemented in ECMAScript 2020.

272 Chapter 3 Modularity, Objects, and State

function make_account(balance) {
function withdraw(amount) {

if (balance > amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}
function deposit(amount) {

balance = balance + amount;
return balance;

}
const protect = make_serializer();
function dispatch(m) {

return m === "withdraw"
? protect(withdraw)
: m === "deposit"
? protect(deposit)
: m === "balance"
? balance
: error(m, "unknown request -- make_account");

}
return dispatch;

}

With this implementation, two threads cannot be withdrawing from or depositing
into a single account concurrently. This eliminates the source of the error illustrated
in figure 3.29, where Peter changes the account balance between the times when
Paul accesses the balance to compute the new value and when Paul actually per-
forms the assignment. On the other hand, each account has its own serializer, so that
deposits and withdrawals for different accounts can proceed concurrently.

Exercise 3.39
Which of the five possibilities in the concurrent execution shown above remain if we
instead serialize execution as follows:

let x = 10;
const s = make_serializer();
concurrent_execute(() => { x = s(() => x * x)(); },

s(() => { x = x + 1; }));

Exercise 3.40
Give all possible values of x that can result from executing

let x = 10;
concurrent_execute(() => { x = x * x; },

() => { x = x * x * x; });

3.4.2 Mechanisms for Controlling Concurrency 273

Which of these possibilities remain if we instead use serialized functions:

let x = 10;
const s = make_serializer();
concurrent_execute(s(() => { x = x * x; }),

s(() => { x = x * x * x; }));

Exercise 3.41
Ben Bitdiddle worries that it would be better to implement the bank account as follows
(where the commented line has been changed):

function make_account(balance) {
function withdraw(amount) {

if (balance > amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}
function deposit(amount) {

balance = balance + amount;
return balance;

}
const protect = make_serializer();
function dispatch(m) {

return m === "withdraw"
? protect(withdraw)
: m === "deposit"
? protect(deposit)
: m === "balance"
? protect(() => balance)(undefined) // serialized
: error(m, "unknown request -- make_account");

}
return dispatch;

}

because allowing unserialized access to the bank balance can result in anomalous behavior.
Do you agree? Is there any scenario that demonstrates Ben’s concern?

Exercise 3.42
Ben Bitdiddle suggests that it’s a waste of time to create a new serialized function in
response to every withdraw and deposit message. He says that make_account could be
changed so that the calls to protect are done outside the dispatch function. That is, an
account would return the same serialized function (which was created at the same time as
the account) each time it is asked for a withdrawal function.

274 Chapter 3 Modularity, Objects, and State

function make_account(balance) {
function withdraw(amount) {

if (balance > amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}
function deposit(amount) {

balance = balance + amount;
return balance;

}
const protect = make_serializer();
const protect_withdraw = protect(withdraw);
const protect_deposit = protect(deposit);
function dispatch(m) {

return m === "withdraw"
? protect_withdraw
: m === "deposit"
? protect_deposit
: m === "balance"
? balance
: error(m, "unknown request -- make_account");

}
return dispatch;

}

Is this a safe change to make? In particular, is there any difference in what concurrency is
allowed by these two versions of make_account ?

Complexity of using multiple shared resources
Serializers provide a powerful abstraction that helps isolate the complexities of con-
current programs so that they can be dealt with carefully and (hopefully) correctly.
However, while using serializers is relatively straightforward when there is only a
single shared resource (such as a single bank account), concurrent programming can
be treacherously difficult when there are multiple shared resources.

To illustrate one of the difficulties that can arise, suppose we wish to swap the
balances in two bank accounts. We access each account to find the balance, compute
the difference between the balances, withdraw this difference from one account, and
deposit it in the other account. We could implement this as follows:46

function exchange(account1, account2) {
const difference = account1("balance") - account2("balance");
account1("withdraw")(difference);
account2("deposit")(difference);

}

46. We have simplified exchange by exploiting the fact that our deposit message accepts
negative amounts. (This is a serious bug in our banking system!)

3.4.2 Mechanisms for Controlling Concurrency 275

This function works well when only a single thread is trying to do the exchange.
Suppose, however, that Peter and Paul both have access to accounts a1, a2, and a3,
and that Peter exchanges a1 and a2 while Paul concurrently exchanges a1 and a3.
Even with account deposits and withdrawals serialized for individual accounts (as
in the make_account function shown above in this section), exchange can still
produce incorrect results. For example, Peter might compute the difference in the
balances for a1 and a2, but then Paul might change the balance in a1 before Peter
is able to complete the exchange.47 For correct behavior, we must arrange for the
exchange function to lock out any other concurrent accesses to the accounts during
the entire time of the exchange.

One way we can accomplish this is by using both accounts’ serializers to se-
rialize the entire exchange function. To do this, we will arrange for access to an
account’s serializer. Note that we are deliberately breaking the modularity of the
bank-account object by exposing the serializer. The following version of make_
account is identical to the original version given in section 3.1.1, except that a
serializer is provided to protect the balance variable, and the serializer is exported
via message passing:

function make_account_and_serializer(balance) {
function withdraw(amount) {

if (balance > amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}
function deposit(amount) {

balance = balance + amount;
return balance;

}
const balance_serializer = make_serializer();
return m => m === "withdraw"

? withdraw
: m === "deposit"
? deposit
: m === "balance"
? balance
: m === "serializer"
? balance_serializer
: error(m, "unknown request -- make_account");

}

47. If the account balances start out as $10, $20, and $30, then after any number of concurrent
exchanges, the balances should still be $10, $20, and $30 in some order. Serializing the deposits
to individual accounts is not sufficient to guarantee this. See exercise 3.43.

276 Chapter 3 Modularity, Objects, and State

We can use this to do serialized deposits and withdrawals. However, unlike our
earlier serialized account, it is now the responsibility of each user of bank-account
objects to explicitly manage the serialization, for example as follows:48

function deposit(account, amount) {
const s = account("serializer");
const d = account("deposit");
s(d(amount));

}

Exporting the serializer in this way gives us enough flexibility to implement a
serialized exchange program. We simply serialize the original exchange function
with the serializers for both accounts:

function serialized_exchange(account1, account2) {
const serializer1 = account1("serializer");
const serializer2 = account2("serializer");
serializer1(serializer2(exchange))(account1, account2);

}

Exercise 3.43
Suppose that the balances in three accounts start out as $10, $20, and $30, and that multiple
threads run, exchanging the balances in the accounts. Argue that if the threads are run
sequentially, after any number of concurrent exchanges, the account balances should be
$10, $20, and $30 in some order. Draw a timing diagram like the one in figure 3.29 to show
how this condition can be violated if the exchanges are implemented using the first version
of the account-exchange program in this section. On the other hand, argue that even with
this exchange program, the sum of the balances in the accounts will be preserved. Draw a
timing diagram to show how even this condition would be violated if we did not serialize
the transactions on individual accounts.

Exercise 3.44
Consider the problem of transferring an amount from one account to another. Ben Bitdiddle
claims that this can be accomplished with the following function, even if there are multi-
ple people concurrently transferring money among multiple accounts, using any account
mechanism that serializes deposit and withdrawal transactions, for example, the version of
make_account in the text above.

function transfer(from_account, to_account, amount) {
from_account("withdraw")(amount);
to_account("deposit")(amount);

}

48. Exercise 3.45 investigates why deposits and withdrawals are no longer automatically
serialized by the account.

3.4.2 Mechanisms for Controlling Concurrency 277

Louis Reasoner claims that there is a problem here, and that we need to use a more sophis-
ticated method, such as the one required for dealing with the exchange problem. Is Louis
right? If not, what is the essential difference between the transfer problem and the exchange
problem? (You should assume that the balance in from_account is at least amount.)

Exercise 3.45
Louis Reasoner thinks our bank-account system is unnecessarily complex and error-prone
now that deposits and withdrawals aren’t automatically serialized. He suggests that make_
account_and_serializer should have exported the serializer (for use by such functions
as serialized_exchange) in addition to (rather than instead of) using it to serialize
accounts and deposits as make_account did. He proposes to redefine accounts as follows:

function make_account_and_serializer(balance) {
function withdraw(amount) {

if (balance > amount) {
balance = balance - amount;
return balance;

} else {
return "Insufficient funds";

}
}
function deposit(amount) {

balance = balance + amount;
return balance;

}
const balance_serializer = make_serializer();
return m => m === "withdraw"

? balance_serializer(withdraw)
: m === "deposit"
? balance_serializer(deposit)
: m === "balance"
? balance
: m === "serializer"
? balance_serializer
: error(m, "unknown request -- make_account");

}

Then deposits are handled as with the original make_account:

function deposit(account, amount) {
account("deposit")(amount);

}

Explain what is wrong with Louis’s reasoning. In particular, consider what happens when
serialized_exchange is called.

278 Chapter 3 Modularity, Objects, and State

Implementing serializers
We implement serializers in terms of a more primitive synchronization mechanism
called a mutex. A mutex is an object that supports two operations—the mutex can
be acquired, and the mutex can be released. Once a mutex has been acquired, no
other acquire operations on that mutex may proceed until the mutex is released.49

In our implementation, each serializer has an associated mutex. Given a function f,
the serializer returns a function that acquires the mutex, runs f, and then releases
the mutex. This ensures that only one of the functions produced by the serializer
can be running at once, which is precisely the serialization property that we need
to guarantee. To apply serializers to functions that take an arbitrary number of ar-
guments, we use JavaScript’s rest parameter and spread syntax. The ... in front of
the parameter args collects the rest (here all) of the arguments of any call of the
function into a vector data structure. The ... in front of args in the application
f(...args) spreads the elements of args so that they become separate arguments
of f.

function make_serializer() {
const mutex = make_mutex();
return f => {

function serialized_f(...args) {
mutex("acquire");
const val = f(...args);
mutex("release");
return val;

}
return serialized_f;

};
}

The mutex is a mutable object (here we’ll use a one-element list, which we’ll
refer to as a cell) that can hold the value true or false. When the value is false, the
mutex is available to be acquired. When the value is true, the mutex is unavailable,
and any thread that attempts to acquire the mutex must wait.

Our mutex constructor make_mutex begins by initializing the cell contents to
false. To acquire the mutex, we test the cell. If the mutex is available, we set the cell
contents to true and proceed. Otherwise, we wait in a loop, attempting to acquire

49. The term “mutex” is an abbreviation for mutual exclusion. The general problem of ar-
ranging a mechanism that permits concurrent threads to safely share resources is called the
mutual exclusion problem. Our mutex is a simple variant of the semaphore mechanism (see
exercise 3.47), which was introduced in the “THE” Multiprogramming System developed at
the Technological University of Eindhoven and named for the university’s initials in Dutch
(Dijkstra 1968a). The acquire and release operations were originally called P and V, from the
Dutch words passeren (to pass) and vrijgeven (to release), in reference to the semaphores used
on railroad systems. Dijkstra’s classic exposition (1968b) was one of the first to clearly present
the issues of concurrency control, and showed how to use semaphores to handle a variety of
concurrency problems.

3.4.2 Mechanisms for Controlling Concurrency 279

over and over again, until we find that the mutex is available.50 To release the mutex,
we set the cell contents to false.

function make_mutex() {
const cell = list(false);
function the_mutex(m) {

return m === "acquire"
? test_and_set(cell)
? the_mutex("acquire") // retry
: true

: m === "release"
? clear(cell)
: error(m, "unknown request -- mutex");

}
return the_mutex;

}
function clear(cell) {

set_head(cell, false);
}

The function test_and_set tests the cell and returns the result of the test. In
addition, if the test was false, test_and_set sets the cell contents to true before
returning false. We can express this behavior as the following function:

function test_and_set(cell) {
if (head(cell)) {

return true;
} else {

set_head(cell, true);
return false;

}
}

However, this implementation of test_and_set does not suffice as it stands.
There is a crucial subtlety here, which is the essential place where concurrency con-
trol enters the system: The test_and_set operation must be performed atomically.
That is, we must guarantee that, once a thread has tested the cell and found it to be
false, the cell contents will actually be set to true before any other thread can test
the cell. If we do not make this guarantee, then the mutex can fail in a way similar
to the bank-account failure in figure 3.29. (See exercise 3.46.)

The actual implementation of test_and_set depends on the details of how
our system runs concurrent threads. For example, we might be executing concur-
rent threads on a sequential processor using a time-slicing mechanism that cycles
through the threads, permitting each thread to run for a short time before interrupt-
ing it and moving on to the next thread. In that case, test_and_set can work

50. In most time-shared operating systems, threads that are blocked by a mutex do not waste
time “busy-waiting” as above. Instead, the system schedules another thread to run while the first
is waiting, and the blocked thread is awakened when the mutex becomes available.

280 Chapter 3 Modularity, Objects, and State

by disabling time slicing during the testing and setting. Alternatively, multipro-
cessing computers provide instructions that support atomic operations directly in
hardware.51

Exercise 3.46
Suppose that we implement test_and_set using an ordinary function as shown in the text,
without attempting to make the operation atomic. Draw a timing diagram like the one in
figure 3.29 to demonstrate how the mutex implementation can fail by allowing two threads
to acquire the mutex at the same time.

Exercise 3.47
A semaphore (of size n) is a generalization of a mutex. Like a mutex, a semaphore supports
acquire and release operations, but it is more general in that up to n threads can acquire
it concurrently. Additional threads that attempt to acquire the semaphore must wait for
release operations. Give implementations of semaphores

a. in terms of mutexes

b. in terms of atomic test_and_set operations.

Deadlock
Now that we have seen how to implement serializers, we can see that account ex-
changing still has a problem, even with the serialized_exchange function above.
Imagine that Peter attempts to exchange a1 with a2 while Paul concurrently attempts
to exchange a2 with a1. Suppose that Peter’s thread reaches the point where it has
entered a serialized function protecting a1 and, just after that, Paul’s thread enters
a serialized function protecting a2. Now Peter cannot proceed (to enter a serialized
function protecting a2) until Paul exits the serialized function protecting a2. Simi-
larly, Paul cannot proceed until Peter exits the serialized function protecting a1. Each
thread is stalled forever, waiting for the other. This situation is called a deadlock.
Deadlock is always a danger in systems that provide concurrent access to multiple
shared resources.

One way to avoid the deadlock in this situation is to give each account a unique
identification number and rewrite serialized_exchange so that a thread will

51. There are many variants of such instructions—including test-and-set, test-and-clear, swap,
compare-and-exchange, load-reserve, and store-conditional—whose design must be carefully
matched to the machine’s processor–memory interface. One issue that arises here is to deter-
mine what happens if two threads attempt to acquire the same resource at exactly the same
time by using such an instruction. This requires some mechanism for making a decision about
which thread gets control. Such a mechanism is called an arbiter. Arbiters usually boil down to
some sort of hardware device. Unfortunately, it is possible to prove that one cannot physically
construct a fair arbiter that works 100% of the time unless one allows the arbiter an arbitrarily
long time to make its decision. The fundamental phenomenon here was originally observed
by the fourteenth-century French philosopher Jean Buridan in his commentary on Aristotle’s
De caelo. Buridan argued that a perfectly rational dog placed between two equally attractive
sources of food will starve to death, because it is incapable of deciding which to go to first.

3.4.2 Mechanisms for Controlling Concurrency 281

always attempt to enter a function protecting the lowest-numbered account first. Al-
though this method works well for the exchange problem, there are other situations
that require more sophisticated deadlock-avoidance techniques, or where deadlock
cannot be avoided at all. (See exercises 3.48 and 3.49.)52

Exercise 3.48
Explain in detail why the deadlock-avoidance method described above, (i.e., the accounts
are numbered, and each thread attempts to acquire the smaller-numbered account first)
avoids deadlock in the exchange problem. Rewrite serialized_exchange to incorporate
this idea. (You will also need to modify make_account so that each account is created with
a number, which can be accessed by sending an appropriate message.)

Exercise 3.49
Give a scenario where the deadlock-avoidance mechanism described above does not work.
(Hint: In the exchange problem, each thread knows in advance which accounts it will
need to get access to. Consider a situation where a thread must get access to some shared
resources before it can know which additional shared resources it will require.)

Concurrency, time, and communication
We’ve seen how programming concurrent systems requires controlling the ordering
of events when different threads access shared state, and we’ve seen how to achieve
this control through judicious use of serializers. But the problems of concurrency lie
deeper than this, because, from a fundamental point of view, it’s not always clear
what is meant by “shared state.”

Mechanisms such as test_and_set require threads to examine a global shared
flag at arbitrary times. This is problematic and inefficient to implement in modern
high-speed processors, where due to optimization techniques such as pipelining and
cached memory, the contents of memory may not be in a consistent state at every
instant. In some multiprocessing systems, therefore, the serializer paradigm is being
supplanted by other approaches to concurrency control.53

The problematic aspects of shared state also arise in large, distributed systems.
For instance, imagine a distributed banking system where individual branch banks

52. The general technique for avoiding deadlock by numbering the shared resources and ac-
quiring them in order is due to Havender (1968). Situations where deadlock cannot be avoided
require deadlock-recovery methods, which entail having threads “back out” of the deadlocked
state and try again. Deadlock-recovery mechanisms are widely used in data-base-management
systems, a topic that is treated in detail in Gray and Reuter 1993.

53. One such alternative to serialization is called barrier synchronization. The programmer
permits concurrent threads to execute as they please, but establishes certain synchronization
points (“barriers”) through which no thread can proceed until all the threads have reached the
barrier. Some processors provide machine instructions that permit programmers to establish
synchronization points at places where consistency is required. The PowerPCTM, for exam-
ple, includes for this purpose two instructions called SYNC and EIEIO (Enforced In-order
Execution of Input/Output).

282 Chapter 3 Modularity, Objects, and State

maintain local values for bank balances and periodically compare these with values
maintained by other branches. In such a system the value of “the account balance”
would be undetermined, except right after synchronization. If Peter deposits money
in an account he holds jointly with Paul, when should we say that the account
balance has changed—when the balance in the local branch changes, or not until
after the synchronization? And if Paul accesses the account from a different branch,
what are the reasonable constraints to place on the banking system such that the be-
havior is “correct”? The only thing that might matter for correctness is the behavior
observed by Peter and Paul individually and the “state” of the account immediately
after synchronization. Questions about the “real” account balance or the order of
events between synchronizations may be irrelevant or meaningless.54

The basic phenomenon here is that synchronizing different threads, establishing
shared state, or imposing an order on events requires communication among the
threads. In essence, any notion of time in concurrency control must be intimately
tied to communication.55 It is intriguing that a similar connection between time
and communication also arises in the Theory of Relativity, where the speed of light
(the fastest signal that can be used to synchronize events) is a fundamental constant
relating time and space. The complexities we encounter in dealing with time and
state in our computational models may in fact mirror a fundamental complexity of
the physical universe.

3.5 Streams
We’ve gained a good understanding of assignment as a tool in modeling, as well
as an appreciation of the complex problems that assignment raises. It is time to ask
whether we could have gone about things in a different way, so as to avoid some
of these problems. In this section, we explore an alternative approach to modeling
state, based on data structures called streams. As we shall see, streams can mitigate
some of the complexity of modeling state.

Let’s step back and review where this complexity comes from. In an attempt
to model real-world phenomena, we made some apparently reasonable decisions:
We modeled real-world objects with local state by computational objects with local
variables. We identified time variation in the real world with time variation in the
computer. We implemented the time variation of the states of the model objects in
the computer with assignments to the local variables of the model objects.

54. This may seem like a strange point of view, but there are systems that work this way. In-
ternational charges to credit-card accounts, for example, are normally cleared on a per-country
basis, and the charges made in different countries are periodically reconciled. Thus the account
balance may be different in different countries.

55. For distributed systems, this perspective was pursued by Lamport (1978), who showed how
to use communication to establish “global clocks” that can be used to establish orderings on
events in distributed systems.

3.5.1 Streams Are Delayed Lists 283

Is there another approach? Can we avoid identifying time in the computer with
time in the modeled world? Must we make the model change with time in order to
model phenomena in a changing world? Think about the issue in terms of mathe-
matical functions. We can describe the time-varying behavior of a quantity x as a
function of time x(t). If we concentrate on x instant by instant, we think of it as a
changing quantity. Yet if we concentrate on the entire time history of values, we do
not emphasize change—the function itself does not change.56

If time is measured in discrete steps, then we can model a time function as a
(possibly infinite) sequence. In this section, we will see how to model change in
terms of sequences that represent the time histories of the systems being modeled.
To accomplish this, we introduce new data structures called streams. From an ab-
stract point of view, a stream is simply a sequence. However, we will find that
the straightforward implementation of streams as lists (as in section 2.2.1) doesn’t
fully reveal the power of stream processing. As an alternative, we introduce the
technique of delayed evaluation, which enables us to represent very large (even
infinite) sequences as streams.

Stream processing lets us model systems that have state without ever using
assignment or mutable data. This has important implications, both theoretical and
practical, because we can build models that avoid the drawbacks inherent in intro-
ducing assignment. On the other hand, the stream framework raises difficulties of
its own, and the question of which modeling technique leads to more modular and
more easily maintained systems remains open.

3.5.1 Streams Are Delayed Lists
As we saw in section 2.2.3, sequences can serve as standard interfaces for combining
program modules. We formulated powerful abstractions for manipulating sequences,
such as map, filter, and accumulate, that capture a wide variety of operations in
a manner that is both succinct and elegant.

Unfortunately, if we represent sequences as lists, this elegance is bought at the
price of severe inefficiency with respect to both the time and space required by our
computations. When we represent manipulations on sequences as transformations
of lists, our programs must construct and copy data structures (which may be huge)
at every step of a process.

To see why this is true, let us compare two programs for computing the sum of
all the prime numbers in an interval. The first program is written in standard iterative
style:57

56. Physicists sometimes adopt this view by introducing the “world lines” of particles as a
device for reasoning about motion. We’ve also already mentioned (section 2.2.3) that this is the
natural way to think about signal-processing systems. We will explore applications of streams
to signal processing in section 3.5.3.

57. Assume that we have a predicate is_prime (e.g., as in section 1.2.6) that tests for primality.

284 Chapter 3 Modularity, Objects, and State

function sum_primes(a, b) {
function iter(count, accum) {

return count > b
? accum
: is_prime(count)
? iter(count + 1, count + accum)
: iter(count + 1, accum);

}
return iter(a, 0);

}

The second program performs the same computation using the sequence operations
of section 2.2.3:

function sum_primes(a, b) {
return accumulate((x, y) => x + y,

0,
filter(is_prime,

enumerate_interval(a, b)));
}

In carrying out the computation, the first program needs to store only the sum
being accumulated. In contrast, the filter in the second program cannot do any testing
until enumerate_interval has constructed a complete list of the numbers in the
interval. The filter generates another list, which in turn is passed to accumulate be-
fore being collapsed to form a sum. Such large intermediate storage is not needed by
the first program, which we can think of as enumerating the interval incrementally,
adding each prime to the sum as it is generated.

The inefficiency in using lists becomes painfully apparent if we use the sequence
paradigm to compute the second prime in the interval from 10,000 to 1,000,000 by
evaluating the expression

head(tail(filter(is_prime,
enumerate_interval(10000, 1000000))));

This expression does find the second prime, but the computational overhead is outra-
geous. We construct a list of almost a million integers, filter this list by testing each
element for primality, and then ignore almost all of the result. In a more traditional
programming style, we would interleave the enumeration and the filtering, and stop
when we reached the second prime.

Streams are a clever idea that allows one to use sequence manipulations without
incurring the costs of manipulating sequences as lists. With streams we can achieve
the best of both worlds: We can formulate programs elegantly as sequence manipu-
lations, while attaining the efficiency of incremental computation. The basic idea is
to arrange to construct a stream only partially, and to pass the partial construction to
the program that consumes the stream. If the consumer attempts to access a part of
the stream that has not yet been constructed, the stream will automatically construct
just enough more of itself to produce the required part, thus preserving the illusion
that the entire stream exists. In other words, although we will write programs as if
we were processing complete sequences, we design our stream implementation to
automatically and transparently interleave the construction of the stream with its use.

3.5.1 Streams Are Delayed Lists 285

To accomplish this, we will construct streams using pairs, with the first item of
the stream in the head of the pair. However, rather than placing the value of the rest
of the stream into the tail of the pair, we will put there a “promise” to compute the
rest if it is ever requested. If we have a data item h and a stream t, we construct a
stream whose head is h and whose tail is t by evaluating pair(h, () => t)—the
tail t of a stream is “wrapped” in a function of no arguments, so that its evaluation
will be delayed. The empty stream is null, the same as the empty list.

To access the first data item of a nonempty stream, we simply select the head
of the pair, as with a list. But to access the tail of a stream, we need to evaluate the
delayed expression. For convenience, we define

function stream_tail(stream) {
return tail(stream)();

}

This selects the tail of the pair and applies the function found there to obtain the next
pair of the stream (or null if the tail of the stream is empty)—in effect, forcing the
function in the tail of the pair to fulfill its promise.

We can make and use streams, in just the same way as we can make and use
lists, to represent aggregate data arranged in a sequence. In particular, we can build
stream analogs of the list operations from chapter 2, such as list_ref, map, and
for_each:58

function stream_ref(s, n) {
return n === 0

? head(s)
: stream_ref(stream_tail(s), n - 1);

}
function stream_map(f, s) {

return is_null(s)
? null
: pair(f(head(s)),

() => stream_map(f, stream_tail(s)));
}
function stream_for_each(fun, s) {

if (is_null(s)) {
return true;

} else {
fun(head(s));
return stream_for_each(fun, stream_tail(s));

}
}

58. This should bother you. The fact that we are defining such similar functions for streams
and lists indicates that we are missing some underlying abstraction. Unfortunately, in order to
exploit this abstraction, we will need to exert finer control over the process of evaluation than
we can at present. We will discuss this point further at the end of section 3.5.4. In section 4.2,
we’ll develop a framework that unifies lists and streams.

286 Chapter 3 Modularity, Objects, and State

The function stream_for_each is useful for viewing streams:

function display_stream(s) {
return stream_for_each(display, s);

}

To make the stream implementation automatically and transparently interleave
the construction of a stream with its use, we have arranged for the tail of a stream
to be evaluated when it is accessed by the stream_tail function rather than when
the stream is constructed by pair. This implementation choice is reminiscent of our
discussion of rational numbers in section 2.1.2, where we saw that we can choose
to implement rational numbers so that the reduction of numerator and denominator
to lowest terms is performed either at construction time or at selection time. The
two rational-number implementations produce the same data abstraction, but the
choice has an effect on efficiency. There is a similar relationship between streams
and ordinary lists. As a data abstraction, streams are the same as lists. The difference
is the time at which the elements are evaluated. With ordinary lists, both the head
and the tail are evaluated at construction time. With streams, the tail is evaluated
at selection time.

Streams in action
To see how this data structure behaves, let us analyze the “outrageous” prime
computation we saw above, reformulated in terms of streams:

head(stream_tail(stream_filter(
is_prime,
stream_enumerate_interval(10000, 1000000))));

We will see that it does indeed work efficiently.
We begin by calling stream_enumerate_interval with the arguments 10,000

and 1,000,000. The function stream_enumerate_interval is the stream analog
of enumerate_interval (section 2.2.3):

function stream_enumerate_interval(low, high) {
return low > high

? null
: pair(low,

() => stream_enumerate_interval(low + 1, high));
}

and thus the result returned by stream_enumerate_interval, formed by the pair,
is59

pair(10000, () => stream_enumerate_interval(10001, 1000000));

59. The numbers shown here do not really appear in the delayed expression. What actually
appears is the original expression, in an environment in which the variables are bound to the
appropriate numbers. For example, low + 1 with low bound to 10,000 actually appears where
10001 is shown.

3.5.1 Streams Are Delayed Lists 287

That is, stream_enumerate_interval returns a stream represented as a pair
whose head is 10,000 and whose tail is a promise to enumerate more of the interval
if so requested. This stream is now filtered for primes, using the stream analog of
the filter function (section 2.2.3):

function stream_filter(pred, stream) {
return is_null(stream)

? null
: pred(head(stream))
? pair(head(stream),

() => stream_filter(pred, stream_tail(stream)))
: stream_filter(pred, stream_tail(stream));

}

The function stream_filter tests the head of the stream (which is 10,000). Since
this is not prime, stream_filter examines the tail of its input stream. The call
to stream_tail forces evaluation of the delayed stream_enumerate_interval,
which now returns

pair(10001, () => stream_enumerate_interval(10002, 1000000));

The function stream_filter now looks at the head of this stream, 10,001, sees
that this is not prime either, forces another stream_tail, and so on, until stream_
enumerate_interval yields the prime 10,007, whereupon stream_filter, ac-
cording to its definition, returns

pair(head(stream),
stream_filter(pred, stream_tail(stream)));

which in this case is

pair(10007,
() => stream_filter(

is_prime,
pair(10008,

() => stream_enumerate_interval(10009, 1000000))));

This result is now passed to stream_tail in our original expression. This forces
the delayed stream_filter, which in turn keeps forcing the delayed stream_
enumerate_interval until it finds the next prime, which is 10,009. Finally, the
result passed to head in our original expression is

pair(10009,
() => stream_filter(

is_prime,
pair(10010,

() => stream_enumerate_interval(10011, 1000000))));

The function head returns 10,009, and the computation is complete. Only as many
integers were tested for primality as were necessary to find the second prime, and
the interval was enumerated only as far as was necessary to feed the prime filter.

288 Chapter 3 Modularity, Objects, and State

In general, we can think of delayed evaluation as “demand-driven” programming,
whereby each stage in the stream process is activated only enough to satisfy the
next stage. What we have done is to decouple the actual order of events in the
computation from the apparent structure of our functions. We write functions as
if the streams existed “all at once” when, in reality, the computation is performed
incrementally, as in traditional programming styles.

An optimization
When we construct stream pairs, we delay the evaluation of their tail expressions by
wrapping these expressions in a function. We force their evaluation when needed,
by applying the function.

This implementation suffices for streams to work as advertised, but there is an
important optimization that we shall consider where needed. In many applications,
we end up forcing the same delayed object many times. This can lead to serious inef-
ficiency in recursive programs involving streams. (See exercise 3.57.) The solution
is to build delayed objects so that the first time they are forced, they store the value
that is computed. Subsequent forcings will simply return the stored value without
repeating the computation. In other words, we implement the construction of stream
pairs as a memoized function similar to the one described in exercise 3.27. One
way to accomplish this is to use the following function, which takes as argument
a function (of no arguments) and returns a memoized version of the function. The
first time the memoized function is run, it saves the computed result. On subsequent
evaluations, it simply returns the result.60

function memo(fun) {
let already_run = false;
let result = undefined;
return () => {

if (!already_run) {
result = fun();
already_run = true;
return result;

} else {
return result;

}
};

}

We can make use of memo whenever we construct a stream pair. For example,
instead of

60. There are many possible implementations of streams other than the one described in this
section. Delayed evaluation, which is the key to making streams practical, was inherent in Algol
60’s call-by-name parameter-passing method. The use of this mechanism to implement streams
was first described by Landin (1965). Delayed evaluation for streams was introduced into Lisp
by Friedman and Wise (1976). In their implementation, cons (the Lisp equivalent of our pair
function) always delays evaluating its arguments, so that lists automatically behave as streams.
The memoizing optimization is also known as call-by-need. The Algol community would refer
to our original delayed objects as call-by-name thunks and to the optimized versions as call-by-
need thunks.

3.5.1 Streams Are Delayed Lists 289

function stream_map(f, s) {
return is_null(s)

? null
: pair(f(head(s)),

() => stream_map(f, stream_tail(s)));
}

we can define an optimized function stream_map as follows:

function stream_map_optimized(f, s) {
return is_null(s)

? null
: pair(f(head(s)),

memo(() =>
stream_map_optimized(f, stream_tail(s))));

}

Exercise 3.50
Declare a function stream_map_2 that takes a binary function and two streams as argu-
ments and returns a stream whose elements are the results of applying the function pairwise
to the corresponding elements of the argument streams.

function stream_map_2(f, s1, s2) {
...

}

Similar to stream_map_optimized, declare a function stream_map_2_optimized by
modifying your stream_map_2 such that the result stream employs memoization.

Exercise 3.51
Note that our primitive function display returns its argument after displaying it. What does
the interpreter print in response to evaluating each statement in the following sequence?61

let x = stream_map(display, stream_enumerate_interval(0, 10));
stream_ref(x, 5);
stream_ref(x, 7);

What does the interpreter print if stream_map_optimized is used instead of stream_map?

let x = stream_map_optimized(display, stream_enumerate_interval(0, 10));
stream_ref(x, 5);
stream_ref(x, 7);

61. Exercises such as 3.51 and 3.52 are valuable for testing our understanding of how delayed
evaluation works. On the other hand, intermixing delayed evaluation with printing—and, even
worse, with assignment—is extremely confusing, and instructors of courses on computer lan-
guages have traditionally tormented their students with examination questions such as the ones
in this section. Needless to say, writing programs that depend on such subtleties is odious
programming style. Part of the power of stream processing is that it lets us ignore the order in
which events actually happen in our programs. Unfortunately, this is precisely what we cannot
afford to do in the presence of assignment, which forces us to be concerned with time and
change.

290 Chapter 3 Modularity, Objects, and State

Exercise 3.52
Consider the sequence of statements

let sum = 0;
function accum(x) {

sum = x + sum;
return sum;

}
const seq = stream_map(accum, stream_enumerate_interval(1, 20));
const y = stream_filter(is_even, seq);
const z = stream_filter(x => x % 5 === 0, seq);
stream_ref(y, 7);
display_stream(z);

What is the value of sum after each of the above statements is evaluated? What is the
printed response to evaluating the stream_ref and display_stream expressions? Would
these responses differ if we had applied the function memo on every tail of every constructed
stream pair, as suggested in the optimization above? Explain.

3.5.2 Infinite Streams
We have seen how to support the illusion of manipulating streams as complete
entities even though, in actuality, we compute only as much of the stream as we
need to access. We can exploit this technique to represent sequences efficiently as
streams, even if the sequences are very long. What is more striking, we can use
streams to represent sequences that are infinitely long. For instance, consider the
following definition of the stream of positive integers:

function integers_starting_from(n) {
return pair(n, () => integers_starting_from(n + 1));

}

const integers = integers_starting_from(1);

This makes sense because integers will be a pair whose head is 1 and whose
tail is a promise to produce the integers beginning with 2. This is an infinitely
long stream, but in any given time we can examine only a finite portion of it. Thus,
our programs will never know that the entire infinite stream is not there.

Using integers we can define other infinite streams, such as the stream of
integers that are not divisible by 7:

function is_divisible(x, y) { return x % y === 0; }

const no_sevens = stream_filter(x => ! is_divisible(x, 7),
integers);

Then we can find integers not divisible by 7 simply by accessing elements of this
stream:

3.5.2 Infinite Streams 291

stream_ref(no_sevens, 100);
117

In analogy with integers, we can define the infinite stream of Fibonacci
numbers:

function fibgen(a, b) {
return pair(a, () => fibgen(b, a + b));

}

const fibs = fibgen(0, 1);

The constant fibs is a pair whose head is 0 and whose tail is a promise to evaluate
fibgen(1, 1). When we evaluate this delayed fibgen(1, 1), it will produce a
pair whose head is 1 and whose tail is a promise to evaluate fibgen(1, 2), and
so on.

For a look at a more exciting infinite stream, we can generalize the no_sevens
example to construct the infinite stream of prime numbers, using a method known
as the sieve of Eratosthenes.62 We start with the integers beginning with 2, which
is the first prime. To get the rest of the primes, we start by filtering the multiples of
2 from the rest of the integers. This leaves a stream beginning with 3, which is the
next prime. Now we filter the multiples of 3 from the rest of this stream. This leaves
a stream beginning with 5, which is the next prime, and so on. In other words, we
construct the primes by a sieving process, described as follows: To sieve a stream S,
form a stream whose first element is the first element of S and the rest of which is
obtained by filtering all multiples of the first element of S out of the rest of S and
sieving the result. This process is readily described in terms of stream operations:

function sieve(stream) {
return pair(head(stream),

() => sieve(stream_filter(
x => ! is_divisible(x, head(stream)),
stream_tail(stream))));

}
const primes = sieve(integers_starting_from(2));

Now to find a particular prime we need only ask for it:

stream_ref(primes, 50);
233

62. Eratosthenes, a third-century BCE Alexandrian Greek philosopher, is famous for giving
the first accurate estimate of the circumference of the Earth, which he computed by observ-
ing shadows cast at noon on the day of the summer solstice. Eratosthenes’s sieve method,
although ancient, has formed the basis for special-purpose hardware “sieves” that, until the
1970s, were the most powerful tools in existence for locating large primes. Since then, however,
these methods have been superseded by outgrowths of the probabilistic techniques discussed in
section 1.2.6.

292 Chapter 3 Modularity, Objects, and State

filter:

!is_divisible

sieve

sieve

head

tail
pair

Figure 3.31 The prime sieve viewed as a signal-processing system. Each solid line repre-
sents a stream of values being transmitted. The dashed line from the head to the pair and
the filter indicates that this is a single value rather than a stream.

It is interesting to contemplate the signal-processing system set up by sieve,
shown in the “Henderson diagram” in figure 3.31.63 The input stream feeds into an
“unpairer” that separates the first element of the stream from the rest of the stream.
The first element is used to construct a divisibility filter, through which the rest is
passed, and the output of the filter is fed to another sieve box. Then the original
first element is adjoined to the output of the internal sieve to form the output stream.
Thus, not only is the stream infinite, but the signal processor is also infinite, because
the sieve contains a sieve within it.

Defining streams implicitly
The integers and fibs streams above were defined by specifying “generating”
functions that explicitly compute the stream elements one by one. An alternative
way to specify streams is to take advantage of delayed evaluation to define streams
implicitly. For example, the following statement defines the stream ones to be an
infinite stream of ones:

const ones = pair(1, () => ones);

This works much like the declaration of a recursive function: ones is a pair whose
head is 1 and whose tail is a promise to evaluate ones. Evaluating the tail gives
us again a 1 and a promise to evaluate ones, and so on.

We can do more interesting things by manipulating streams with operations such
as add_streams, which produces the elementwise sum of two given streams:64

function add_streams(s1, s2) {
return stream_map_2((x1, x2) => x1 + x2, s1, s2);

}

Now we can define the integers as follows:

const integers = pair(1, () => add_streams(ones, integers));

63. We have named these figures after Peter Henderson, who was the first person to show us
diagrams of this sort as a way of thinking about stream processing.

64. This uses the function stream_map_2 from exercise 3.50.

3.5.2 Infinite Streams 293

This defines integers to be a stream whose first element is 1 and the rest of which
is the sum of ones and integers. Thus, the second element of integers is 1 plus
the first element of integers, or 2; the third element of integers is 1 plus the
second element of integers, or 3; and so on. This definition works because, at any
point, enough of the integers stream has been generated so that we can feed it
back into the definition to produce the next integer.

We can define the Fibonacci numbers in the same style:

const fibs = pair(0,
() => pair(1,

() => add_streams(stream_tail(fibs),
fibs)));

This definition says that fibs is a stream beginning with 0 and 1, such that the rest
of the stream can be generated by adding fibs to itself shifted by one place:

1 1 2 3 5 8 13 21 . . . = stream_tail(fibs)
0 1 1 2 3 5 8 13 . . . = fibs

0 1 1 2 3 5 8 13 21 34 . . . = fibs

The function scale_stream is also useful in formulating such stream defini-
tions. This multiplies each item in a stream by a given constant:

function scale_stream(stream, factor) {
return stream_map(x => x * factor,

stream);
}

For example,

const double = pair(1, () => scale_stream(double, 2));

produces the stream of powers of 2: 1, 2, 4, 8, 16, 32,
An alternate definition of the stream of primes can be given by starting with the

integers and filtering them by testing for primality. We will need the first prime, 2,
to get started:

const primes = pair(2,
() => stream_filter(is_prime,

integers_starting_from(3)));

This definition is not so straightforward as it appears, because we will test whether
a number n is prime by checking whether n is divisible by a prime (not by just any
integer) less than or equal to

√
n:

function is_prime(n) {
function iter(ps) {

return square(head(ps)) > n
? true
: is_divisible(n, head(ps))
? false
: iter(stream_tail(ps));

}
return iter(primes);

}

294 Chapter 3 Modularity, Objects, and State

This is a recursive definition, since primes is defined in terms of the is_prime
predicate, which itself uses the primes stream. The reason this function works is
that, at any point, enough of the primes stream has been generated to test the
primality of the numbers we need to check next. That is, for every n we test for
primality, either n is not prime (in which case there is a prime already generated that
divides it) or n is prime (in which case there is a prime already generated—i.e., a
prime less than n—that is greater than

√
n).65

Exercise 3.53
Without running the program, describe the elements of the stream defined by

const s = pair(1, () => add_streams(s, s));

Exercise 3.54
Define a function mul_streams, analogous to add_streams, that produces the element-
wise product of its two input streams. Use this together with the stream of integers to
complete the following definition of the stream whose nth element (counting from 0) is
n + 1 factorial:

const factorials = pair(1, () => mul_streams(〈??〉, 〈??〉));

Exercise 3.55
Define a function partial_sums that takes as argument a stream S and returns the stream
whose elements are S0, S0 + S1, S0 + S1 + S2, For example, partial_sums(integers)
should be the stream 1, 3, 6, 10, 15,

Exercise 3.56
A famous problem, first raised by R. Hamming, is to enumerate, in ascending order with
no repetitions, all positive integers with no prime factors other than 2, 3, or 5. One obvious
way to do this is to simply test each integer in turn to see whether it has any factors other
than 2, 3, and 5. But this is very inefficient, since, as the integers get larger, fewer and fewer
of them fit the requirement. As an alternative, let us call the required stream of numbers S
and notice the following facts about it.

• S begins with 1.

• The elements of scale_stream(S, 2) are also elements of S.

• The same is true for scale_stream(S, 3) and scale_stream(S, 5).

• These are all the elements of S.

65. This last point is very subtle and relies on the fact that pn+1≤ p2
n. (Here, pk denotes the

kth prime.) Estimates such as these are very difficult to establish. The ancient proof by Euclid
that there are an infinite number of primes shows that pn+1≤ p1p2 · · · pn + 1, and no substan-
tially better result was proved until 1851, when the Russian mathematician P. L. Chebyshev
established that pn+1≤ 2pn for all n. This result, originally conjectured in 1845, is known as
Bertrand’s hypothesis. A proof can be found in section 22.3 of Hardy and Wright 1960.

3.5.2 Infinite Streams 295

Now all we have to do is combine elements from these sources. For this we define a func-
tion merge that combines two ordered streams into one ordered result stream, eliminating
repetitions:

function merge(s1, s2) {
if (is_null(s1)) {

return s2;
} else if (is_null(s2)) {

return s1;
} else {

const s1head = head(s1);
const s2head = head(s2);
return s1head < s2head

? pair(s1head, () => merge(stream_tail(s1), s2))
: s1head > s2head
? pair(s2head, () => merge(s1, stream_tail(s2)))
: pair(s1head, () => merge(stream_tail(s1), stream_tail(s2)));

}
}

Then the required stream may be constructed with merge, as follows:

const S = pair(1, () => merge(〈??〉, 〈??〉));

Fill in the missing expressions in the places marked 〈??〉 above.

Exercise 3.57
How many additions are performed when we compute the nth Fibonacci number using
the declaration of fibs based on the add_streams function? Show that this number is
exponentially greater than the number of additions performed if add_streams had used
the function stream_map_2_optimized described in exercise 3.50.66

Exercise 3.58
Give an interpretation of the stream computed by the function

function expand(num, den, radix) {
return pair(math_trunc((num * radix) / den),

() => expand((num * radix) % den, den, radix));
}

where math_trunc discards the fractional part of its argument, here the remainder of
the division. What are the successive elements produced by expand(1, 7, 10)? What
is produced by expand(3, 8, 10)?

66. This exercise shows how call-by-need is closely related to ordinary memoization as de-
scribed in exercise 3.27. In that exercise, we used assignment to explicitly construct a local
table. Our call-by-need stream optimization effectively constructs such a table automatically,
storing values in the previously forced parts of the stream.

296 Chapter 3 Modularity, Objects, and State

Exercise 3.59
In section 2.5.3 we saw how to implement a polynomial arithmetic system representing
polynomials as lists of terms. In a similar way, we can work with power series, such as

ex = 1 + x +
x2

2
+

x3

3 · 2
+

x4

4 · 3 · 2
+ · · · ,

cos x = 1 –
x2

2
+

x4

4 · 3 · 2
– · · · ,

sin x = x –
x3

3 · 2
+

x5

5 · 4 · 3 · 2
– · · · ,

represented as infinite streams. We will represent the series a0 + a1x + a2x2 + a3x3 + · · · as
the stream whose elements are the coefficients a0, a1, a2, a3,

a. The integral of the series a0 + a1x + a2x2 + a3x3 + · · · is the series

c + a0x + 1
2 a1x2 + 1

3 a2x3 + 1
4 a3x4 + · · ·

where c is any constant. Define a function integrate_series that takes as input a
stream a0, a1, a2, . . . representing a power series and returns the stream a0, 1

2 a1, 1
3 a2, . . .

of coefficients of the nonconstant terms of the integral of the series. (Since the result has
no constant term, it doesn’t represent a power series; when we use integrate_series,
we will use pair to adjoin the appropriate constant to the beginning of the stream.)

b. The function x 7→ ex is its own derivative. This implies that ex and the integral of ex

are the same series, except for the constant term, which is e0 = 1. Accordingly, we can
generate the series for ex as

const exp_series = pair(1, () => integrate_series(exp_series));

Show how to generate the series for sine and cosine, starting from the facts that the
derivative of sine is cosine and the derivative of cosine is the negative of sine:

const cosine_series = pair(1, 〈??〉);
const sine_series = pair(0, 〈??〉);

Exercise 3.60
With power series represented as streams of coefficients as in exercise 3.59, adding series
is implemented by add-streams. Complete the declaration of the following function for
multiplying series:

function mul_series(s1, s2) {
pair(〈??〉, () => add_streams(〈??〉, 〈??〉));

}

You can test your function by verifying that sin2x + cos2x = 1, using the series from
exercise 3.59.

3.5.3 Exploiting the Stream Paradigm 297

Exercise 3.61
Let S be a power series (exercise 3.59) whose constant term is 1. Suppose we want to find
the power series 1/S, that is, the series X such that S ·X = 1. Write S = 1 + SR where SR is
the part of S after the constant term. Then we can solve for X as follows:

S ·X = 1
(1 + SR) ·X = 1

X + SR ·X = 1
X = 1 – SR ·X

In other words, X is the power series whose constant term is 1 and whose higher-order
terms are given by the negative of SR times X. Use this idea to write a function invert_
unit_series that computes 1/S for a power series S with constant term 1. You will need
to use mul_series from exercise 3.60.

Exercise 3.62
Use the results of exercises 3.60 and 3.61 to define a function div_series that divides two
power series. The function div_series should work for any two series, provided that the
denominator series begins with a nonzero constant term. (If the denominator has a zero
constant term, then div_series should signal an error.) Show how to use div_series
together with the result of exercise 3.59 to generate the power series for tangent.

3.5.3 Exploiting the Stream Paradigm
Streams with delayed evaluation can be a powerful modeling tool, providing many
of the benefits of local state and assignment. Moreover, they avoid some of the the-
oretical tangles that accompany the introduction of assignment into a programming
language.

The stream approach can be illuminating because it allows us to build systems
with different module boundaries than systems organized around assignment to state
variables. For example, we can think of an entire time series (or signal) as a focus
of interest, rather than the values of the state variables at individual moments. This
makes it convenient to combine and compare components of state from different
moments.

Formulating iterations as stream processes
In section 1.2.1, we introduced iterative processes, which proceed by updating state
variables. We know now that we can represent state as a “timeless” stream of values
rather than as a set of variables to be updated. Let’s adopt this perspective in revisit-
ing the square-root function from section 1.1.7. Recall that the idea is to generate a
sequence of better and better guesses for the square root of x by applying over and
over again the function that improves guesses:

function sqrt_improve(guess, x) {
return average(guess, x / guess);

}

298 Chapter 3 Modularity, Objects, and State

In our original sqrt function, we made these guesses be the successive values of
a state variable. Instead we can generate the infinite stream of guesses, starting with
an initial guess of 1:

function sqrt_stream(x) {
return pair(1, () => stream_map(guess => sqrt_improve(guess, x),

sqrt_stream(x)));
}

display_stream(sqrt_stream(2));
1
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
...

We can generate more and more terms of the stream to get better and better guesses.
If we like, we can write a function that keeps generating terms until the answer is
good enough. (See exercise 3.64.)

Another iteration that we can treat in the same way is to generate an approxima-
tion to π , based upon the alternating series that we saw in section 1.3.1:

π

4
= 1 –

1
3

+
1
5

–
1
7

+ · · ·

We first generate the stream of summands of the series (the reciprocals of the odd
integers, with alternating signs). Then we take the stream of sums of more and more
terms (using the partial_sums function of exercise 3.55) and scale the result by 4:

function pi_summands(n) {
return pair(1 / n, () => stream_map(x => - x, pi_summands(n + 2)));

}
const pi_stream = scale_stream(partial_sums(pi_summands(1)), 4);

display_stream(pi_stream);
4
2.666666666666667
3.466666666666667
2.8952380952380956
3.3396825396825403
2.9760461760461765
3.2837384837384844
3.017071817071818
...

This gives us a stream of better and better approximations to π , although the approx-
imations converge rather slowly. Eight terms of the sequence bound the value of π

between 3.284 and 3.017.
So far, our use of the stream of states approach is not much different from updat-

ing state variables. But streams give us an opportunity to do some interesting tricks.
For example, we can transform a stream with a sequence accelerator that converts a
sequence of approximations to a new sequence that converges to the same value as
the original, only faster.

3.5.3 Exploiting the Stream Paradigm 299

One such accelerator, due to the eighteenth-century Swiss mathematician Leon-
hard Euler, works well with sequences that are partial sums of alternating series
(series of terms with alternating signs). In Euler’s technique, if Sn is the nth term of
the original sum sequence, then the accelerated sequence has terms

Sn+1 –
(Sn+1 – Sn)2

Sn–1 – 2Sn + Sn+1

Thus, if the original sequence is represented as a stream of values, the transformed
sequence is given by

function euler_transform(s) {
const s0 = stream_ref(s, 0); // Sn–1
const s1 = stream_ref(s, 1); // Sn
const s2 = stream_ref(s, 2); // Sn+1
return pair(s2 - square(s2 - s1) / (s0 + (-2) * s1 + s2),

memo(() => euler_transform(stream_tail(s))));
}

Note that we make use of the memoization optimization of section 3.5.1, because in
the following we will rely on repeated evaluation of the resulting stream.

We can demonstrate Euler acceleration with our sequence of approximations
to π:

display_stream(euler_transform(pi_stream));
3.166666666666667
3.1333333333333337
3.1452380952380956
3.13968253968254
3.1427128427128435
3.1408813408813416
3.142071817071818
3.1412548236077655
...

Even better, we can accelerate the accelerated sequence, and recursively acceler-
ate that, and so on. Namely, we create a stream of streams (a structure we’ll call a
tableau) in which each stream is the transform of the preceding one:

function make_tableau(transform, s) {
return pair(s, () => make_tableau(transform, transform(s)));

}

The tableau has the form

s00 s01 s02 s03 s04 . . .
s10 s11 s12 s13 . . .

s20 s21 s22 . . .
. . .

Finally, we form a sequence by taking the first term in each row of the tableau:

function accelerated_sequence(transform, s) {
return stream_map(head, make_tableau(transform, s));

}

300 Chapter 3 Modularity, Objects, and State

We can demonstrate this kind of “super-acceleration” of the π sequence:

display_stream(accelerated_sequence(euler_transform, pi_stream));
4
3.166666666666667
3.142105263157895
3.141599357319005
3.1415927140337785
3.1415926539752927
3.1415926535911765
3.141592653589778
...

The result is impressive. Taking eight terms of the sequence yields the correct value
of π to 14 decimal places. If we had used only the original π sequence, we would
need to compute on the order of 1013 terms (i.e., expanding the series far enough so
that the individual terms are less then 10–13) to get that much accuracy!

We could have implemented these acceleration techniques without using streams.
But the stream formulation is particularly elegant and convenient because the entire
sequence of states is available to us as a data structure that can be manipulated with
a uniform set of operations.

Exercise 3.63
Louis Reasoner is not happy with the performance of the stream produced by the sqrt_
stream function and tries to optimize it using memoization:

function sqrt_stream_optimized(x) {
return pair(1,

memo(() => stream_map(guess =>
sqrt_improve(guess, x),

sqrt_stream_optimized(x))));
}

Alyssa P. Hacker instead proposes

function sqrt_stream_optimized_2(x) {
const guesses = pair(1,

memo(() => stream_map(guess =>
sqrt_improve(guess, x),

guesses)));
return guesses;

}

and claims that Louis’s version is considerably less efficient than hers, because it per-
forms redundant computation. Explain Alyssa’s answer. Would Alyssa’s approach without
memoization be more efficient than the original sqrt_stream?

Exercise 3.64
Write a function stream_limit that takes as arguments a stream and a number (the tol-
erance). It should examine the stream until it finds two successive elements that differ in
absolute value by less than the tolerance, and return the second of the two elements. Using
this, we could compute square roots up to a given tolerance by

3.5.3 Exploiting the Stream Paradigm 301

function sqrt(x, tolerance) {
return stream_limit(sqrt_stream(x), tolerance);

}

Exercise 3.65
Use the series

ln 2 = 1 –
1
2

+
1
3

–
1
4

+ · · ·

to compute three sequences of approximations to the natural logarithm of 2, in the same
way we did above for π . How rapidly do these sequences converge?

Infinite streams of pairs
In section 2.2.3, we saw how the sequence paradigm handles traditional nested loops
as processes defined on sequences of pairs. If we generalize this technique to infinite
streams, then we can write programs that are not easily represented as loops, because
the “looping” must range over an infinite set.

For example, suppose we want to generalize the prime_sum_pairs function of
section 2.2.3 to produce the stream of pairs of all integers (i, j) with i≤ j such that
i + j is prime. If int_pairs is the sequence of all pairs of integers (i, j) with i≤ j,
then our required stream is simply67

stream_filter(pair => is_prime(head(pair) + head(tail(pair))),
int_pairs);

Our problem, then, is to produce the stream int_pairs. More generally, suppose
we have two streams S = (Si) and T = (Tj), and imagine the infinite rectangular array

(S0, T0) (S0, T1) (S0, T2) . . .
(S1, T0) (S1, T1) (S1, T2) . . .
(S2, T0) (S2, T1) (S2, T2) . . .
. . .

We wish to generate a stream that contains all the pairs in the array that lie on or
above the diagonal, i.e., the pairs

(S0, T0) (S0, T1) (S0, T2) . . .
(S1, T1) (S1, T2) . . .

(S2, T2) . . .
. . .

(If we take both S and T to be the stream of integers, then this will be our desired
stream int_pairs.)

Call the general stream of pairs pairs(S, T), and consider it to be composed
of three parts: the pair (S0, T0), the rest of the pairs in the first row, and the remaining
pairs:68

67. As in section 2.2.3, we represent a pair of integers as a list rather than a pair.

68. See exercise 3.68 for some insight into why we chose this decomposition.

302 Chapter 3 Modularity, Objects, and State

(S0, T0) (S0, T1) (S0, T2) . . .
(S1, T1) (S1, T2) . . .

(S2, T2) . . .
. . .

Observe that the third piece in this decomposition (pairs that are not in the first
row) is (recursively) the pairs formed from stream_tail(S) and stream_tail(T).
Also note that the second piece (the rest of the first row) is

stream_map(x => list(head(s), x),
stream_tail(t));

Thus we can form our stream of pairs as follows:

function pairs(s, t) {
return pair(list(head(s), head(t)),

() => combine-in-some-way(
stream_map(x => list(head(s), x),

stream_tail(t)),
pairs(stream_tail(s), stream_tail(t))));

}

In order to complete the function, we must choose some way to combine the two
inner streams. One idea is to use the stream analog of the append function from
section 2.2.1:

function stream_append(s1, s2) {
return is_null(s1)

? s2
: pair(head(s1),

() => stream_append(stream_tail(s1), s2));
}

This is unsuitable for infinite streams, however, because it takes all the elements
from the first stream before incorporating the second stream. In particular, if we try
to generate all pairs of positive integers using

pairs(integers, integers);

our stream of results will first try to run through all pairs with the first integer equal
to 1, and hence will never produce pairs with any other value of the first integer.

To handle infinite streams, we need to devise an order of combination that
ensures that every element will eventually be reached if we let our program run
long enough. An elegant way to accomplish this is with the following interleave
function:69

69. The precise statement of the required property on the order of combination is as follows:
There should be a function f of two arguments such that the pair corresponding to element i
of the first stream and element j of the second stream will appear as element number f (i, j) of
the output stream. The trick of using interleave to accomplish this was shown to us by David
Turner, who employed it in the language KRC (Turner 1981).

3.5.3 Exploiting the Stream Paradigm 303

function interleave(s1, s2) {
return is_null(s1)

? s2
: pair(head(s1),

() => interleave(s2, stream_tail(s1)));
}

Since interleave takes elements alternately from the two streams, every element
of the second stream will eventually find its way into the interleaved stream, even if
the first stream is infinite.

We can thus generate the required stream of pairs as

function pairs(s, t) {
return pair(list(head(s), head(t)),

() => interleave(stream_map(x => list(head(s), x),
stream_tail(t)),

pairs(stream_tail(s),
stream_tail(t))));

}

Exercise 3.66
Examine the stream pairs(integers, integers). Can you make any general comments
about the order in which the pairs are placed into the stream? For example, approximately
how many pairs precede the pair (1,100)? the pair (99,100)? the pair (100,100)? (If you
can make precise mathematical statements here, all the better. But feel free to give more
qualitative answers if you find yourself getting bogged down.)

Exercise 3.67
Modify the pairs function so that pairs(integers, integers) will produce the stream
of all pairs of integers (i, j) (without the condition i≤ j). Hint: You will need to mix in an
additional stream.

Exercise 3.68
Louis Reasoner thinks that building a stream of pairs from three parts is unnecessarily
complicated. Instead of separating the pair (S0, T0) from the rest of the pairs in the first row,
he proposes to work with the whole first row, as follows:

function pairs(s, t) {
return interleave(stream_map(x => list(head(s), x),

t),
pair(stream_tail(s), stream_tail(t)));

}

Does this work? Consider what happens if we evaluate pairs(integers, integers)
using Louis’s definition of pairs.

Exercise 3.69
Write a function triples that takes three infinite streams, S, T , and U, and produces the
stream of triples (Si, Tj, Uk) such that i≤ j≤ k. Use triples to generate the stream of all
Pythagorean triples of positive integers, i.e., the triples (i, j, k) such that i≤ j and i2 + j2 = k2.

304 Chapter 3 Modularity, Objects, and State

Exercise 3.70
It would be nice to be able to generate streams in which the pairs appear in some useful
order, rather than in the order that results from an ad hoc interleaving process. We can use
a technique similar to the merge function of exercise 3.56, if we define a way to say that
one pair of integers is “less than” another. One way to do this is to define a “weighting
function” W(i, j) and stipulate that (i1, j1) is less than (i2, j2) if W(i1, j1) < W(i2, j2). Write a
function merge_weighted that is like merge, except that merge_weighted takes an addi-
tional argument weight, which is a function that computes the weight of a pair, and is used
to determine the order in which elements should appear in the resulting merged stream.70

Using this, generalize pairs to a function weighted_pairs that takes two streams, to-
gether with a function that computes a weighting function, and generates the stream of
pairs, ordered according to weight. Use your function to generate

a. the stream of all pairs of positive integers (i, j) with i≤ j ordered according to the sum
i + j

b. the stream of all pairs of positive integers (i, j) with i≤ j, where neither i nor j is
divisible by 2, 3, or 5, and the pairs are ordered according to the sum 2i + 3j + 5ij.

Exercise 3.71
Numbers that can be expressed as the sum of two cubes in more than one way are some-
times called Ramanujan numbers, in honor of the mathematician Srinivasa Ramanujan.71

Ordered streams of pairs provide an elegant solution to the problem of computing these
numbers. To find a number that can be written as the sum of two cubes in two different
ways, we need only generate the stream of pairs of integers (i, j) weighted according to the
sum i3 + j3 (see exercise 3.70), then search the stream for two consecutive pairs with the
same weight. Write a function to generate the Ramanujan numbers. The first such number
is 1,729. What are the next five?

Exercise 3.72
In a similar way to exercise 3.71 generate a stream of all numbers that can be written as
the sum of two squares in three different ways (showing how they can be so written).

Streams as signals
We began our discussion of streams by describing them as computational analogs
of the “signals” in signal-processing systems. In fact, we can use streams to model

70. We will require that the weighting function be such that the weight of a pair increases as
we move out along a row or down along a column of the array of pairs.

71. To quote from G. H. Hardy’s obituary of Ramanujan (Hardy 1921): “It was Mr. Littlewood
(I believe) who remarked that ‘every positive integer was one of his friends.’ I remember once
going to see him when he was lying ill at Putney. I had ridden in taxi-cab No. 1729, and
remarked that the number seemed to me a rather dull one, and that I hoped it was not an
unfavorable omen. ‘No,’ he replied, ‘it is a very interesting number; it is the smallest number
expressible as the sum of two cubes in two different ways.”’ The trick of using weighted pairs
to generate the Ramanujan numbers was shown to us by Charles Leiserson.

3.5.3 Exploiting the Stream Paradigm 305

add
pair

initial_value

integral
scale: dt

input

Figure 3.32 The integral function viewed as a signal-processing system.

signal-processing systems in a very direct way, representing the values of a signal
at successive time intervals as consecutive elements of a stream. For instance, we
can implement an integrator or summer that, for an input stream x = (xi), an initial
value C, and a small increment dt, accumulates the sum

Si = C + ∑
i
j=1 xj dt

and returns the stream of values S = (Si). The following integral function is
reminiscent of the “implicit style” definition of the stream of integers (section 3.5.2):

function integral(integrand, initial_value, dt) {
const integ = pair(initial_value,

() => add_streams(scale_stream(integrand, dt),
integ));

return integ;
}

Figure 3.32 is a picture of a signal-processing system that corresponds to the
integral function. The input stream is scaled by dt and passed through an adder,
whose output is passed back through the same adder. The self-reference in the defini-
tion of integ is reflected in the figure by the feedback loop that connects the output
of the adder to one of the inputs.

Exercise 3.73
We can model electrical circuits using streams to represent the values of currents or volt-
ages at a sequence of times. For instance, suppose we have an RC circuit consisting of a
resistor of resistance R and a capacitor of capacitance C in series. The voltage response v
of the circuit to an injected current i is determined by the formula in figure 3.33, whose
structure is shown by the accompanying signal-flow diagram.

Write a function RC that models this circuit. RC should take as inputs the values of R, C,
and dt and should return a function that takes as inputs a stream representing the current
i and an initial value for the capacitor voltage v0 and produces as output the stream of
voltages v. For example, you should be able to use RC to model an RC circuit with R = 5
ohms, C = 1 farad, and a 0.5-second time step by evaluating const RC1 = RC(5, 1, 0.5).
This defines RC1 as a function that takes a stream representing the time sequence of currents
and an initial capacitor voltage and produces the output stream of voltages.

306 Chapter 3 Modularity, Objects, and State

Exercise 3.74
Alyssa P. Hacker is designing a system to process signals coming from physical sensors.
One important feature she wishes to produce is a signal that describes the zero crossings
of the input signal. That is, the resulting signal should be +1 whenever the input signal
changes from negative to positive, –1 whenever the input signal changes from positive to
negative, and 0 otherwise. (Assume that the sign of a 0 input is positive.) For example, a
typical input signal with its associated zero-crossing signal would be

. . . 1 2 1.5 1 0.5 -0.1 -2 -3 -2 -0.5 0.2 3 4 . . .

. . . 0 0 0 0 0 -1 0 0 0 0 1 0 0 . . .

In Alyssa’s system, the signal from the sensor is represented as a stream sense_data
and the stream zero_crossings is the corresponding stream of zero crossings. Alyssa
first writes a function sign_change_detector that takes two values as arguments and
compares the signs of the values to produce an appropriate 0, 1, or –1. She then constructs
her zero-crossing stream as follows:

function make_zero_crossings(input_stream, last_value) {
return pair(sign_change_detector(head(input_stream), last_value),

() => make_zero_crossings(stream_tail(input_stream),
head(input_stream)));

}
const zero_crossings = make_zero_crossings(sense_data, 0);

Alyssa’s boss, Eva Lu Ator, walks by and suggests that this program is approximately
equivalent to the following one, which uses the function stream_map_2 from exercise 3.50:

const zero_crossings = stream_map_2(sign_change_detector,
sense_data,
expression);

Complete the program by supplying the indicated expression.

Exercise 3.75
Unfortunately, Alyssa’s zero-crossing detector in exercise 3.74 proves to be insufficient,
because the noisy signal from the sensor leads to spurious zero crossings. Lem E. Tweakit,
a hardware specialist, suggests that Alyssa smooth the signal to filter out the noise be-
fore extracting the zero crossings. Alyssa takes his advice and decides to extract the zero
crossings from the signal constructed by averaging each value of the sense data with the
previous value. She explains the problem to her assistant, Louis Reasoner, who attempts to
implement the idea, altering Alyssa’s program as follows:

function make_zero_crossings(input_stream, last_value) {
const avpt = (head(input_stream) + last_value) / 2;
return pair(sign_change_detector(avpt, last_value),

() => make_zero_crossings(stream_tail(input_stream),
avpt));

}

This does not correctly implement Alyssa’s plan. Find the bug that Louis has installed and
fix it without changing the structure of the program. (Hint: You will need to increase the
number of arguments to make_zero_crossings.)

3.5.4 Streams and Delayed Evaluation 307

v

i

R
C

i

+ --v

scale: R

integral
add

scale: C

v

v = v +
1
 i dt + R i

C

0

0
0

t

1

Figure 3.33 An RC circuit and the associated signal-flow diagram.

Exercise 3.76
Eva Lu Ator has a criticism of Louis’s approach in exercise 3.75. The program he wrote
is not modular, because it intermixes the operation of smoothing with the zero-crossing
extraction. For example, the extractor should not have to be changed if Alyssa finds a
better way to condition her input signal. Help Louis by writing a function smooth that
takes a stream as input and produces a stream in which each element is the average of
two successive input stream elements. Then use smooth as a component to implement the
zero-crossing detector in a more modular style.

3.5.4 Streams and Delayed Evaluation
The integral function at the end of the preceding section shows how we can use
streams to model signal-processing systems that contain feedback loops. The feed-
back loop for the adder shown in figure 3.32 is modeled by the fact that integral’s
internal stream integ is defined in terms of itself:

const integ = pair(initial_value,
() => add_streams(scale_stream(integrand, dt),

integ));

The interpreter’s ability to deal with such an implicit definition depends on the delay
resulting from wrapping the call to add_streams in a lambda expression. Without
this delay, the interpreter could not construct integ before evaluating the call to
add_streams, which would require that integ already be defined. In general, such
a delay is crucial for using streams to model signal-processing systems that contain
loops. Without a delay, our models would have to be formulated so that the inputs to
any signal-processing component would be fully evaluated before the output could
be produced. This would outlaw loops.

308 Chapter 3 Modularity, Objects, and State

y

dy y
integralmap: f

0

Figure 3.34 An “analog computer circuit” that solves the equation dy/dt = f (y).

Unfortunately, stream models of systems with loops may require uses of a delay
beyond the stream programming pattern seen so far. For instance, figure 3.34 shows
a signal-processing system for solving the differential equation dy/dt = f (y) where f
is a given function. The figure shows a mapping component, which applies f to its
input signal, linked in a feedback loop to an integrator in a manner very similar to
that of the analog computer circuits that are actually used to solve such equations.

Assuming we are given an initial value y0 for y, we could try to model this system
using the function

function solve(f, y0, dt) {
const y = integral(dy, y0, dt);
const dy = stream_map(f, y);
return y;

}

This function does not work, because in the first line of solve the call to integral
requires that the input dy be defined, which does not happen until the second line of
solve.

On the other hand, the intent of our definition does make sense, because we can,
in principle, begin to generate the y stream without knowing dy. Indeed, integral
and many other stream operations can generate part of the answer given only partial
information about the arguments. For integral, the first element of the output
stream is the specified initial_value. Thus, we can generate the first element
of the output stream without evaluating the integrand dy. Once we know the first
element of y, the stream_map in the second line of solve can begin working to
generate the first element of dy, which will produce the next element of y, and so
on.

To take advantage of this idea, we will redefine integral to expect the integrand
stream to be a delayed argument. The function integral will force the integrand to
be evaluated only when it is required to generate more than the first element of the
output stream:

3.5.4 Streams and Delayed Evaluation 309

function integral(delayed_integrand, initial_value, dt) {
const integ =

pair(initial_value,
() => {

const integrand = delayed_integrand();
return add_streams(scale_stream(integrand, dt),

integ);
});

return integ;
}

Now we can implement our solve function by delaying the evaluation of dy in the
declaration of y:

function solve(f, y0, dt) {
const y = integral(() => dy, y0, dt);
const dy = stream_map(f, y);
return y;

}

In general, every caller of integral must now delay the integrand argument. We
can demonstrate that the solve function works by approximating e≈ 2.718 by com-
puting the value at y = 1 of the solution to the differential equation dy/dt = y with
initial condition y(0) = 1:72

stream_ref(solve(y => y, 1, 0.001), 1000);
2.716923932235896

Exercise 3.77
The integral function used above was analogous to the “implicit” definition of the infinite
stream of integers in section 3.5.2. Alternatively, we can give a definition of integral that
is more like integers-starting-from (also in section 3.5.2):

function integral(integrand, initial_value, dt) {
return pair(initial_value,

is_null(integrand)
? null
: integral(stream_tail(integrand),

dt * head(integrand) + initial_value,
dt));

}

When used in systems with loops, this function has the same problem as does our original
version of integral. Modify the function so that it expects the integrand as a delayed
argument and hence can be used in the solve function shown above.

72. To complete in reasonable time, this calculation requires the use of the memoization opti-
mization from section 3.5.1 in integral and in the function add_streams used in integral
(using the function stream_map_2_optimized as suggested in exercise 3.57).

310 Chapter 3 Modularity, Objects, and State

y00

y

scale: b

integral

scale: a

add

dyddy
integral

dy

Figure 3.35 Signal-flow diagram for the solution to a second-order linear differential
equation.

Exercise 3.78
Consider the problem of designing a signal-processing system to study the homogeneous
second-order linear differential equation

d2y
dt2 – a

dy
dt

– by = 0

The output stream, modeling y, is generated by a network that contains a loop. This is
because the value of d2y/dt2 depends upon the values of y and dy/dt and both of these
are determined by integrating d2y/dt2. The diagram we would like to encode is shown in
figure 3.35. Write a function solve_2nd that takes as arguments the constants a, b, and
dt and the initial values y0 and dy0 for y and dy/dt and generates the stream of successive
values of y.

Exercise 3.79
Generalize the solve_2nd function of exercise 3.78 so that it can be used to solve general
second-order differential equations d2y/dt2 = f (dy/dt, y).

Exercise 3.80
A series RLC circuit consists of a resistor, a capacitor, and an inductor connected in series,
as shown in figure 3.36. If R, L, and C are the resistance, inductance, and capacitance, then
the relations between voltage (v) and current (i) for the three components are described by

3.5.4 Streams and Delayed Evaluation 311

+ --v

R
i

L v

+

--

i

C

i

v

+

--

C

C

R
L

L

R

Figure 3.36 A series RLC circuit.

the equations

vR = iRR

vL = L
diL
dt

iC = C
dvC

dt

and the circuit connections dictate the relations

iR = iL = –iC
vC = vL + vR

Combining these equations shows that the state of the circuit (summarized by vC, the
voltage across the capacitor, and iL, the current in the inductor) is described by the pair
of differential equations

dvC

dt
= –

iL
C

diL
dt

=
1
L

vC –
R
L

iL

The signal-flow diagram representing this system of differential equations is shown in
figure 3.37.

Write a function RLC that takes as arguments the parameters R, L, and C of the circuit
and the time increment dt. In a manner similar to that of the RC function of exercise 3.73,
RLC should produce a function that takes the initial values of the state variables, vC0 and iL0 ,
and produces a pair (using pair) of the streams of states vC and iL. Using RLC, generate
the pair of streams that models the behavior of a series RLC circuit with R = 1 ohm, C = 0.2
farad, L = 1 henry, dt = 0.1 second, and initial values iL0 = 0 amps and vC0 = 10 volts.

312 Chapter 3 Modularity, Objects, and State

Normal-order evaluation
The examples in this section illustrate how delayed evaluation provides great pro-
gramming flexibility, but the same examples also show how this can make our
programs more complex. Our new integral function, for instance, gives us the
power to model systems with loops, but we must now remember that integral
should be called with a delayed integrand, and every function that uses integral
must be aware of this. In effect, we have created two classes of functions: ordinary
functions and functions that take delayed arguments. In general, creating separate
classes of functions forces us to create separate classes of higher-order functions as
well.73

One way to avoid the need for two different classes of functions is to make all
functions take delayed arguments. We could adopt a model of evaluation in which
all arguments to functions are automatically delayed and arguments are forced only
when they are actually needed (for example, when they are required by a primi-
tive operation). This would transform our language to use normal-order evaluation,
which we first described when we introduced the substitution model for evaluation in
section 1.1.5. Converting to normal-order evaluation provides a uniform and elegant
way to simplify the use of delayed evaluation, and this would be a natural strategy
to adopt if we were concerned only with stream processing. In section 4.2, after we
have studied the evaluator, we will see how to transform our language in just this
way. Unfortunately, including delays in function calls wreaks havoc with our ability
to design programs that depend on the order of events, such as programs that use
assignment, mutate data, or perform input or output. Even a single delay in the tail of
a pair can cause great confusion, as illustrated by exercises 3.51 and 3.52. As far as
anyone knows, mutability and delayed evaluation do not mix well in programming
languages.

73. This is a small reflection, in JavaScript, of the difficulties that early statically typed lan-
guages such as Pascal had in coping with higher-order functions. In these languages, the
programmer had to specify the data types of the arguments and the result of each function:
number, logical value, sequence, and so on. Consequently, we could not express an abstraction
such as “map a given function fun over all the elements in a sequence” by a single higher-
order function such as stream_map. Rather, we would need a different mapping function for
each different combination of argument and result data types that might be specified for a
fun. Maintaining a practical notion of “data type” in the presence of higher-order functions
raises many difficult issues. One way of dealing with this problem is illustrated by the language
ML (Gordon, Milner, and Wadsworth 1979), whose “parametrically polymorphic data types”
include templates for higher-order transformations between data types. Moreover, data types for
most functions in ML are never explicitly declared by the programmer. Instead, ML includes a
type-inferencing mechanism that uses information in the environment to deduce the data types
for newly defined functions. Today, statically typed programming languages have evolved to
typically support some form of type inference as well as parametric polymorphism, with varying
degrees of power. Haskell couples an expressive type system with powerful type inference.

3.5.5 Modularity of Functional Programs and Modularity of Objects 313

di

v

i

v

dv

i

scale: 1/L

integral

scale:-1/C

integral

scale:-R/L

add

C
0

C

L

L
0

L

C

Figure 3.37 A signal-flow diagram for the solution to a series RLC circuit.

3.5.5 Modularity of Functional Programs and Modularity of Objects
As we saw in section 3.1.2, one of the major benefits of introducing assignment
is that we can increase the modularity of our systems by encapsulating, or “hiding,”
parts of the state of a large system within local variables. Stream models can provide
an equivalent modularity without the use of assignment. As an illustration, we can
reimplement the Monte Carlo estimation of π , which we examined in section 3.1.2,
from a stream-processing point of view.

The key modularity issue was that we wished to hide the internal state of a
random-number generator from programs that used random numbers. We began
with a function rand_update, whose successive values furnished our supply of
random numbers, and used this to produce a random-number generator:

function make_rand() {
let x = random_init;
return () => {

x = rand_update(x);
return x;

};
}
const rand = make_rand();

314 Chapter 3 Modularity, Objects, and State

In the stream formulation there is no random-number generator per se, just a
stream of random numbers produced by successive calls to rand_update:

const random_numbers =
pair(random_init,

() => stream_map(rand_update, random_numbers));

We use this to construct the stream of outcomes of the Cesàro experiment performed
on consecutive pairs in the random_numbers stream:

function map_successive_pairs(f, s) {
return pair(f(head(s), head(stream_tail(s))),

() => map_successive_pairs(
f,
stream_tail(stream_tail(s))));

}
const dirichlet_stream =

map_successive_pairs((r1, r2) => gcd(r1, r2) === 1,
random_numbers);

The dirichlet_stream is now fed to a monte_carlo function, which produces a
stream of estimates of probabilities. The results are then converted into a stream of
estimates of π . This version of the program doesn’t need a parameter telling how
many trials to perform. Better estimates of π (from performing more experiments)
are obtained by looking farther into the pi stream:

function monte_carlo(experiment_stream, passed, failed) {
function next(passed, failed) {

return pair(passed / (passed + failed),
() => monte_carlo(stream_tail(experiment_stream),

passed, failed));
}
return head(experiment_stream)

? next(passed + 1, failed)
: next(passed, failed + 1);

}
const pi = stream_map(p => math_sqrt(6 / p),

monte_carlo(dirichlet_stream, 0, 0));

There is considerable modularity in this approach, because we still can formulate a
general monte_carlo function that can deal with arbitrary experiments. Yet there is
no assignment or local state.

Exercise 3.81
Exercise 3.6 discussed generalizing the random-number generator to allow one to reset
the random-number sequence so as to produce repeatable sequences of “random” numbers.
Produce a stream formulation of this same generator that operates on an input stream of
requests to "generate" a new random number or to "reset" the sequence to a specified
value and that produces the desired stream of random numbers. Don’t use assignment in
your solution.

Exercise 3.82
Redo exercise 3.5 on Monte Carlo integration in terms of streams. The stream version of
estimate_integral will not have an argument telling how many trials to perform. Instead,
it will produce a stream of estimates based on successively more trials.

3.5.5 Modularity of Functional Programs and Modularity of Objects 315

A functional-programming view of time
Let us now return to the issues of objects and state that were raised at the beginning
of this chapter and examine them in a new light. We introduced assignment and
mutable objects to provide a mechanism for modular construction of programs that
model systems with state. We constructed computational objects with local state
variables and used assignment to modify these variables. We modeled the temporal
behavior of the objects in the world by the temporal behavior of the corresponding
computational objects.

Now we have seen that streams provide an alternative way to model objects with
local state. We can model a changing quantity, such as the local state of some object,
using a stream that represents the time history of successive states. In essence, we
represent time explicitly, using streams, so that we decouple time in our simulated
world from the sequence of events that take place during evaluation. Indeed, because
of the presence of delayed evaluation there may be little relation between simulated
time in the model and the order of events during the evaluation.

In order to contrast these two approaches to modeling, let us reconsider the
implementation of a “withdrawal processor” that monitors the balance in a bank
account. In section 3.1.3 we implemented a simplified version of such a processor:

function make_simplified_withdraw(balance) {
return amount => {

balance = balance - amount;
return balance;

};
}

Calls to make_simplified_withdraw produce computational objects, each with a
local state variable balance that is decremented by successive calls to the object.
The object takes an amount as an argument and returns the new balance. We can
imagine the user of a bank account typing a sequence of inputs to such an object
and observing the sequence of returned values shown on a display screen.

Alternatively, we can model a withdrawal processor as a function that takes as
input a balance and a stream of amounts to withdraw and produces the stream of
successive balances in the account:

function stream_withdraw(balance, amount_stream) {
return pair(balance,

() => stream_withdraw(balance - head(amount_stream),
stream_tail(amount_stream)));

}

The function stream_withdraw implements a well-defined mathematical function
whose output is fully determined by its input. Suppose, however, that the input
amount_stream is the stream of successive values typed by the user and that the
resulting stream of balances is displayed. Then, from the perspective of the user
who is typing values and watching results, the stream process has the same behavior
as the object created by make_simplified_withdraw. However, with the stream
version, there is no assignment, no local state variable, and consequently none of
the theoretical difficulties that we encountered in section 3.1.3. Yet the system has
state!

316 Chapter 3 Modularity, Objects, and State

This is really remarkable. Even though stream_withdraw implements a well-
defined mathematical function whose behavior does not change, the user’s percep-
tion here is one of interacting with a system that has a changing state. One way to
resolve this paradox is to realize that it is the user’s temporal existence that imposes
state on the system. If the user could step back from the interaction and think in
terms of streams of balances rather than individual transactions, the system would
appear stateless.74

From the point of view of one part of a complex process, the other parts appear
to change with time. They have hidden time-varying local state. If we wish to write
programs that model this kind of natural decomposition in our world (as we see
it from our viewpoint as a part of that world) with structures in our computer, we
make computational objects that are not functional—they must change with time.
We model state with local state variables, and we model the changes of state with
assignments to those variables. By doing this we make the time of execution of a
computation model time in the world that we are part of, and thus we get “objects”
in our computer.

Modeling with objects is powerful and intuitive, largely because this matches the
perception of interacting with a world of which we are part. However, as we’ve seen
repeatedly throughout this chapter, these models raise thorny problems of constrain-
ing the order of events and of synchronizing multiple processes. The possibility of
avoiding these problems has stimulated the development of functional programming
languages, which do not include any provision for assignment or mutable data.
In such a language, all functions implement well-defined mathematical functions
of their arguments, whose behavior does not change. The functional approach is
extremely attractive for dealing with concurrent systems.75

On the other hand, if we look closely, we can see time-related problems creeping
into functional models as well. One particularly troublesome area arises when we
wish to design interactive systems, especially ones that model interactions between
independent entities. For instance, consider once more the implementation of a
banking system that permits joint bank accounts. In a conventional system using
assignment and objects, we would model the fact that Peter and Paul share an
account by having both Peter and Paul send their transaction requests to the same
bank-account object, as we saw in section 3.1.3. From the stream point of view,
where there are no “objects” per se, we have already indicated that a bank account
can be modeled as a process that operates on a stream of transaction requests to
produce a stream of responses. Accordingly, we could model the fact that Peter and
Paul have a joint bank account by merging Peter’s stream of transaction requests

74. Similarly in physics, when we observe a moving particle, we say that the position (state) of
the particle is changing. However, from the perspective of the particle’s world line in space-time
there is no change involved.

75. John Backus, the inventor of Fortran, gave high visibility to functional programming when
he was awarded the ACM Turing award in 1978. His acceptance speech (Backus 1978) strongly
advocated the functional approach. A good overview of functional programming is given in
Henderson 1980 and in Darlington, Henderson, and Turner 1982.

3.5.5 Modularity of Functional Programs and Modularity of Objects 317

merge
bank

accountPaul's requests

Peter's requests

Figure 3.38 A joint bank account, modeled by merging two streams of transaction
requests.

with Paul’s stream of requests and feeding the result to the bank-account stream
process, as shown in figure 3.38.

The trouble with this formulation is in the notion of merge. It will not do to
merge the two streams by simply taking alternately one request from Peter and one
request from Paul. Suppose Paul accesses the account only very rarely. We could
hardly force Peter to wait for Paul to access the account before he could issue a
second transaction. However such a merge is implemented, it must interleave the
two transaction streams in some way that is constrained by “real time” as perceived
by Peter and Paul, in the sense that, if Peter and Paul meet, they can agree that
certain transactions were processed before the meeting, and other transactions were
processed after the meeting.76 This is precisely the same constraint that we had to
deal with in section 3.4.1, where we found the need to introduce explicit synchro-
nization to ensure a “correct” order of events in concurrent processing of objects
with state. Thus, in an attempt to support the functional style, the need to merge
inputs from different agents reintroduces the same problems that the functional style
was meant to eliminate.

We began this chapter with the goal of building computational models whose
structure matches our perception of the real world we are trying to model. We can
model the world as a collection of separate, time-bound, interacting objects with
state, or we can model the world as a single, timeless, stateless unity. Each view
has powerful advantages, but neither view alone is completely satisfactory. A grand
unification has yet to emerge.77

76. Observe that, for any two streams, there is in general more than one acceptable order of
interleaving. Thus, technically, “merge” is a relation rather than a function—the answer is not a
deterministic function of the inputs. We already mentioned (footnote 44) that nondeterminism is
essential when dealing with concurrency. The merge relation illustrates the same essential non-
determinism, from the functional perspective. In section 4.3, we will look at nondeterminism
from yet another point of view.

77. The object model approximates the world by dividing it into separate pieces. The functional
model does not modularize along object boundaries. The object model is useful when the un-
shared state of the “objects” is much larger than the state that they share. An example of a place
where the object viewpoint fails is quantum mechanics, where thinking of things as individual
particles leads to paradoxes and confusions. Unifying the object view with the functional view
may have little to do with programming, but rather with fundamental epistemological issues.

4 Metalinguistic Abstraction

. . . It’s in words that the magic is—Abracadabra, Open Sesame, and the
rest—but the magic words in one story aren’t magical in the next. The real
magic is to understand which words work, and when, and for what; the trick is
to learn the trick.
. . . And those words are made from the letters of our alphabet: a couple-dozen
squiggles we can draw with the pen. This is the key! And the treasure, too, if
we can only get our hands on it! It’s as if—as if the key to the treasure is the
treasure!

—John Barth, Chimera

In our study of program design, we have seen that expert programmers control the
complexity of their designs with the same general techniques used by designers of
all complex systems. They combine primitive elements to form compound objects,
they abstract compound objects to form higher-level building blocks, and they pre-
serve modularity by adopting appropriate large-scale views of system structure. In
illustrating these techniques, we have used JavaScript as a language for describ-
ing processes and for constructing computational data objects and processes to
model complex phenomena in the real world. However, as we confront increasingly
complex problems, we will find that JavaScript, or indeed any fixed programming
language, is not sufficient for our needs. We must constantly turn to new languages
in order to express our ideas more effectively. Establishing new languages is a
powerful strategy for controlling complexity in engineering design; we can often
enhance our ability to deal with a complex problem by adopting a new language
that enables us to describe (and hence to think about) the problem in a different
way, using primitives, means of combination, and means of abstraction that are
particularly well suited to the problem at hand.1

1. The same idea is pervasive throughout all of engineering. For example, electrical engineers
use many different languages for describing circuits. Two of these are the language of elec-
trical networks and the language of electrical systems. The network language emphasizes the
physical modeling of devices in terms of discrete electrical elements. The primitive objects of
the network language are primitive electrical components such as resistors, capacitors, induc-
tors, and transistors, which are characterized in terms of physical variables called voltage and
current. When describing circuits in the network language, the engineer is concerned with the
physical characteristics of a design. In contrast, the primitive objects of the system language are
signal-processing modules such as filters and amplifiers. Only the functional behavior of the
modules is relevant, and signals are manipulated without concern for their physical realization
as voltages and currents. The system language is erected on the network language, in the sense
that the elements of signal-processing systems are constructed from electrical networks. Here,
however, the concerns are with the large-scale organization of electrical devices to solve a given
application problem; the physical feasibility of the parts is assumed. This layered collection
of languages is another example of the stratified design technique illustrated by the picture
language of section 2.2.4.

320 Chapter 4 Metalinguistic Abstraction

Programming is endowed with a multitude of languages. There are physical lan-
guages, such as the machine languages for particular computers. These languages
are concerned with the representation of data and control in terms of individual bits
of storage and primitive machine instructions. The machine-language programmer
is concerned with using the given hardware to erect systems and utilities for the
efficient implementation of resource-limited computations. High-level languages,
erected on a machine-language substrate, hide concerns about the representation
of data as collections of bits and the representation of programs as sequences of
primitive instructions. These languages have means of combination and abstraction,
such as function declaration, that are appropriate to the larger-scale organization of
systems.

Metalinguistic abstraction—establishing new languages—plays an important
role in all branches of engineering design. It is particularly important to computer
programming, because in programming not only can we formulate new languages
but we can also implement these languages by constructing evaluators. An evaluator
(or interpreter) for a programming language is a function that, when applied to
a statement or expression of the language, performs the actions required to eval-
uate that statement or expression. It is no exaggeration to regard this as the most
fundamental idea in programming:

The evaluator, which determines the meaning of statements and expressions
in a programming language, is just another program.

To appreciate this point is to change our images of ourselves as programmers. We
come to see ourselves as designers of languages, rather than only users of languages
designed by others.

In fact, we can regard almost any program as the evaluator for some language.
For instance, the polynomial manipulation system of section 2.5.3 embodies the
rules of polynomial arithmetic and implements them in terms of operations on
list-structured data. If we augment this system with functions to read and print poly-
nomial expressions, we have the core of a special-purpose language for dealing with
problems in symbolic mathematics. The digital-logic simulator of section 3.3.4 and
the constraint propagator of section 3.3.5 are legitimate languages in their own right,
each with its own primitives, means of combination, and means of abstraction. Seen
from this perspective, the technology for coping with large-scale computer systems
merges with the technology for building new computer languages, and computer
science itself becomes no more (and no less) than the discipline of constructing
appropriate descriptive languages.

We now embark on a tour of the technology by which languages are established
in terms of other languages. In this chapter we shall use JavaScript as a base,
implementing evaluators as JavaScript functions. We will take the first step in un-
derstanding how languages are implemented by building an evaluator for JavaScript
itself. The language implemented by our evaluator will be a subset of JavaScript.
Although the evaluator described in this chapter is written for a particular subset
of JavaScript, it contains the essential structure of an evaluator for any language

4.1 The Metacircular Evaluator 321

designed for writing programs for a sequential machine. (In fact, most language
processors contain, deep within them, a little evaluator.) The evaluator has been sim-
plified for the purposes of illustration and discussion, and some features have been
left out that would be important to include in a production-quality JavaScript system.
Nevertheless, this simple evaluator is adequate to execute most of the programs in
this book.2

An important advantage of making the evaluator accessible as a JavaScript pro-
gram is that we can implement alternative evaluation rules by describing these as
modifications to the evaluator program. One place where we can use this power to
good effect is to gain extra control over the ways in which computational models
embody the notion of time, which was so central to the discussion in chapter 3.
There, we mitigated some of the complexities of state and assignment by using
streams to decouple the representation of time in the world from time in the com-
puter. Our stream programs, however, were sometimes cumbersome, because they
were constrained by the applicative-order evaluation of JavaScript. In section 4.2,
we’ll change the underlying language to provide for a more elegant approach, by
modifying the evaluator to provide for normal-order evaluation.

Section 4.3 implements a more ambitious linguistic change, whereby statements
and expressions have many values, rather than just a single value. In this language
of nondeterministic computing, it is natural to express processes that generate all
possible values for statements and expressions and then search for those values that
satisfy certain constraints. In terms of models of computation and time, this is like
having time branch into a set of “possible futures” and then searching for appropriate
time lines. With our nondeterministic evaluator, keeping track of multiple values and
performing searches are handled automatically by the underlying mechanism of the
language.

In section 4.4 we implement a logic-programming language in which knowl-
edge is expressed in terms of relations, rather than in terms of computations
with inputs and outputs. Even though this makes the language drastically differ-
ent from JavaScript, or indeed from any conventional language, we will see that
the logic-programming evaluator shares the essential structure of the JavaScript
evaluator.

4.1 The Metacircular Evaluator
Our evaluator for JavaScript will be implemented as a JavaScript program. It may
seem circular to think about evaluating JavaScript programs using an evaluator that
is itself implemented in JavaScript. However, evaluation is a process, so it is appro-
priate to describe the evaluation process using JavaScript, which, after all, is our tool

2. The most important features that our evaluator leaves out are mechanisms for handling errors
and supporting debugging. For a more extensive discussion of evaluators, see Friedman, Wand,
and Haynes 1992, which gives an exposition of programming languages that proceeds via a
sequence of evaluators written in the Scheme dialect of Lisp.

322 Chapter 4 Metalinguistic Abstraction

for describing processes.3 An evaluator that is written in the same language that it
evaluates is said to be metacircular.

The metacircular evaluator is essentially a JavaScript formulation of the environ-
ment model of evaluation described in section 3.2. Recall that the model specifies
the evaluation of function application in two basic steps:

1. To evaluate a function application, evaluate the subexpressions and then ap-
ply the value of the function subexpression to the values of the argument
subexpressions.

2. To apply a compound function to a set of arguments, evaluate the body of the
function in a new environment. To construct this environment, extend the envi-
ronment part of the function object by a frame in which the parameters of the
function are bound to the arguments to which the function is applied.

These two rules describe the essence of the evaluation process, a basic cycle in
which statements and expressions to be evaluated in environments are reduced to
functions to be applied to arguments, which in turn are reduced to new statements
and expressions to be evaluated in new environments, and so on, until we get down to
names, whose values are looked up in the environment, and to operators and prim-
itive functions, which are applied directly (see figure 4.1).4 This evaluation cycle
will be embodied by the interplay between the two critical functions in the evaluator,
evaluate and apply, which are described in section 4.1.1 (see figure 4.1).

3. Even so, there will remain important aspects of the evaluation process that are not elucidated
by our evaluator. The most important of these are the detailed mechanisms by which functions
call other functions and return values to their callers. We will address these issues in chapter 5,
where we take a closer look at the evaluation process by implementing the evaluator as a simple
register machine.

4. If we grant ourselves the ability to apply primitives, then what remains for us to implement in
the evaluator? The job of the evaluator is not to specify the primitives of the language, but rather
to provide the connective tissue—the means of combination and the means of abstraction—that
binds a collection of primitives to form a language. Specifically:
• The evaluator enables us to deal with nested expressions. For example, although simply

applying primitives would suffice for evaluating the expression 2 * 6, it is not adequate for
handling 2 * (1 + 5). As far as the operator * is concerned, its arguments must be numbers,
and it would choke if we passed it the expression 1 + 5 as an argument. One important role
of the evaluator is to choreograph composition so that 1 + 5 is reduced to 6 before being
passed as an argument to *.

• The evaluator allows us to use names. For example, the addition operator has no way to deal
with expressions such as x + 1. We need an evaluator to keep track of names and obtain their
values before invoking the operators.

• The evaluator allows us to define compound functions. This involves knowing how to use
these functions in evaluating expressions and providing a mechanism that enables functions
to accept arguments.

• The evaluator provides the other syntactic forms of the language such as conditionals and
blocks.

4.1.1 The Core of the Evaluator 323

evaluate applyFunction,

Arguments

Expression,

Environment

Figure 4.1 The evaluate–apply cycle exposes the essence of a computer language.

The implementation of the evaluator will depend upon functions that define
the syntax of the statements and expressions to be evaluated. We will use data
abstraction to make the evaluator independent of the representation of the language.
For example, rather than committing to a choice that an assignment is to be rep-
resented by a string beginning with a name followed by =, we use an abstract
predicate is_assignment to test for an assignment, and we use abstract selectors
assignment_symbol and assignment_value_expression to access the parts of
an assignment. The data abstraction layers presented in section 4.1.2 will allow the
evaluator to remain independent of concrete syntactic issues, such as the keywords
of the interpreted language, and of the choice of data structures that represent the pro-
gram components. There are also operations, described in section 4.1.3, that specify
the representation of functions and environments. For example, make_function
constructs compound functions, lookup_symbol_value accesses the values of
names, and apply_primitive_function applies a primitive function to a given
list of arguments.

4.1.1 The Core of the Evaluator
The evaluation process can be described as the interplay between two functions:
evaluate and apply.

The function evaluate
The function evaluate takes as arguments a program component—a statement or
expression5—and an environment. It classifies the component and directs its evalu-
ation. The function evaluate is structured as a case analysis of the syntactic type

5. There is no need to distinguish between statements and expressions in our evaluator. For
example, we do not differentiate between expressions and expression statements; we represent
them identically and consequently they are handled in the same way by the evaluate func-
tion. Similarly, our evaluator does not enforce JavaScript’s syntactic restriction that statements
cannot appear inside expressions other than lambda expressions.

324 Chapter 4 Metalinguistic Abstraction

of the component to be evaluated. In order to keep the function general, we express
the determination of the type of a component abstractly, making no commitment
to any particular representation for the various types of components. Each type of
component has a syntax predicate that tests for it and an abstract means for selecting
its parts. This abstract syntax makes it easy to see how we can change the syntax of
the language by using the same evaluator, but with a different collection of syntax
functions.

Primitive expressions

• For literal expressions, such as numbers, evaluate returns their value.
• The function evaluate must look up names in the environment to find their

values.

Combinations

• For a function application, evaluate must recursively evaluate the function ex-
pression and the argument expressions of the application. The resulting function
and arguments are passed to apply, which handles the actual function application.

• An operator combination is transformed into a function application and then
evaluated.

Syntactic forms

• A conditional expression or statement requires special processing of its parts, so
as to evaluate the consequent if the predicate is true, and otherwise to evaluate the
alternative.

• A lambda expression must be transformed into an applicable function by packag-
ing together the parameters and body specified by the lambda expression with the
environment of the evaluation.

• A sequence of statements requires evaluating its components in the order in which
they appear.

• A block requires evaluating its body in a new environment that reflects all names
declared within the block.

• A return statement must produce a value that becomes the result of the function
call that gave rise to the evaluation of the return statement.

• A function declaration is transformed into a constant declaration and then evalu-
ated.

• A constant or variable declaration or an assignment must call evaluate recur-
sively to compute the new value to be associated with the name being declared or
assigned. The environment must be modified to reflect the new value of the name.

4.1.1 The Core of the Evaluator 325

Here is the declaration of evaluate:

function evaluate(component, env) {
return is_literal(component)

? literal_value(component)
: is_name(component)
? lookup_symbol_value(symbol_of_name(component), env)
: is_application(component)
? apply(evaluate(function_expression(component), env),

list_of_values(arg_expressions(component), env))
: is_operator_combination(component)
? evaluate(operator_combination_to_application(component),

env)
: is_conditional(component)
? eval_conditional(component, env)
: is_lambda_expression(component)
? make_function(lambda_parameter_symbols(component),

lambda_body(component), env)
: is_sequence(component)
? eval_sequence(sequence_statements(component), env)
: is_block(component)
? eval_block(component, env)
: is_return_statement(component)
? eval_return_statement(component, env)
: is_function_declaration(component)
? evaluate(function_decl_to_constant_decl(component), env)
: is_declaration(component)
? eval_declaration(component, env)
: is_assignment(component)
? eval_assignment(component, env)
: error(component, "unknown syntax -- evaluate");

}

For clarity, evaluate has been implemented as a case analysis using conditional
expressions. The disadvantage of this is that our function handles only a few dis-
tinguishable types of statements and expressions, and no new ones can be defined
without editing the declaration of evaluate. In most interpreter implementations,
dispatching on the type of a component is done in a data-directed style. This allows
a user to add new types of components that evaluate can distinguish, without
modifying the declaration of evaluate itself. (See exercise 4.3.)

The representation of names is handled by the syntax abstractions. Internally, the
evaluator uses strings to represent names, and we refer to such strings as symbols.
The function symbol_of_name used in evaluate extracts from a name the symbol
by which it is represented.

326 Chapter 4 Metalinguistic Abstraction

Apply
The function apply takes two arguments, a function and a list of arguments to which
the function should be applied. The function apply classifies functions into two
kinds: It calls apply_primitive_function to apply primitives; it applies com-
pound functions by evaluating the block that makes up the body of the function. The
environment for the evaluation of the body of a compound function is constructed
by extending the base environment carried by the function to include a frame that
binds the parameters of the function to the arguments to which the function is to be
applied. Here is the declaration of apply:

function apply(fun, args) {
if (is_primitive_function(fun)) {

return apply_primitive_function(fun, args);
} else if (is_compound_function(fun)) {

const result = evaluate(function_body(fun),
extend_environment(

function_parameters(fun),
args,
function_environment(fun)));

return is_return_value(result)
? return_value_content(result)
: undefined;

} else {
error(fun, "unknown function type -- apply");

}
}

In order to return a value, a JavaScript function needs to evaluate a return statement.
If a function terminates without evaluating a return statement, the value undefined
is returned. To distinguish the two cases, the evaluation of a return statement will
wrap the result of evaluating its return expression into a return value. If the evalua-
tion of the function body yields such a return value, the content of the return value
is retrieved; otherwise the value undefined is returned.6

Function arguments
When evaluate processes a function application, it uses list_of_values to pro-
duce the list of arguments to which the function is to be applied. The function

6. This test is a deferred operation, and thus our evaluator will give rise to a recursive process
even if the interpreted program should give rise to an iterative process according to the descrip-
tion in section 1.2.1. In other words, our metacircular evaluator implementation of JavaScript is
not tail-recursive. Sections 5.4.2 and 5.5.3 show how to achieve tail recursion using a register
machine.

4.1.1 The Core of the Evaluator 327

list_of_values takes as an argument the argument expressions of the application.
It evaluates each argument expression and returns a list of the corresponding values:7

function list_of_values(exps, env) {
return map(arg => evaluate(arg, env), exps);

}

Conditionals
The function eval_conditional evaluates the predicate part of a conditional com-
ponent in the given environment. If the result is true, the consequent is evaluated,
otherwise the alternative is evaluated:

function eval_conditional(component, env) {
return is_truthy(evaluate(conditional_predicate(component), env))

? evaluate(conditional_consequent(component), env)
: evaluate(conditional_alternative(component), env);

}

Note that the evaluator does not need to distinguish between conditional expressions
and conditional statements.

The use of is_truthy in eval_conditional highlights the issue of the con-
nection between an implemented language and an implementation language. The
conditional_predicate is evaluated in the language being implemented and thus
yields a value in that language. The interpreter predicate is_truthy translates that
value into a value that can be tested by the conditional expression in the implemen-
tation language: The metacircular representation of truth might not be the same as
that of the underlying JavaScript.8

Sequences
The function eval_sequence is used by evaluate to evaluate a sequence of state-
ments at the top level or in a block. It takes as arguments a sequence of statements

7. We chose to implement list_of_values using the higher-order function map, and we will
use map in other places as well. However, the evaluator can be implemented without any use of
higher-order functions (and thus could be written in a language that doesn’t have higher-order
functions), even though the language that it supports will include higher-order functions. For
example, list_of_values can be written without map as follows:
function list_of_values(exps, env) {

return is_null(exps)
? null
: pair(evaluate(head(exps), env),

list_of_values(tail(exps), env));
}

8. In this case, the language being implemented and the implementation language are the same.
Contemplation of the meaning of is_truthy here yields expansion of consciousness without
the abuse of substance.

328 Chapter 4 Metalinguistic Abstraction

and an environment, and evaluates the statements in the order in which they occur.
The value returned is the value of the final statement, except that if the evaluation
of any statement in the sequence yields a return value, that value is returned and the
subsequent statements are ignored.9

function eval_sequence(stmts, env) {
if (is_empty_sequence(stmts)) {

return undefined;
} else if (is_last_statement(stmts)) {

return evaluate(first_statement(stmts), env);
} else {

const first_stmt_value =
evaluate(first_statement(stmts), env);

if (is_return_value(first_stmt_value)) {
return first_stmt_value;

} else {
return eval_sequence(rest_statements(stmts), env);

}
}

}

Blocks
The function eval_block handles blocks. The variables and constants (including
functions) declared in the block have the whole block as their scope and thus are
“scanned out” before the body of the block is evaluated. The body of the block is
evaluated with respect to an environment that extends the current environment by a
frame that binds each local name to a special value, "*unassigned*". This string
serves as a placeholder, before the evaluation of the declaration assigns the name its
proper value. An attempt to access the value of the name before its declaration is
evaluated leads to an error at run time (see exercise 4.12), as stated in footnote 56 in
chapter 1.

function eval_block(component, env) {
const body = block_body(component);
const locals = scan_out_declarations(body);
const unassigneds = list_of_unassigned(locals);
return evaluate(body, extend_environment(locals,

unassigneds,
env));

}
function list_of_unassigned(symbols) {

return map(symbol => "*unassigned*", symbols);
}

The function scan_out_declarations collects a list of all symbols representing
names declared in the body. It uses declaration_symbol to retrieve the symbol
that represents the name from the declaration statements it finds.

9. The treatment of return statements in eval_sequence reflects the proper result of evaluating
function applications in JavaScript, but the evaluator presented here does not comply with the
ECMAScript specification for the value of a program that consists of a sequence of statements
outside of any function body. Exercise 4.8 addresses this issue.

4.1.1 The Core of the Evaluator 329

function scan_out_declarations(component) {
return is_sequence(component)

? accumulate(append,
null,
map(scan_out_declarations,

sequence_statements(component)))
: is_declaration(component)
? list(declaration_symbol(component))
: null;

}

We ignore declarations that are nested in another block, because the evaluation of
that block will take care of them. The function scan_out_declarations looks
for declarations only in sequences because declarations in conditional statements,
function declarations, and lambda expressions are always in a nested block.

Return statements
The function eval_return_statement is used to evaluate return statements. As
seen in apply and the evaluation of sequences, the result of evaluation of a return
statement needs to be identifiable so that the evaluation of a function body can
return immediately, even if there are statements after the return statement. For this
purpose, the evaluation of a return statement wraps the result of evaluating the return
expression in a return value object.10

function eval_return_statement(component, env) {
return make_return_value(evaluate(return_expression(component),

env));
}

Assignments and declarations
The function eval_assignment handles assignments to names. (To simplify the
presentation of our evaluator, we are allowing assignment not just to variables
but also—erroneously—to constants. Exercise 4.11 explains how we could distin-
guish constants from variables and prevent assignment to constants.) The function
eval_assignment calls evaluate on the value expression to find the value to
be assigned and calls assignment_symbol to retrieve the symbol that represents
the name from the assignment. The function eval_assignment transmits the sym-
bol and the value to assign_symbol_value to be installed in the designated
environment. The evaluation of an assignment returns the value that was assigned.

function eval_assignment(component, env) {
const value = evaluate(assignment_value_expression(component),

env);
assign_symbol_value(assignment_symbol(component), value, env);
return value;

}

10. The application of the function make_return_value to the result of evaluating the return
expression creates a deferred operation, in addition to the deferred operation created by apply.
See footnote 6 for details.

330 Chapter 4 Metalinguistic Abstraction

Constant and variable declarations are both recognized by the is_declaration
syntax predicate. They are treated in a manner similar to assignments, because
eval_block has already bound their symbols to "*unassigned*" in the current en-
vironment. Their evaluation replaces "*unassigned*" with the result of evaluating
the value expression.

function eval_declaration(component, env) {
assign_symbol_value(

declaration_symbol(component),
evaluate(declaration_value_expression(component), env),
env);

return undefined;
}

The result of evaluating the body of a function is determined by return statements,
and therefore the return value undefined in eval_declaration only matters when
the declaration occurs at the top level, outside of any function body. Here we use the
return value undefined to simplify the presentation; exercise 4.8 describes the real
result of evaluating top-level components in JavaScript.

Exercise 4.1
Notice that we cannot tell whether the metacircular evaluator evaluates argument expres-
sions from left to right or from right to left. Its evaluation order is inherited from the
underlying JavaScript: If the arguments to pair in map are evaluated from left to right,
then list_of_values will evaluate argument expressions from left to right; and if the
arguments to pair are evaluated from right to left, then list_of_values will evaluate
argument expressions from right to left.

Write a version of list_of_values that evaluates argument expressions from left to
right regardless of the order of evaluation in the underlying JavaScript. Also write a version
of list_of_values that evaluates argument expressions from right to left.

4.1.2 Representing Components
Programmers write programs as text, i.e. sequences of characters, entered in a pro-
gramming environment or a text editor. To run our evaluator, we need to start with
a representation of this program text as a JavaScript value. In section 2.3.1 we
introduced strings to represent text. We would like to evaluate programs such as
"const size = 2; 5 * size;" from section 1.1.2. Unfortunately, such program
text does not provide enough structure to the evaluator. In this example, the program
parts "size = 2" and "5 * size" look similar, but carry very different meanings.
Abstract syntax functions such as declaration_value_expression would be dif-
ficult and error-prone to implement by examining the program text. In this section,
we therefore introduce a function parse that translates program text to a tagged-
list representation, reminiscent of the tagged data of section 2.4.2. For example,
the application of parse to the program string above produces a data structure that

4.1.2 Representing Components 331

is_assignment, assignment_symbol, ...

Evaluator

Tagged-list representation

Program text, represented by JavaScript strings

parse

Figure 4.2 Syntax abstraction in the evaluator.

reflects the structure of the program: a sequence consisting of a constant declaration
associating the name size with the value 2 and a multiplication.

parse("const size = 2; 5 * size;");
list("sequence",

list(list("constant_declaration",
list("name", "size"), list("literal", 2)),

list("binary_operator_combination", "*",
list("literal", 5), list("name", "size"))))

The syntax functions used by the evaluator access the tagged-list representation
produced by parse.

The evaluator is reminiscent of the symbolic differentiation program discussed
in section 2.3.2. Both programs operate on symbolic data. In both programs, the
result of operating on an object is determined by operating recursively on the pieces
of the object and combining the results in a way that depends on the type of the
object. In both programs we used data abstraction to decouple the general rules of
operation from the details of how the objects are represented. In the differentiation
program this meant that the same differentiation function could deal with algebraic
expressions in prefix form, in infix form, or in some other form. For the evaluator,
this means that the syntax of the language being evaluated is determined solely by
parse and the functions that classify and extract pieces of the tagged lists produced
by parse.

Figure 4.2 depicts the abstraction barrier formed by the syntax predicates and
selectors, which interface the evaluator to the tagged-list representation of pro-
grams, which in turn is separated from the string representation by parse. Below
we describe the parsing of program components and list the corresponding syntax
predicates and selectors, as well as constructors if they are needed.

332 Chapter 4 Metalinguistic Abstraction

Literal expression
Literal expressions are parsed into tagged lists with tag "literal" and the actual
value.

� literal-expression � = list("literal", value)

where value is the JavaScript value represented by the literal-expression string. Here
� literal-expression � denotes the result of parsing the string literal-expression.

parse("1;");
list("literal", 1)

parse("'hello world';");
list("literal", "hello world")

parse("null;");
list("literal", null)

The syntax predicate for literal expressions is is_literal.

function is_literal(component) {
return is_tagged_list(component, "literal");

}

It is defined in terms of the function is_tagged_list, which identifies lists that
begin with a designated string:

function is_tagged_list(component, the_tag) {
return is_pair(component) && head(component) === the_tag;

}

The second element of the list that results from parsing a literal expression is its
actual JavaScript value. The selector for retrieving the value is literal_value.

function literal_value(component) {
return head(tail(component));

}

literal_value(parse("null;"));
null

In the rest of this section, we just list the syntax predicates and selectors, and omit
their declarations if they just access the obvious list elements.

We provide a constructor for literals, which will come in handy:

function make_literal(value) {
return list("literal", value);

}

Names
The tagged-list representation for names includes the tag "name" as first element
and the string representing the name as second element.

� name � = list("name", symbol)

4.1.2 Representing Components 333

where symbol is a string that contains the characters that make up the name as written
in the program. The syntax predicate for names is is_name. The symbol is accessed
using the selector symbol_of_name. We provide a constructor for names, to be used
by operator_combination_to_application:

function make_name(symbol) {
return list("name", symbol);

}

Expression statements
We do not need to distinguish between expressions and expression statements. Con-
sequently, parse can ignore the difference between the two kinds of components:

� expression; � = � expression �

Function applications
Function applications are parsed as follows:

� fun-expr(arg-expr1, . . ., arg-exprn) � =
list("application",

� fun-expr �,
list(� arg-expr1 �, . . ., � arg-exprn �))

We declare is_application as the syntax predicate and function_expression
and arg_expressions as the selectors. We add a constructor for function applica-
tions, to be used by operator_combination_to_application:

function make_application(function_expression, argument_expressions) {
return list("application",

function_expression, argument_expressions);
}

Conditionals
Conditional expressions are parsed as follows:

� predicate ? consequent-expression : alternative-expression � =
list("conditional_expression",

� predicate �,
� consequent-expression �,
� alternative-expression �)

Similarly, conditional statements are parsed as follows:

� if (predicate) consequent-block else alternative-block � =
list("conditional_statement",

� predicate �,
� consequent-block �,
� alternative-block �)

The syntax predicate is_conditional returns true for both kinds of condition-
als, and the selectors conditional_predicate, conditional_consequent, and
conditional_alternative can be applied to both kinds.

334 Chapter 4 Metalinguistic Abstraction

Lambda expressions
A lambda expression whose body is an expression is parsed as if the body consisted
of a block containing a single return statement whose return expression is the body
of the lambda expression.

� (name1, . . ., namen) => expression � =
� (name1, . . ., namen) => { return expression; } �

A lambda expression whose body is a block is parsed as follows:

� (name1, . . ., namen) => block � =
list("lambda_expression",

list(� name1 �, . . ., � namen �),
� block �)

The syntax predicate is is_lambda_expression and the selector for the body of
the lambda expression is lambda_body. The selector for the parameters, called
lambda_parameter_symbols, additionally extracts the symbols from the names.

function lambda_parameter_symbols(component) {
return map(symbol_of_name, head(tail(component)));

}

The function function_decl_to_constant_decl needs a constructor for lambda
expressions:

function make_lambda_expression(parameters, body) {
return list("lambda_expression", parameters, body);

}

Sequences
A sequence statement packages a sequence of statements into a single statement.
A sequence of statements is parsed as follows:

� statement1 · · · statementn � =
list("sequence", list(� statement1 �, . . ., � statementn �))

The syntax predicate is is_sequence and the selector is sequence_statements.
We retrieve the first of a list of statements using first_statement and the remain-
ing statements using rest_statements. We test whether the list is empty using the
predicate is_empty_sequence and whether it contains only one element using the
predicate is_last_statement.11

function first_statement(stmts) { return head(stmts); }
function rest_statements(stmts) { return tail(stmts); }
function is_empty_sequence(stmts) { return is_null(stmts); }
function is_last_statement(stmts) { return is_null(tail(stmts)); }

11. These selectors for a list of statements are not intended as a data abstraction. They are intro-
duced as mnemonic names for the basic list operations in order to make it easier to understand
the explicit-control evaluator in section 5.4.

4.1.2 Representing Components 335

Blocks
Blocks are parsed as follows:12

� { statements } � = list("block", � statements �)

Here statements refers to a sequence of statements, as shown above. The syntax
predicate is is_block and the selector is block_body.

Return statements
Return statements are parsed as follows:

� return expression; � = list("return_statement", � expression �)

The syntax predicate and selector are, respectively, is_return_statement and
return_expression.

Assignments
Assignments are parsed as follows:

� name = expression � = list("assignment", � name � , � expression �)

The syntax predicate is is_assignment and the selectors are assignment_symbol
and assignment_value_expression. The symbol is wrapped in a tagged list
representing the name, and thus assignment_symbol needs to unwrap it.

function assignment_symbol(component) {
return symbol_of_name(head(tail(component))));

}

Constant, variable, and function declarations
Constant and variable declarations are parsed as follows:

� const name = expression; � =
list("constant_declaration", � name �, � expression �)

� let name = expression; � =
list("variable_declaration", � name �, � expression �)

The selectors declaration_symbol and declaration_value_expression apply
to both kinds.

function declaration_symbol(component) {
return symbol_of_name(head(tail(component)));

}
function declaration_value_expression(component) {

return head(tail(tail(component)));
}

12. A parser implementation may decide to represent a block by just its statement sequence if
none of the statements of the sequence are declarations, or to represent a sequence with only
one statement by just that statement. The language processors in this chapter and in chapter 5
do not depend on these decisions.

336 Chapter 4 Metalinguistic Abstraction

The function function_decl_to_constant_decl needs a constructor for con-
stant declarations:

function make_constant_declaration(name, value_expression) {
return list("constant_declaration", name, value_expression);

}

Function declarations are parsed as follows:

� function name(name1, . . . namen) block � =
list("function_declaration",

� name �,
list(� name1 �, . . ., � namen �),
� block �)

The syntax predicate is_function_declaration recognizes these. The selectors
are function_declaration_name, function_declaration_parameters, and
function_declaration_body.

The syntax predicate is_declaration returns true for all three kinds of decla-
rations.

function is_declaration(component) {
return is_tagged_list(component, "constant_declaration") ||

is_tagged_list(component, "variable_declaration") ||
is_tagged_list(component, "function_declaration");

}

Derived components
Some syntactic forms in our language can be defined in terms of components involv-
ing other syntactic forms, rather than being implemented directly. One example is
function declaration, which evaluate transforms into a constant declaration whose
value expression is a lambda expression.13

function function_decl_to_constant_decl(component) {
return make_constant_declaration(

function_declaration_name(component),
make_lambda_expression(

function_declaration_parameters(component),
function_declaration_body(component)));

}

Implementing the evaluation of function declarations in this way simplifies the eval-
uator because it reduces the number of syntactic forms for which the evaluation
process must be explicitly specified.

Similarly, we define operator combinations in terms of function applications. Op-
erator combinations are unary or binary and carry their operator symbol as second
element in the tagged-list representation:

13. In actual JavaScript, there are subtle differences between the two forms; see footnote 54 in
chapter 1. Exercise 4.17 addresses these differences.

4.1.2 Representing Components 337

� unary-operator expression � =
list("unary_operator_combination",

"unary-operator",
list(� expression �))

where unary-operator is ! (for logical negation) or -unary (for numeric negation),
and

� expression1 binary-operator expression2 � =
list("binary_operator_combination",

"binary-operator",
list(� expression1 �, � expression2 �))

where binary-operator is +, -, *, /, %, ===, !==, >, <, >= or <=. The syntax predi-
cates are is_operator_combination, is_unary_operator_combination, and
is_binary_operator_combination, and the selectors are operator_symbol,
first_operand, and second_operand.

The evaluator uses operator_combination_to_application to transform an
operator combination into a function application whose function expression is the
name of the operator:

function operator_combination_to_application(component) {
const operator = operator_symbol(component);
return is_unary_operator_combination(component)

? make_application(make_name(operator),
list(first_operand(component)))

: make_application(make_name(operator),
list(first_operand(component),

second_operand(component)));
}

Components (such as function declarations and operator combinations) that we
choose to implement as syntactic transformations are called derived components.
Logical composition operations are also derived components (see exercise 4.4).

Exercise 4.2
The inverse of parse is called unparse. It takes as argument a tagged list as produced by
parse and returns a string that adheres to JavaScript notation.

a. Write a function unparse by following the structure of evaluate (without the envi-
ronment parameter), but producing a string that represents the given component, rather
than evaluating it. Recall from section 3.3.4 that the operator + can be applied to two
strings to concatenate them and that the primitive function stringify turns values
such as 1.5, true, null and undefined into strings. Take care to respect operator prece-
dences by surrounding the strings that result from unparsing operator combinations
with parentheses (always or whenever necessary).

b. Your unparse function will come in handy when solving later exercises in this section.
Improve unparse by adding " " (space) and "\n" (newline) characters to the result
string, to follow the indentation style used in the JavaScript programs of this book.
Adding such whitespace characters to (or removing them from) a program text in order
to make the text easier to read is called pretty-printing.

338 Chapter 4 Metalinguistic Abstraction

Exercise 4.3
Rewrite evaluate so that the dispatch is done in data-directed style. Compare this with
the data-directed differentiation function of exercise 2.73. (You may use the tag of the
tagged-list representation as the type of the components.)

Exercise 4.4
Recall from section 1.1.6 that the logical composition operations && and || are syntac-
tic sugar for conditional expressions: The logical conjunction expression1 && expression2
is syntactic sugar for expression1 ? expression2 : false, and the logical disjunction
expression1 || expression2 is syntactic sugar for expression1 ? true : expression2. They
are parsed as follows:

� expression1 logical-operation expression2 � =
list("logical_composition",

"logical-operation",
list(� expression1 �, � expression2 �))

where logical-operation is && or ||. Install && and || as new syntactic forms for the
evaluator by declaring appropriate syntax functions and evaluation functions eval_and
and eval_or. Alternatively, show how to implement && and || as derived components.

Exercise 4.5
a. In JavaScript, lambda expressions must not have duplicate parameters. The evaluator

in section 4.1.1 does not check for this.
• Modify the evaluator so that any attempt to apply a function with duplicate parame-

ters signals an error.
• Implement a verify function that checks whether any lambda expression in a given

program contains duplicate parameters. With such a function, we could check the
entire program before we pass it to evaluate.

In order to implement this check in an evaluator for JavaScript, which of these two
approaches would you prefer? Why?

b. In JavaScript, the parameters of a lambda expression must be distinct from the names
declared directly in the body block of the lambda expression (as opposed to in an inner
block). Use your preferred approach above to check for this as well.

Exercise 4.6
The language Scheme includes a variant of let called let*. We could approximate the
behavior of let* in JavaScript by stipulating that a let* declaration implicitly introduces
a new block whose body includes the declaration and all subsequent statements of the
statement sequence in which the declaration occurs. For example, the program

let* x = 3;
let* y = x + 2;
let* z = x + y + 5;
display(x * z);

displays 39 and could be seen as a shorthand for

4.1.2 Representing Components 339

{
let x = 3;
{

let y = x + 2;
{

let z = x + y + 5;
display(x * z);

}
}

}

a. Write a program in such an extended JavaScript language that behaves differently when
some occurrences of the keyword let are replaced with let*.

b. Introduce let* as a new syntactic form by designing a suitable tagged-list representa-
tion and writing a parse rule. Declare a syntax predicate and selectors for the tagged-list
representation.

c. Assuming that parse implements your new rule, write a let_star_to_nested_let
function that transforms any occurrence of let* in a given program as described
above. We could then evaluate a program p in the extended language by running
evaluate(let_star_to_nested_let(p)).

d. As an alternative, consider implementing let* by adding to evaluate a clause that
recognizes the new syntactic form and calls a function eval_let_star_declaration.
Why does this approach not work?

Exercise 4.7
JavaScript supports while loops that execute a given statement repeatedly. Specifically,

while (predicate) { body }

evaluates the predicate, and if the result is true, evaluates the body and then evaluates the
whole while loop again. Once the predicate evaluates to false, the while loop terminates.

For example, recall the imperative-style version of the iterative factorial function from
section 3.1.3:

function factorial(n) {
let product = 1;
let counter = 1;
function iter() {

if (counter > n) {
return product;

} else {
product = counter * product;
counter = counter + 1;
return iter();

}
}
return iter();

}

340 Chapter 4 Metalinguistic Abstraction

We can formulate the same algorithm using a while loop as follows:

function factorial(n) {
let product = 1;
let counter = 1;
while (counter <= n) {

product = counter * product;
counter = counter + 1;

}
return product;

}

While loops are parsed as follows:

� while (predicate) block � =
list("while_loop", � predicate �, � block �)

a. Declare a syntax predicate and selectors to handle while loops.

b. Declare a function while_loop that takes as arguments a predicate and a body—each
represented by a function of no arguments—and simulates the behavior of the while
loop. The factorial function would then look as follows:

function factorial(n) {
let product = 1;
let counter = 1;
while_loop(() => counter <= n,

() => {
product = counter * product;
counter = counter + 1;

});
return product;

}

Your function while_loop should generate an iterative process (see section 1.2.1).

c. Install while loops as a derived component by defining a transformation function
while_to_application that makes use of your function while_loop.

d. What problem arises with this approach for implementing while loops, when the pro-
grammer decides within the body of the loop to return from the function that contains
the loop?

e. Change your approach to address the problem. How about directly installing while
loops for the evaluator, using a function eval_while?

f. Following this direct approach, implement a break; statement that immediately termi-
nates the loop in which it is evaluated.

g. Implement a continue; statement that terminates only the loop iteration in which it
is evaluated, and continues with evaluating the while loop predicate.

Exercise 4.8
The result of evaluating the body of a function is determined by its return statements.
Following up on footnote 9 and the evaluation of declarations in section 4.1.1, this exercise
addresses the question of what should be the result of evaluating a JavaScript program
that consists of a sequence of statements (declarations, blocks, expression statements, and
conditional statements) outside of any function body.

4.1.3 Evaluator Data Structures 341

For such a program, JavaScript statically distinguishes between value-producing and
non-value-producing statements. (Here “statically” means that we can make the distinction
by inspecting the program rather than by running it.) All declarations are non-value-
producing, and all expression statements and conditional statements are value-producing.
The value of an expression statement is the value of the expression. The value of a con-
ditional statement is the value of the branch that gets executed, or the value undefined
if that branch is not value-producing. A block is value-producing if its body (sequence of
statements) is value-producing, and then its value is the value of its body. A sequence is
value-producing if any of its component statements is value-producing, and then its value
is the value of its last value-producing component statement. Finally, if the whole program
is not value-producing, its value is the value undefined.

a. According to this specification, what are the values of the following four programs?

1; 2; 3;

1; { if (true) {} else { 2; } }

1; const x = 2;

1; { let x = 2; { x = x + 3; } }

b. Modify the evaluator to adhere to this specification.

4.1.3 Evaluator Data Structures
In addition to defining the representation of components, the evaluator implemen-
tation must also define the data structures that the evaluator manipulates internally,
as part of the execution of a program, such as the representation of functions and
environments and the representation of true and false.

Testing of predicates
In order to limit the predicate expressions of conditionals to proper predicates (ex-
pressions that evaluate to a boolean value) as we do throughout this book, we insist
here that the function is_truthy gets applied only to boolean values, and we accept
only the boolean value true to be truthy. The opposite of is_truthy is called
is_falsy.14

14. Conditionals in full JavaScript accept any value, not just a boolean, as the result of evaluat-
ing the “predicate” expression. JavaScript’s notion of truthiness and falsiness is captured by the
following variants of is_truthy and is_falsy:
function is_truthy(x) { return ! is_falsy(x); }
function is_falsy(x) {

return (is_boolean(x) && !x) ||
(is_number(x) && (x === 0 || x !== x)) ||
(is_string(x) && x === "") ||
is_null(x) ||
is_undefined(x);

}

The test x !== x is not a typo; the only JavaScript value for which x !== x yields true is the
value NaN (“Not a Number”), which is considered to be a falsy number (also not a typo), along
with 0. The numerical value NaN is the result of certain arithmetic border cases such as 0 / 0.

The terms “truthy” and “falsy” were coined by Douglas Crockford, one of whose books
(Crockford 2008) inspired this JavaScript adaptation.

342 Chapter 4 Metalinguistic Abstraction

function is_truthy(x) {
return is_boolean(x)

? x
: error(x, "boolean expected, received");

}
function is_falsy(x) { return ! is_truthy(x); }

Representing functions
To handle primitives, we assume that we have available the following functions:

• apply_primitive_function(fun, args)
applies the given primitive function to the argument values in the list args and
returns the result of the application.

• is_primitive_function(fun)
tests whether fun is a primitive function.

These mechanisms for handling primitives are further described in section 4.1.4.
Compound functions are constructed from parameters, function bodies, and

environments using the constructor make_function:

function make_function(parameters, body, env) {
return list("compound_function", parameters, body, env);

}
function is_compound_function(f) {

return is_tagged_list(f, "compound_function");
}
function function_parameters(f) { return list_ref(f, 1); }
function function_body(f) { return list_ref(f, 2); }
function function_environment(f) { return list_ref(f, 3); }

Representing return values
We saw in section 4.1.1 that the evaluation of a sequence terminates when a return
statement is encountered, and that the evaluation of a function application needs to
return the value undefined if the evaluation of the function body does not encounter
a return statement. In order to recognize that a value resulted from a return statement,
we introduce return values as evaluator data structures.

function make_return_value(content) {
return list("return_value", content);

}
function is_return_value(value) {

return is_tagged_list(value, "return_value");
}
function return_value_content(value) {

return head(tail(value));
}

4.1.3 Evaluator Data Structures 343

Operations on Environments
The evaluator needs operations for manipulating environments. As explained in
section 3.2, an environment is a sequence of frames, where each frame is a table
of bindings that associate symbols with their corresponding values. We use the
following operations for manipulating environments:

• lookup_symbol_value(symbol, env)
returns the value that is bound to symbol in the environment env, or signals an
error if symbol is unbound.

• extend_environment(symbols, values, base-env)
returns a new environment, consisting of a new frame in which the symbols in the
list symbols are bound to the corresponding elements in the list values, where the
enclosing environment is the environment base-env.

• assign_symbol_value(symbol, value, env)
finds the innermost frame of env in which symbol is bound, and changes that frame
so that symbol is now bound to value, or signals an error if symbol is unbound.

To implement these operations we represent an environment as a list of frames.
The enclosing environment of an environment is the tail of the list. The empty
environment is simply the empty list.

function enclosing_environment(env) { return tail(env); }
function first_frame(env) { return head(env); }
const the_empty_environment = null;

Each frame of an environment is represented as a pair of lists: a list of the names
bound in that frame and a list of the associated values.15

function make_frame(symbols, values) { return pair(symbols, values); }
function frame_symbols(frame) { return head(frame); }
function frame_values(frame) { return tail(frame); }

To extend an environment by a new frame that associates symbols with values,
we make a frame consisting of the list of symbols and the list of values, and we
adjoin this to the environment. We signal an error if the number of symbols does not
match the number of values.

function extend_environment(symbols, vals, base_env) {
return length(symbols) === length(vals)

? pair(make_frame(symbols, vals), base_env)
: error(pair(symbols, vals),

length(symbols) < length(vals)
? "too many arguments supplied"
: "too few arguments supplied");

}

15. Frames are not really a data abstraction: The function assign_symbol_value below uses
set_head to directly modify the values in a frame. The purpose of the frame functions is to
make the environment-manipulation functions easy to read.

344 Chapter 4 Metalinguistic Abstraction

This is used by apply in section 4.1.1 to bind the parameters of a function to its
arguments.

To look up a symbol in an environment, we scan the list of symbols in the first
frame. If we find the desired symbol, we return the corresponding element in the
list of values. If we do not find the symbol in the current frame, we search the
enclosing environment, and so on. If we reach the empty environment, we signal an
"unbound name" error.

function lookup_symbol_value(symbol, env) {
function env_loop(env) {

function scan(symbols, vals) {
return is_null(symbols)

? env_loop(enclosing_environment(env))
: symbol === head(symbols)
? head(vals)
: scan(tail(symbols), tail(vals));

}
if (env === the_empty_environment) {

error(symbol, "unbound name");
} else {

const frame = first_frame(env);
return scan(frame_symbols(frame), frame_values(frame));

}
}
return env_loop(env);

}

To assign a new value to a symbol in a specified environment, we scan for the
symbol, just as in lookup_symbol_value, and change the corresponding value
when we find it.

function assign_symbol_value(symbol, val, env) {
function env_loop(env) {

function scan(symbols, vals) {
return is_null(symbols)

? env_loop(enclosing_environment(env))
: symbol === head(symbols)
? set_head(vals, val)
: scan(tail(symbols), tail(vals));

}
if (env === the_empty_environment) {

error(symbol, "unbound name -- assignment");
} else {

const frame = first_frame(env);
return scan(frame_symbols(frame), frame_values(frame));

}
}
return env_loop(env);

}

The method described here is only one of many plausible ways to represent
environments. Since we used data abstraction to isolate the rest of the evaluator

4.1.3 Evaluator Data Structures 345

from the detailed choice of representation, we could change the environment repre-
sentation if we wanted to. (See exercise 4.9.) In a production-quality JavaScript
system, the speed of the evaluator’s environment operations—especially that of
symbol lookup—has a major impact on the performance of the system. The rep-
resentation described here, although conceptually simple, is not efficient and would
not ordinarily be used in a production system.16

Exercise 4.9
Instead of representing a frame as a pair of lists, we can represent a frame as a list of
bindings, where each binding is a symbol-value pair. Rewrite the environment operations
to use this alternative representation.

Exercise 4.10
The functions lookup_symbol_value and assign_symbol_value can be expressed in
terms of a more abstract function for traversing the environment structure. Define an
abstraction that captures the common pattern and redefine the two functions in terms of
this abstraction.

Exercise 4.11
Our language distinguishes constants from variables by using different keywords—const
and let—and prevents assignment to constants. However, our interpreter does not make
use of this distinction; the function assign_symbol_value will happily assign a new value
to a given symbol, regardless whether it is declared as a constant or a variable. Correct this
flaw by calling the function error whenever an attempt is made to use a constant on the
left-hand side of an assignment. You may proceed as follows:

• Introduce predicates is_constant_declaration and is_variable_declaration that
allow you to distinguish the two kinds. As shown in section 4.1.2, parse distinguishes
them by using the tags "constant_declaration" and "variable_declaration".

• Change scan_out_declarations and (if necessary) extend_environment such that
constants are distinguishable from variables in the frames in which they are bound.

• Change assign_symbol_value such that it checks whether the given symbol has been
declared as a variable or as a constant, and in the latter case signals an error that
assignment operations are not allowed on constants.

• Change eval_declaration such that when it encounters a constant declaration, it calls
a new function, assign_constant_value, which does not perform the check that you
introduced in assign_symbol_value.

• If necessary, change apply to ensure that assignment to function parameters remains
possible.

16. The drawback of this representation (as well as the variant in exercise 4.9) is that the
evaluator may have to search through many frames in order to find the binding for a given
variable. (Such an approach is referred to as deep binding.) One way to avoid this inefficiency
is to make use of a strategy called lexical addressing, which will be discussed in section 5.5.6.

346 Chapter 4 Metalinguistic Abstraction

Exercise 4.12
a. JavaScript’s specification requires an implementation to signal a runtime error upon an

attempt to access the value of a name before its declaration is evaluated (see the end of
section 3.2.4). To achieve this behavior in the evaluator, change lookup_symbol_value
to signal an error if the value it finds is "*unassigned*".

b. Similarly, we must not assign a new value to a variable if we have not evaluated its let
declaration yet. Change the evaluation of assignment such that assignment to a variable
declared with let signals an error in this case.

Exercise 4.13
Prior to ECMAScript 2015’s strict mode that we are using in this book, JavaScript variables
worked quite differently from Scheme variables, which would have made this adaptation
to JavaScript considerably less compelling.

a. Before ECMAScript 2015, the only way to declare a local variable in JavaScript
was using the keyword var instead of the keyword let. The scope of variables
declared with var is the entire body of the immediately surrounding function decla-
ration or lambda expression, rather than just the immediately enclosing block. Modify
scan_out_declarations and eval_block such that names declared with const and
let follow the scoping rules of var.

b. When not in strict mode, JavaScript permits undeclared names to appear to the left
of the = in assignments. Such an assignment adds the new binding to the global envi-
ronment. Modify the function assign_symbol_value to make assignment behave this
way. The strict mode, which forbids such assignments, was introduced in JavaScript in
order to make programs more secure. What security issue is addressed by preventing
assignment from adding bindings to the global environment?

4.1.4 Running the Evaluator as a Program
Given the evaluator, we have in our hands a description (expressed in JavaScript)
of the process by which JavaScript statements and expressions are evaluated. One
advantage of expressing the evaluator as a program is that we can run the program.
This gives us, running within JavaScript, a working model of how JavaScript it-
self evaluates expressions. This can serve as a framework for experimenting with
evaluation rules, as we shall do later in this chapter.

Our evaluator program reduces expressions ultimately to the application of
primitive functions. Therefore, all that we need to run the evaluator is to create a
mechanism that calls on the underlying JavaScript system to model the application
of primitive functions.

There must be a binding for each primitive function name and operator, so that
when evaluate evaluates the function expression of an application of a primitive,
it will find an object to pass to apply. We thus set up a global environment that
associates unique objects with the names of the primitive functions and operators
that can appear in the expressions we will be evaluating. The global environment
also includes bindings for undefined and other names, so that they can be used as
constants in expressions to be evaluated.

4.1.4 Running the Evaluator as a Program 347

function setup_environment() {
return extend_environment(append(primitive_function_symbols,

primitive_constant_symbols),
append(primitive_function_objects,

primitive_constant_values),
the_empty_environment);

}

const the_global_environment = setup_environment();

It does not matter how we represent primitive function objects, so long as apply
can identify and apply them using the functions is_primitive_function and
apply_primitive_function. We have chosen to represent a primitive function
as a list beginning with the string "primitive" and containing a function in the
underlying JavaScript that implements that primitive.

function is_primitive_function(fun) {
return is_tagged_list(fun, "primitive");

}
function primitive_implementation(fun) { return head(tail(fun)); }

The function setup_environment will get the primitive names and implemen-
tation functions from a list:17

const primitive_functions = list(list("head", head),
list("tail", tail),
list("pair", pair),
list("is_null", is_null),
list("+", (x, y) => x + y),
〈more primitive functions〉

);
const primitive_function_symbols =

map(f => head(f), primitive_functions);
const primitive_function_objects =

map(f => list("primitive", head(tail(f))),
primitive_functions);

Similar to primitive functions, we define other primitive constants that are
installed in the global environment by the function setup_environment.

17. Any function defined in the underlying JavaScript can be used as a primitive for the
metacircular evaluator. The name of a primitive installed in the evaluator need not be the
same as the name of its implementation in the underlying JavaScript; the names are the
same here because the metacircular evaluator implements JavaScript itself. Thus, for exam-
ple, we could put list("first", head) or list("square", x => x * x) in the list of
primitive_functions.

348 Chapter 4 Metalinguistic Abstraction

const primitive_constants = list(list("undefined", undefined),
list("math_PI", math_PI)
〈more primitive constants〉

);
const primitive_constant_symbols =

map(c => head(c), primitive_constants);
const primitive_constant_values =

map(c => head(tail(c)), primitive_constants);

To apply a primitive function, we simply apply the implementation function to
the arguments, using the underlying JavaScript system:18

function apply_primitive_function(fun, arglist) {
return apply_in_underlying_javascript(

primitive_implementation(fun), arglist);
}

For convenience in running the metacircular evaluator, we provide a driver
loop that models the read-evaluate-print loop of the underlying JavaScript sys-
tem. It prints a prompt and reads an input program as a string. It transforms the
program string into a tagged-list representation of the statement as described in
section 4.1.2—a process called parsing and accomplished by the primitive function
parse. We precede each printed result by an output prompt so as to distinguish the
value of the program from other output that may be printed. The driver loop gets the
program environment of the previous program as argument. As described at the end
of section 3.2.4, the driver loop treats the program as if it were in a block: It scans
out the declarations, extends the given environment by a frame containing a binding
of each name to "*unassigned*", and evaluates the program with respect to the
extended environment, which is then passed as argument to the next iteration of the
driver loop.

18. JavaScript’s apply method expects the function arguments in a vector. (Vectors are called
“arrays” in JavaScript.) Thus, the arglist is transformed into a vector—here using a while loop
(see exercise 4.7):
function apply_in_underlying_javascript(prim, arglist) {

const arg_vector = []; // empty vector
let i = 0;
while (!is_null(arglist)) {

arg_vector[i] = head(arglist); // store value at index i
i = i + 1;
arglist = tail(arglist);

}
return prim.apply(prim, arg_vector); // apply is accessed via prim

}

We also made use of apply_in_underlying_javascript to declare the function apply_
generic in section 2.4.3.

4.1.4 Running the Evaluator as a Program 349

const input_prompt = "M-evaluate input: ";
const output_prompt = "M-evaluate value: ";

function driver_loop(env) {
const input = user_read(input_prompt);
if (is_null(input)) {

display("evaluator terminated");
} else {

const program = parse(input);
const locals = scan_out_declarations(program);
const unassigneds = list_of_unassigned(locals);
const program_env = extend_environment(locals, unassigneds, env);
const output = evaluate(program, program_env);
user_print(output_prompt, output);
return driver_loop(program_env);

}
}

We use JavaScript’s prompt function to request and read the input string from the
user:

function user_read(prompt_string) {
return prompt(prompt_string);

}

The function prompt returns null when the user cancels the input. We use a
special printing function user_print, to avoid printing the environment part of
a compound function, which may be a very long list (or may even contain cycles).

function user_print(string, object) {
function prepare(object) {

return is_compound_function(object)
? "< compound-function >"
: is_primitive_function(object)
? "< primitive-function >"
: is_pair(object)
? pair(prepare(head(object)),

prepare(tail(object)))
: object;

}
display(string + " " + stringify(prepare(object)));

}

Now all we need to do to run the evaluator is to initialize the global environment
and start the driver loop. Here is a sample interaction:

const the_global_environment = setup_environment();
driver_loop(the_global_environment);

350 Chapter 4 Metalinguistic Abstraction

=

factorial--

*

factorial

6 720

1 1

1

Figure 4.3 The factorial program, viewed as an abstract machine.

M-evaluate input:
function append(xs, ys) {

return is_null(xs)
? ys
: pair(head(xs), append(tail(xs), ys));

}

M-evaluate value:
undefined

M-evaluate input:
append(list("a", "b", "c"), list("d", "e", "f"));

M-evaluate value:
["a", ["b", ["c", ["d", ["e", ["f", null]]]]]]

Exercise 4.14
Eva Lu Ator and Louis Reasoner are each experimenting with the metacircular evaluator.
Eva types in the definition of map, and runs some test programs that use it. They work fine.
Louis, in contrast, has installed the system version of map as a primitive for the metacircular
evaluator. When he tries it, things go terribly wrong. Explain why Louis’s map fails even
though Eva’s works.

4.1.5 Data as Programs
In thinking about a JavaScript program that evaluates JavaScript statements and
expressions, an analogy might be helpful. One operational view of the meaning of
a program is that a program is a description of an abstract (perhaps infinitely large)
machine. For example, consider the familiar program to compute factorials:

function factorial(n) {
return n === 1

? 1
: factorial(n - 1) * n;

}

4.1.5 Data as Programs 351

function factorial(n) {
 return n === 1
 ? 1
 : factorial(n - 1) * n;
}

eval6 720

Figure 4.4 The evaluator emulating a factorial machine.

We may regard this program as the description of a machine containing parts that
decrement, multiply, and test for equality, together with a two-position switch and
another factorial machine. (The factorial machine is infinite because it contains
another factorial machine within it.) Figure 4.3 is a flow diagram for the factorial
machine, showing how the parts are wired together.

In a similar way, we can regard the evaluator as a very special machine that takes
as input a description of a machine. Given this input, the evaluator configures itself
to emulate the machine described. For example, if we feed our evaluator the defi-
nition of factorial, as shown in figure 4.4, the evaluator will be able to compute
factorials.

From this perspective, our evaluator is seen to be a universal machine. It mimics
other machines when these are described as JavaScript programs.19 This is striking.
Try to imagine an analogous evaluator for electrical circuits. This would be a circuit

19. The fact that the machines are described in JavaScript is inessential. If we give our eval-
uator a JavaScript program that behaves as an evaluator for some other language, say C, the
JavaScript evaluator will emulate the C evaluator, which in turn can emulate any machine
described as a C program. Similarly, writing a JavaScript evaluator in C produces a C program
that can execute any JavaScript program. The deep idea here is that any evaluator can emulate
any other. Thus, the notion of “what can in principle be computed” (ignoring practicalities
of time and memory required) is independent of the language or the computer, and instead
reflects an underlying notion of computability. This was first demonstrated in a clear way by
Alan M. Turing (1912–1954), whose 1936 paper laid the foundations for theoretical computer
science. In the paper, Turing presented a simple computational model—now known as a Turing
machine—and argued that any “effective process” can be formulated as a program for such
a machine. (This argument is known as the Church–Turing thesis.) Turing then implemented
a universal machine, i.e., a Turing machine that behaves as an evaluator for Turing-machine
programs. He used this framework to demonstrate that there are well-posed problems that
cannot be computed by Turing machines (see exercise 4.15), and so by implication cannot
be formulated as “effective processes.” Turing went on to make fundamental contributions to
practical computer science as well. For example, he invented the idea of structuring programs
using general-purpose subroutines. See Hodges 1983 for a biography of Turing.

352 Chapter 4 Metalinguistic Abstraction

that takes as input a signal encoding the plans for some other circuit, such as a filter.
Given this input, the circuit evaluator would then behave like a filter with the same
description. Such a universal electrical circuit is almost unimaginably complex. It is
remarkable that the program evaluator is a rather simple program.20

Another striking aspect of the evaluator is that it acts as a bridge between the data
objects that are manipulated by our programming language and the programming
language itself. Imagine that the evaluator program (implemented in JavaScript) is
running, and that a user is typing programs to the evaluator and observing the results.
From the perspective of the user, an input program such as x * x; is a program in
the programming language, which the evaluator should execute. From the perspec-
tive of the evaluator, however, the program is simply a string or—after parsing—a
tagged-list representation that is to be manipulated according to a well-defined set
of rules.

That the user’s programs are the evaluator’s data need not be a source of confu-
sion. In fact, it is sometimes convenient to ignore this distinction, and to give the
user the ability to explicitly evaluate a string as a JavaScript statement, using Java-
Script’s primitive function eval that takes as argument a string. It parses the string
and—provided that it is syntactically correct—evaluates the resulting representation
in the environment in which eval is applied. Thus,

eval("5 * 5;");

and

evaluate(parse("5 * 5;"), the_global_environment);

will both return 25.21

Exercise 4.15
Given a one-argument function f and an object a, f is said to “halt” on a if evaluating the
expression f(a) returns a value (as opposed to terminating with an error message or run-
ning forever). Show that it is impossible to write a function halts that correctly determines
whether f halts on a for any function f and object a. Use the following reasoning: If you
had such a function halts, you could implement the following program:

20. Some people find it counterintuitive that an evaluator, which is implemented by a relatively
simple function, can emulate programs that are more complex than the evaluator itself. The
existence of a universal evaluator machine is a deep and wonderful property of computation.
Recursion theory, a branch of mathematical logic, is concerned with logical limits of computa-
tion. Douglas Hofstadter’s beautiful book Gödel, Escher, Bach (1979) explores some of these
ideas.

21. Note that eval may not be available in the JavaScript environment that you are using, or its
use may be restricted for security reasons.

4.1.6 Internal Declarations 353

function run_forever() { return run_forever(); }
function strange(f) {

return halts(f, f)
? run_forever()
: "halted";

}

Now consider evaluating the expression strange(strange) and show that any possible
outcome (either halting or running forever) violates the intended behavior of halts.22

4.1.6 Internal Declarations
In JavaScript, the scope of a declaration is the entire block that immediately sur-
rounds the declaration, not just the portion of the block starting at the point where
the declaration occurs. This section takes a closer look at this design choice.

Let us revisit the pair of mutually recursive functions is_even and is_odd from
Section 3.2.4, declared locally in the body of a function f.

function f(x) {
function is_even(n) {

return n === 0
? true
: is_odd(n - 1);

}
function is_odd(n) {

return n === 0
? false
: is_even(n - 1);

}
return is_even(x);

}

Our intention here is that the name is_odd in the body of the function is_even
should refer to the function is_odd that is declared after is_even. The scope of the
name is_odd is the entire body block of f, not just the portion of the body of f start-
ing at the point where the declaration of is_odd occurs. Indeed, when we consider
that is_odd is itself defined in terms of is_even—so that is_even and is_odd
are mutually recursive functions—we see that the only satisfactory interpretation of
the two declarations is to regard them as if the names is_even and is_odd were
being added to the environment simultaneously. More generally, in block structure,
the scope of a local name is the entire block in which the declaration is evaluated.

22. Although we stipulated that halts is given a function object, notice that this reasoning still
applies even if halts can gain access to the function’s text and its environment. This is Turing’s
celebrated Halting Theorem, which gave the first clear example of a noncomputable problem,
i.e., a well-posed task that cannot be carried out as a computational function.

354 Chapter 4 Metalinguistic Abstraction

The evaluation of blocks in the metacircular evaluator of section 4.1.1 achieves
such a simultaneous scope for local names by scanning out the declarations in the
block and extending the current environment with a frame containing bindings for
all the declared names before evaluating the declarations. Thus the new environment
in which the block body is evaluated already contains bindings for is_even and
is_odd, and any occurrence of one of these names refers to the correct binding.
Once their declarations are evaluated, these names are bound to their declared values,
namely function objects that have the extended environment as their environment
part. Thus, for example, by the time is_even gets applied in the body of f, its
environment already contains the correct binding for the symbol is_odd, and the
evaluation of the name is_odd in the body of is_even retrieves the correct value.

Exercise 4.16
Consider the function f_3 of section 1.3.2:

function f_3(x, y) {
const a = 1 + x * y;
const b = 1 - y;
return x * square(a) + y * b + a * b;

}

a. Draw a diagram of the environment in effect during evaluation of the return expression
of f_3.

b. When evaluating a function application, the evaluator creates two frames: one for the
parameters and one for the names declared directly in the function’s body block, as
opposed to in an inner block. Since all these names have the same scope, an implemen-
tation could combine the two frames. Change the evaluator such that the evaluation of
the body block does not create a new frame. You may assume that this will not result
in duplicate names in the frame (exercise 4.5 justifies this).

Exercise 4.17
Eva Lu Ator is writing programs in which function declarations and other statements are
interleaved. She needs to make sure that the declarations are evaluated before the functions
are applied. She complains: “Why can’t the evaluator take care of this chore, and hoist
all function declarations to the beginning of the block in which they appear? Function
declarations outside of blocks should be hoisted to the beginning of the program.”

a. Modify the evaluator following Eva’s suggestion.

b. The designers of JavaScript decided to follow Eva’s approach. Discuss this decision.

c. In addition, the designers of JavaScript decided to allow the name declared by a func-
tion declaration to be reassigned using assignment. Modify your solution accordingly
and discuss this decision.

Exercise 4.18
Recursive functions are obtained in a roundabout way in our interpreter: First declare
the name that will refer to the recursive function and assign to it the special value
"*unassigned*"; then define the recursive function in the scope of that name; and finally

4.1.6 Internal Declarations 355

assign the defined function to the name. By the time the recursive function gets applied, any
occurrences of the name in the body properly refer to the recursive function. Amazingly,
it is possible to specify recursive functions without using declarations or assignment. The
following program computes 10 factorial by applying a recursive factorial function:23

(n => (fact => fact(fact, n))
((ft, k) => k === 1

? 1
: k * ft(ft, k - 1)))(10);

a. Check (by evaluating the expression) that this really does compute factorials. Devise
an analogous expression for computing Fibonacci numbers.

b. Consider the function f given above:

function f(x) {
function is_even(n) {

return n === 0
? true
: is_odd(n - 1);

}
function is_odd(n) {

return n === 0
? false
: is_even(n - 1);

}
return is_even(x);

}

Fill in the missing expressions to complete an alternative declaration of f, which has
no internal function declarations:

function f(x) {
return ((is_even, is_odd) => is_even(is_even, is_odd, x))

((is_ev, is_od, n) => n === 0 ? true : is_od(〈??〉, 〈??〉, 〈??〉),
(is_ev, is_od, n) => n === 0 ? false : is_ev(〈??〉, 〈??〉, 〈??〉));

}

Sequential Declaration Processing
The design of our evaluator of section 4.1.1 imposes a runtime burden on the eval-
uation of blocks: It needs to scan the body of the block for locally declared names,
extend the current environment with a new frame that binds those names, and eval-
uate the block body in this extended environment. Alternatively, the evaluation of a
block could extend the current environment with an empty frame. The evaluation of
each declaration in the block body would then add a new binding to that frame. To
implement this design, we first simplify eval_block:

23. This example illustrates a programming trick for formulating recursive functions without
using assignment. The most general trick of this sort is the Y operator, which can be used to
give a “pure λ -calculus” implementation of recursion. (See Stoy 1977 for details on the lambda
calculus, and Gabriel 1988 for an exposition of the Y operator in the language Scheme.)

356 Chapter 4 Metalinguistic Abstraction

function eval_block(component, env) {
const body = block_body(component);
return evaluate(body, extend_environment(null, null, env);

}

The function eval_declaration can no longer assume that the environment al-
ready has a binding for the name. Instead of using assign_symbol_value to
change an existing binding, it calls a new function, add_binding_to_frame, to
add to the first frame of the environment a binding of the name to the value of the
value expression.

function eval_declaration(component, env) {
add_binding_to_frame(

declaration_symbol(component),
evaluate(declaration_value_expression(component), env),
first_frame(env));

return undefined;
}
function add_binding_to_frame(symbol, value, frame) {

set_head(frame, pair(symbol, head(frame)));
set_tail(frame, pair(value, tail(frame)));

}

With sequential declaration processing, the scope of a declaration is no longer the
entire block that immediately surrounds the declaration, but rather just the portion of
the block starting at the point where the declaration occurs. Although we no longer
have simultaneous scope, sequential declaration processing will evaluate calls to the
function f at the beginning of this section correctly, but for an “accidental” reason:
Since the declarations of the internal functions come first, no calls to these functions
will be evaluated until all of them have been declared. Hence, is_odd will have been
declared by the time is_even is executed. In fact, sequential declaration processing
will give the same result as our scanning-out-names evaluator in section 4.1.1 for any
function in which the internal declarations come first in a body and evaluation of the
value expressions for the declared names doesn’t actually use any of the declared
names. Exercise 4.19 shows an example of a function that doesn’t obey these restric-
tions, so that the alternative evaluator isn’t equivalent to our scanning-out-names
evaluator.

Sequential declaration processing is more efficient and easier to implement than
scanning out names. However, with sequential processing, the declaration to which
a name refers may depend on the order in which the statements in a block are
evaluated. In exercise 4.19, we see that views may differ as to whether that is
desirable.

Exercise 4.19
Ben Bitdiddle, Alyssa P. Hacker, and Eva Lu Ator are arguing about the desired result of
evaluating the program

4.1.7 Separating Syntactic Analysis from Execution 357

const a = 1;
function f(x) {

const b = a + x;
const a = 5;
return a + b;

}
f(10);

Ben asserts that the result should be obtained using the sequential processing of declara-
tions: b is declared to be 11, then a is declared to be 5, so the result is 16. Alyssa objects that
mutual recursion requires the simultaneous scope rule for internal function declarations,
and that it is unreasonable to treat function names differently from other names. Thus,
she argues for the mechanism implemented in section 4.1.1. This would lead to a being
unassigned at the time that the value for b is to be computed. Hence, in Alyssa’s view the
function should produce an error. Eva has a third opinion. She says that if the declarations
of a and b are truly meant to be simultaneous, then the value 5 for a should be used in
evaluating b. Hence, in Eva’s view a should be 5, b should be 15, and the result should be
20. Which (if any) of these viewpoints do you support? Can you devise a way to implement
internal declarations so that they behave as Eva prefers?24

4.1.7 Separating Syntactic Analysis from Execution
The evaluator implemented above is simple, but it is very inefficient, because the syn-
tactic analysis of components is interleaved with their execution. Thus if a program
is executed many times, its syntax is analyzed many times. Consider, for example,
evaluating factorial(4) using the following definition of factorial:

function factorial(n) {
return n === 1

? 1
: factorial(n - 1) * n;

}

Each time factorial is called, the evaluator must determine that the body
is a conditional expression and extract the predicate. Only then can it evaluate
the predicate and dispatch on its value. Each time it evaluates the expression
factorial(n - 1) * n, or the subexpressions factorial(n - 1) and n - 1,
the evaluator must perform the case analysis in evaluate to determine that the
expression is an application, and must extract its function expression and argument
expressions. This analysis is expensive. Performing it repeatedly is wasteful.

24. The designers of JavaScript support Alyssa on the following grounds: Eva is in principle
correct—the declarations should be regarded as simultaneous. But it seems difficult to imple-
ment a general, efficient mechanism that does what Eva requires. In the absence of such a
mechanism, it is better to generate an error in the difficult cases of simultaneous declarations
(Alyssa’s notion) than to produce an incorrect answer (as Ben would have it).

358 Chapter 4 Metalinguistic Abstraction

We can transform the evaluator to be significantly more efficient by arranging
things so that syntactic analysis is performed only once.25 We split evaluate, which
takes a component and an environment, into two parts. The function analyze takes
only the component. It performs the syntactic analysis and returns a new function,
the execution function, that encapsulates the work to be done in executing the ana-
lyzed component. The execution function takes an environment as its argument and
completes the evaluation. This saves work because analyze will be called only once
on a component, while the execution function may be called many times.

With the separation into analysis and execution, evaluate now becomes

function evaluate(component, env) {
return analyze(component)(env);

}

The result of calling analyze is the execution function to be applied to the
environment. The analyze function is the same case analysis as performed by the
original evaluate of section 4.1.1, except that the functions to which we dispatch
perform only analysis, not full evaluation:

function analyze(component) {
return is_literal(component)

? analyze_literal(component)
: is_name(component)
? analyze_name(component)
: is_application(component)
? analyze_application(component)
: is_operator_combination(component)
? analyze(operator_combination_to_application(component))
: is_conditional(component)
? analyze_conditional(component)
: is_lambda_expression(component)
? analyze_lambda_expression(component)
: is_sequence(component)
? analyze_sequence(sequence_statements(component))
: is_block(component)
? analyze_block(component)
: is_return_statement(component)
? analyze_return_statement(component)
: is_function_declaration(component)
? analyze(function_decl_to_constant_decl(component))
: is_declaration(component)
? analyze_declaration(component)
: is_assignment(component)
? analyze_assignment(component)
: error(component, "unknown syntax -- analyze");

}

25. This technique is an integral part of the compilation process, which we shall discuss in
chapter 5. Jonathan Rees wrote a Scheme interpreter like this in about 1982 for the T project
(Rees and Adams 1982). Marc Feeley 1986 (see also Feeley and Lapalme 1987) independently
invented this technique in his master’s thesis.

4.1.7 Separating Syntactic Analysis from Execution 359

Here is the simplest syntactic analysis function, which handles literal expres-
sions. It returns an execution function that ignores its environment argument and
just returns the value of the literal:

function analyze_literal(component) {
return env => literal_value(component);

}

Looking up the value of a name must still be done in the execution phase, since
this depends upon knowing the environment.26

function analyze_name(component) {
return env => lookup_symbol_value(symbol_of_name(component), env);

}

To analyze an application, we analyze the function expression and argument
expressions and construct an execution function that calls the execution function
of the function expression (to obtain the actual function to be applied) and the
argument-expression execution functions (to obtain the actual arguments). We then
pass these to execute_application, which is the analog of apply in section 4.1.1.
The function execute_application differs from apply in that the function body
for a compound function has already been analyzed, so there is no need to do further
analysis. Instead, we just call the execution function for the body on the extended
environment.

function analyze_application(component) {
const ffun = analyze(function_expression(component));
const afuns = map(analyze, arg_expressions(component));
return env => execute_application(ffun(env),

map(afun => afun(env), afuns));
}
function execute_application(fun, args) {

if (is_primitive_function(fun)) {
return apply_primitive_function(fun, args);

} else if (is_compound_function(fun)) {
const result = function_body(fun)

(extend_environment(function_parameters(fun),
args,
function_environment(fun)));

return is_return_value(result)
? return_value_content(result)
: undefined;

} else {
error(fun, "unknown function type -- execute_application");

}
}

26. There is, however, an important part of the search for a name that can be done as part of
the syntactic analysis. As we will show in section 5.5.6, one can determine the position in the
environment structure where the value of the variable will be found, thus obviating the need to
scan the environment for the entry that matches the variable.

360 Chapter 4 Metalinguistic Abstraction

For conditionals, we extract and analyze the predicate, consequent, and alterna-
tive at analysis time.

function analyze_conditional(component) {
const pfun = analyze(conditional_predicate(component));
const cfun = analyze(conditional_consequent(component));
const afun = analyze(conditional_alternative(component));
return env => is_truthy(pfun(env)) ? cfun(env) : afun(env);

}

Analyzing a lambda expression also achieves a major gain in efficiency: We
analyze the lambda body only once, even though functions resulting from evaluation
of the lambda expression may be applied many times.

function analyze_lambda_expression(component) {
const params = lambda_parameter_symbols(component);
const bfun = analyze(lambda_body(component));
return env => make_function(params, bfun, env);

}

Analysis of a sequence of statements is more involved.27 Each statement in the
sequence is analyzed, yielding an execution function. These execution functions are
combined to produce an execution function that takes an environment as argument
and sequentially calls each individual execution function with the environment as
argument.

function analyze_sequence(stmts) {
function sequentially(fun1, fun2) {

return env => {
const fun1_val = fun1(env);
return is_return_value(fun1_val)

? fun1_val
: fun2(env);

};
}
function loop(first_fun, rest_funs) {

return is_null(rest_funs)
? first_fun
: loop(sequentially(first_fun, head(rest_funs)),

tail(rest_funs));
}
const funs = map(analyze, stmts);
return is_null(funs)

? env => undefined
: loop(head(funs), tail(funs));

}

27. See exercise 4.21 for some insight into the processing of sequences.

4.1.7 Separating Syntactic Analysis from Execution 361

The body of a block is scanned only once for local declarations. The bindings
are installed in the environment when the execution function for the block is called.

function analyze_block(component) {
const body = block_body(component);
const bfun = analyze(body);
const locals = scan_out_declarations(body);
const unassigneds = list_of_unassigned(locals);
return env => bfun(extend_environment(locals, unassigneds, env));

}

For return statements, we analyze the return expression. The execution function
for the return statement simply calls the execution function for the return expression
and wraps the result in a return value.

function analyze_return_statement(component) {
const rfun = analyze(return_expression(component));
return env => make_return_value(rfun(env));

}

The function analyze_assignment must defer actually setting the variable un-
til the execution, when the environment has been supplied. However, the fact that
the assignment-value expression can be analyzed (recursively) during analysis is
a major gain in efficiency, because the assignment-value expression will now be
analyzed only once. The same holds true for constant and variable declarations.

function analyze_assignment(component) {
const symbol = assignment_symbol(component);
const vfun = analyze(assignment_value_expression(component));
return env => {

const value = vfun(env);
assign_symbol_value(symbol, value, env);
return value;

};
}
function analyze_declaration(component) {

const symbol = declaration_symbol(component);
const vfun = analyze(declaration_value_expression(component));
return env => {

assign_symbol_value(symbol, vfun(env), env);
return undefined;

};
}

Our new evaluator uses the same data structures, syntax functions, and runtime
support functions as in sections 4.1.2, 4.1.3, and 4.1.4.

Exercise 4.20
Extend the evaluator in this section to support while loops. (See exercise 4.7.)

362 Chapter 4 Metalinguistic Abstraction

Exercise 4.21
Alyssa P. Hacker doesn’t understand why analyze_sequence needs to be so compli-
cated. All the other analysis functions are straightforward transformations of the cor-
responding evaluation functions (or evaluate clauses) in section 4.1.1. She expected
analyze_sequence to look like this:

function analyze_sequence(stmts) {
function execute_sequence(funs, env) {

if (is_null(funs)) {
return undefined;

} else if (is_null(tail(funs))) {
return head(funs)(env);

} else {
const head_val = head(funs)(env);
return is_return_value(head_val)

? head_val
: execute_sequence(tail(funs), env);

}
}
const funs = map(analyze, stmts);
return env => execute_sequence(funs, env);

}

Eva Lu Ator explains to Alyssa that the version in the text does more of the work of
evaluating a sequence at analysis time. Alyssa’s sequence-execution function, rather than
having the calls to the individual execution functions built in, loops through the functions
in order to call them: In effect, although the individual statements in the sequence have
been analyzed, the sequence itself has not been.

Compare the two versions of analyze_sequence. For example, consider the common
case (typical of function bodies) where the sequence has just one statement. What work
will the execution function produced by Alyssa’s program do? What about the execution
function produced by the program in the text above? How do the two versions compare for
a sequence with two expressions?

Exercise 4.22
Design and carry out some experiments to compare the speed of the original metacircular
evaluator with the version in this section. Use your results to estimate the fraction of time
that is spent in analysis versus execution for various functions.

4.2 Lazy Evaluation
Now that we have an evaluator expressed as a JavaScript program, we can experi-
ment with alternative choices in language design simply by modifying the evaluator.
Indeed, new languages are often invented by first writing an evaluator that embeds
the new language within an existing high-level language. For example, if we wish to
discuss some aspect of a proposed modification to JavaScript with another member
of the JavaScript community, we can supply an evaluator that embodies the change.
The recipient can then experiment with the new evaluator and send back comments
as further modifications. Not only does the high-level implementation base make
it easier to test and debug the evaluator; in addition, the embedding enables the

4.2.1 Normal Order and Applicative Order 363

designer to snarf28 features from the underlying language, just as our embedded
JavaScript evaluator uses primitives and control structure from the underlying Java-
Script. Only later (if ever) need the designer go to the trouble of building a complete
implementation in a low-level language or in hardware. In this section and the
next we explore some variations on JavaScript that provide significant additional
expressive power.

4.2.1 Normal Order and Applicative Order
In section 1.1, where we began our discussion of models of evaluation, we noted
that JavaScript is an applicative-order language, namely, that all the arguments to
JavaScript functions are evaluated when the function is applied. In contrast, normal-
order languages delay evaluation of function arguments until the actual argument
values are needed. Delaying evaluation of function arguments until the last possi-
ble moment (e.g., until they are required by a primitive operation) is called lazy
evaluation.29 Consider the function

function try_me(a, b) {
return a === 0 ? 1 : b;

}

Evaluating try_me(0, head(null)); signals an error in JavaScript. With lazy
evaluation, there would be no error. Evaluating the statement would return 1,
because the argument head(null) would never be evaluated.

An example that exploits lazy evaluation is the declaration of a function unless

function unless(condition, usual_value, exceptional_value) {
return condition ? exceptional_value : usual_value;

}

that can be used in statements such as

unless(is_null(xs), head(xs), display("error: xs should not be null"));

This won’t work in an applicative-order language because both the usual value
and the exceptional value will be evaluated before unless is called (compare ex-
ercise 1.6). An advantage of lazy evaluation is that some functions, such as unless,
can do useful computation even if evaluation of some of their arguments would
produce errors or would not terminate.

28. Snarf: “To grab, especially a large document or file for the purpose of using it either with
or without the owner’s permission.” Snarf down: “To snarf, sometimes with the connotation
of absorbing, processing, or understanding.” (These definitions were snarfed from Steele et
al. 1983. See also Raymond 1996.)

29. The difference between the “lazy” terminology and the “normal-order” terminology is
somewhat fuzzy. Generally, “lazy” refers to the mechanisms of particular evaluators, while
“normal-order” refers to the semantics of languages, independent of any particular evaluation
strategy. But this is not a hard-and-fast distinction, and the two terminologies are often used
interchangeably.

364 Chapter 4 Metalinguistic Abstraction

If the body of a function is entered before an argument has been evaluated we
say that the function is non-strict in that argument. If the argument is evaluated
before the body of the function is entered we say that the function is strict in that
argument.30 In a purely applicative-order language, all functions are strict in each
argument. In a purely normal-order language, all compound functions are non-strict
in each argument, and primitive functions may be either strict or non-strict. There
are also languages (see exercise 4.29) that give programmers detailed control over
the strictness of the functions they define.

A striking example of a function that can usefully be made non-strict is pair
(or, in general, almost any constructor for data structures). One can do useful com-
putation, combining elements to form data structures and operating on the resulting
data structures, even if the values of the elements are not known. It makes perfect
sense, for instance, to compute the length of a list without knowing the values of the
individual elements in the list. We will exploit this idea in section 4.2.3 to implement
the streams of chapter 3 as lists formed of non-strict pairs.

Exercise 4.23
Suppose that (in ordinary applicative-order JavaScript) we define unless as shown above
and then define factorial in terms of unless as

function factorial(n) {
return unless(n === 1,

n * factorial(n - 1),
1);

}

What happens if we attempt to evaluate factorial(5)? Will our functions work in a
normal-order language?

Exercise 4.24
Ben Bitdiddle and Alyssa P. Hacker disagree over the importance of lazy evaluation for
implementing things such as unless. Ben points out that it’s possible to implement unless
in applicative order as a syntactic form. Alyssa counters that, if one did that, unless would
be merely syntax, not a function that could be used in conjunction with higher-order func-
tions. Fill in the details on both sides of the argument. Show how to implement unless
as a derived component (like operator combination), by catching in evaluate applications
whose function expression is the name unless. Give an example of a situation where it
might be useful to have unless available as a function, rather than as a syntactic form.

4.2.2 An Interpreter with Lazy Evaluation
In this section we will implement a normal-order language that is the same as Java-
Script except that compound functions are non-strict in each argument. Primitive
functions will still be strict. It is not difficult to modify the evaluator of section 4.1.1

30. The “strict” versus “non-strict” terminology means essentially the same as “applicative-
order” versus “normal-order,” except that it refers to individual functions and arguments rather
than to the language as a whole. At a conference on programming languages you might hear
someone say, “The normal-order language Hassle has certain strict primitives. Other functions
take their arguments by lazy evaluation.”

4.2.2 An Interpreter with Lazy Evaluation 365

so that the language it interprets behaves this way. Almost all the required changes
center around function application.

The basic idea is that, when applying a function, the interpreter must determine
which arguments are to be evaluated and which are to be delayed. The delayed argu-
ments are not evaluated; instead, they are transformed into objects called thunks.31

The thunk must contain the information required to produce the value of the ar-
gument when it is needed, as if it had been evaluated at the time of the application.
Thus, the thunk must contain the argument expression and the environment in which
the function application is being evaluated.

The process of evaluating the expression in a thunk is called forcing.32 In general,
a thunk will be forced only when its value is needed: when it is passed to a primitive
function that will use the value of the thunk; when it is the value of a predicate
of a conditional; and when it is the value of a function expression that is about to
be applied as a function. One design choice we have available is whether or not
to memoize thunks, similar to the optimization for streams in section 3.5.1. With
memoization, the first time a thunk is forced, it stores the value that is computed.
Subsequent forcings simply return the stored value without repeating the computa-
tion. We’ll make our interpreter memoize, because this is more efficient for many
applications. There are tricky considerations here, however.33

Modifying the evaluator
The main difference between the lazy evaluator and the one in section 4.1 is in the
handling of function applications in evaluate and apply.

The is_application clause of evaluate becomes

: is_application(component)
? apply(actual_value(function_expression(component), env),

arg_expressions(component), env)

This is almost the same as the is_application clause of evaluate in section 4.1.1.
For lazy evaluation, however, we call apply with the argument expressions, rather
than the arguments produced by evaluating them. Since we will need the environ-
ment to construct thunks if the arguments are to be delayed, we must pass this as well.

31. The word thunk was invented by an informal working group that was discussing the imple-
mentation of call-by-name in Algol 60. They observed that most of the analysis of (“thinking
about”) the expression could be done at compile time; thus, at run time, the expression would
already have been “thunk” about (Ingerman et al. 1960).

32. This is analogous to the forcing of the delayed objects that were introduced in chapter 3 to
represent streams. The critical difference between what we are doing here and what we did in
chapter 3 is that we are building delaying and forcing into the evaluator, and thus making this
uniform and automatic throughout the language.

33. Lazy evaluation combined with memoization is sometimes referred to as call-by-need ar-
gument passing, in contrast to call-by-name argument passing. (Call-by-name, introduced in
Algol 60, is similar to non-memoized lazy evaluation.) As language designers, we can build our
evaluator to memoize, not to memoize, or leave this an option for programmers (exercise 4.29).
As you might expect from chapter 3, these choices raise issues that become both subtle and
confusing in the presence of assignments. (See exercises 4.25 and 4.27.) An excellent article by
Clinger (1982) attempts to clarify the multiple dimensions of confusion that arise here.

366 Chapter 4 Metalinguistic Abstraction

We still evaluate the function expression, because apply needs the actual function to
be applied in order to dispatch on its type (primitive versus compound) and apply it.

Whenever we need the actual value of an expression, we use

function actual_value(exp, env) {
return force_it(evaluate(exp, env));

}

instead of just evaluate, so that if the expression’s value is a thunk, it will be
forced.

Our new version of apply is also almost the same as the version in section 4.1.1.
The difference is that evaluate has passed in unevaluated argument expressions:
For primitive functions (which are strict), we evaluate all the arguments before
applying the primitive; for compound functions (which are non-strict) we delay all
the arguments before applying the function.

function apply(fun, args, env) {
if (is_primitive_function(fun)) {

return apply_primitive_function(
fun,
list_of_arg_values(args, env)); // changed

} else if (is_compound_function(fun)) {
const result = evaluate(

function_body(fun),
extend_environment(

function_parameters(fun),
list_of_delayed_args(args, env), // changed

function_environment(fun)));
return is_return_value(result)

? return_value_content(result)
: undefined;

} else {
error(fun, "unknown function type -- apply");

}
}

The functions that process the arguments are just like list_of_values from
section 4.1.1, except that list_of_delayed_args delays the arguments instead
of evaluating them, and list_of_arg_values uses actual_value instead of
evaluate:

function list_of_arg_values(exps, env) {
return map(exp => actual_value(exp, env), exps);

}
function list_of_delayed_args(exps, env) {

return map(exp => delay_it(exp, env), exps);
}

The other place we must change the evaluator is in the handling of conditionals,
where we must use actual_value instead of evaluate to get the value of the
predicate expression before testing whether it is true or false:

4.2.2 An Interpreter with Lazy Evaluation 367

function eval_conditional(component, env) {
return is_truthy(actual_value(conditional_predicate(component), env))

? evaluate(conditional_consequent(component), env)
: evaluate(conditional_alternative(component), env);

}

Finally, we must change the driver_loop function (from section 4.1.4) to use
actual_value instead of evaluate, so that if a delayed value is propagated back to
the read-evaluate-print loop, it will be forced before being printed. We also change
the prompts to indicate that this is the lazy evaluator:

const input_prompt = "L-evaluate input: ";
const output_prompt = "L-evaluate value: ";

function driver_loop(env) {
const input = user_read(input_prompt);
if (is_null(input)) {

display("evaluator terminated");
} else {

const program = parse(input);
const locals = scan_out_declarations(program);
const unassigneds = list_of_unassigned(locals);
const program_env = extend_environment(locals, unassigneds, env);
const output = actual_value(program, program_env);
user_print(output_prompt, output);
return driver_loop(program_env);

}
}

With these changes made, we can start the evaluator and test it. The successful
evaluation of the try_me expression discussed in section 4.2.1 indicates that the
interpreter is performing lazy evaluation:

const the_global_environment = setup_environment();
driver_loop(the_global_environment);

L-evaluate input:
function try_me(a, b) {

return a === 0 ? 1 : b;
}

L-evaluate value:
undefined

L-evaluate input:
try_me(0, head(null));

L-evaluate value:
1

368 Chapter 4 Metalinguistic Abstraction

Representing thunks
Our evaluator must arrange to create thunks when functions are applied to arguments
and to force these thunks later. A thunk must package an expression together with
the environment, so that the argument can be produced later. To force the thunk,
we simply extract the expression and environment from the thunk and evaluate the
expression in the environment. We use actual_value rather than evaluate so that
in case the value of the expression is itself a thunk, we will force that, and so on, until
we reach something that is not a thunk:

function force_it(obj) {
return is_thunk(obj)

? actual_value(thunk_exp(obj), thunk_env(obj))
: obj;

}

One easy way to package an expression with an environment is to make a list
containing the expression and the environment. Thus, we create a thunk as follows:

function delay_it(exp, env) {
return list("thunk", exp, env);

}
function is_thunk(obj) {

return is_tagged_list(obj, "thunk");
}
function thunk_exp(thunk) { return head(tail(thunk)); }
function thunk_env(thunk) { return head(tail(tail(thunk))); }

Actually, what we want for our interpreter is not quite this, but rather thunks that
have been memoized. When a thunk is forced, we will turn it into an evaluated thunk
by replacing the stored expression with its value and changing the thunk tag so that
it can be recognized as already evaluated.34

function is_evaluated_thunk(obj) {
return is_tagged_list(obj, "evaluated_thunk");

}
function thunk_value(evaluated_thunk) {

return head(tail(evaluated_thunk));
}

34. Notice that we also erase the env from the thunk once the expression’s value has been
computed. This makes no difference in the values returned by the interpreter. It does help save
space, however, because removing the reference from the thunk to the env once it is no longer
needed allows this structure to be garbage-collected and its space recycled, as we will discuss
in section 5.3.

Similarly, we could have allowed unneeded environments in the memoized delayed objects
of section 3.5.1 to be garbage-collected, by having memo do something like fun = null; to
discard the function fun (which includes the environment in which the lambda expression that
makes up the tail of the stream was evaluated) after storing its value.

4.2.2 An Interpreter with Lazy Evaluation 369

function force_it(obj) {
if (is_thunk(obj)) {

const result = actual_value(thunk_exp(obj), thunk_env(obj));
set_head(obj, "evaluated_thunk");
set_head(tail(obj), result); // replace exp with its value
set_tail(tail(obj), null); // forget unneeded env
return result;

} else if (is_evaluated_thunk(obj)) {
return thunk_value(obj);

} else {
return obj;

}
}

Notice that the same delay_it function works both with and without memoization.

Exercise 4.25
Suppose we type in the following declarations to the lazy evaluator:

let count = 0;
function id(x) {

count = count + 1;
return x;

}

Give the missing values in the following sequence of interactions, and explain your
answers.35

const w = id(id(10));

L-evaluate input:
count;

L-evaluate value:
〈response〉

L-evaluate input:
w;

L-evaluate value:
〈response〉

L-evaluate input:
count;

L-evaluate value:
〈response〉

35. This exercise demonstrates that the interaction between lazy evaluation and side effects can
be very confusing. This is just what you might expect from the discussion in chapter 3.

370 Chapter 4 Metalinguistic Abstraction

Exercise 4.26
The function evaluate uses actual_value rather than evaluate to evaluate the function
expression before passing it to apply, in order to force the value of the function expression.
Give an example that demonstrates the need for this forcing.

Exercise 4.27
Exhibit a program that you would expect to run much more slowly without memoization
than with memoization. Also, consider the following interaction, where the id function is
defined as in exercise 4.25 and count starts at 0:

function square(x) {
return x * x;

}

L-evaluate input:
square(id(10));

L-evaluate value:
〈response〉

L-evaluate input:
count;

L-evaluate value:
〈response〉

Give the responses both when the evaluator memoizes and when it does not.

Exercise 4.28
Cy D. Fect, a reformed C programmer, is worried that some side effects may never take
place, because the lazy evaluator doesn’t force the statements in a sequence. Since the
value of a statement in a sequence may not be used (the statement may be there only for its
effect, such as assigning to a variable or printing), there may be no subsequent use of this
value (e.g., as an argument to a primitive function) that will cause it to be forced. Cy thus
thinks that when evaluating sequences, we must force all statements in the sequence. He
proposes to modify evaluate_sequence from section 4.1.1 to use actual_value rather
than evaluate:

function eval_sequence(stmts, env) {
if (is_empty_sequence(stmts)) {

return undefined;
} else if (is_last_statement(stmts)) {

return actual_value(first_statement(stmts), env);
} else {

const first_stmt_value =
actual_value(first_statement(stmts), env);

if (is_return_value(first_stmt_value)) {
return first_stmt_value;

} else {
return eval_sequence(rest_statements(stmts), env);

}
}

}

4.2.2 An Interpreter with Lazy Evaluation 371

a. Ben Bitdiddle thinks Cy is wrong. He shows Cy the for_each function described in
exercise 2.23, which gives an important example of a sequence with side effects:

function for_each(fun, items) {
if (is_null(items)){

return "done";
} else {

fun(head(items));
for_each(fun, tail(items));

}
}

He claims that the evaluator in the text (with the original eval_sequence) handles this
correctly:

L-evaluate input:
for_each(display, list(57, 321, 88));

57
321
88
L-evaluate value:
"done"

Explain why Ben is right about the behavior of for_each.

b. Cy agrees that Ben is right about the for_each example, but says that that’s not the kind
of program he was thinking about when he proposed his change to eval_sequence. He
declares the following two functions in the lazy evaluator:

function f1(x) {
x = pair(x, list(2));
return x;

}

function f2(x) {
function f(e) {

e;
return x;

}
return f(x = pair(x, list(2)));

}

What are the values of f1(1) and f2(1) with the original eval_sequence? What
would the values be with Cy’s proposed change to eval_sequence?

c. Cy also points out that changing eval_sequence as he proposes does not affect the
behavior of the example in part a. Explain why this is true.

d. How do you think sequences ought to be treated in the lazy evaluator? Do you like Cy’s
approach, the approach in the text, or some other approach?

372 Chapter 4 Metalinguistic Abstraction

Exercise 4.29
The approach taken in this section is somewhat unpleasant, because it makes an in-
compatible change to JavaScript. It might be nicer to implement lazy evaluation as an
upward-compatible extension, that is, so that ordinary JavaScript programs will work as
before. We can do this by introducing optional parameter declaration as a new syntactic
form inside function declarations to let the user control whether or not arguments are to be
delayed. While we’re at it, we may as well also give the user the choice between delaying
with and without memoization. For example, the declaration

function f(a, b, c, d) {
parameters("strict", "lazy", "strict", "lazy_memo");
. . .

}

would define f to be a function of four arguments, where the first and third arguments
are evaluated when the function is called, the second argument is delayed, and the fourth
argument is both delayed and memoized. You can assume that the parameter declaration
is always the first statement in the body of a function declaration, and if it is omitted, all
parameters are strict. Thus, ordinary function declaration will produce the same behavior as
ordinary JavaScript, while adding the "lazy_memo" declaration to each parameter of every
compound function will produce the behavior of the lazy evaluator defined in this section.
Design and implement the changes required to produce such an extension to JavaScript.
The parse function will treat parameter declarations as function applications, so you need
to modify apply to dispatch to your implementation of the new syntactic form. You must
also arrange for evaluate or apply to determine when arguments are to be delayed, and
to force or delay arguments accordingly, and you must arrange for forcing to memoize or
not, as appropriate.

4.2.3 Streams as Lazy Lists
In section 3.5.1, we showed how to implement streams as delayed lists. We used a
lambda expression to construct a “promise” to compute the tail of a stream, without
actually fulfilling that promise until later. We were forced to create streams as a
new kind of data object similar but not identical to lists, and this required us to
reimplement many ordinary list operations (map, append, and so on) for use with
streams.

With lazy evaluation, streams and lists can be identical, so there is no need for
separate list and stream operations. All we need to do is to arrange matters so that
pair is non-strict. One way to accomplish this is to extend the lazy evaluator to
allow for non-strict primitives, and to implement pair as one of these. An easier
way is to recall (section 2.1.3) that there is no fundamental need to implement pair
as a primitive at all. Instead, we can represent pairs as functions:36

36. This is the functional representation described in exercise 2.4. Essentially any functional
representation (e.g., a message-passing implementation) would do as well. Notice that we can
install these definitions in the lazy evaluator simply by typing them at the driver loop. If we had
originally included pair, head, and tail as primitives in the global environment, they will be
redefined. (Also see exercises 4.31 and 4.32.)

4.2.3 Streams as Lazy Lists 373

function pair(x, y) {
return m => m(x, y);

}
function head(z) {

return z((p, q) => p);
}
function tail(z) {

return z((p, q) => q);
}

In terms of these basic operations, the standard definitions of the list operations
will work with infinite lists (streams) as well as finite ones, and the stream operations
can be implemented as list operations. Here are some examples:

function list_ref(items, n) {
return n === 0

? head(items)
: list_ref(tail(items), n - 1);

}
function map(fun, items) {

return is_null(items)
? null
: pair(fun(head(items)),

map(fun, tail(items)));
}
function scale_list(items, factor) {

return map(x => x * factor, items);
}
function add_lists(list1, list2) {

return is_null(list1)
? list2
: is_null(list2)
? list1
: pair(head(list1) + head(list2),

add_lists(tail(list1), tail(list2)));
}
const ones = pair(1, ones);
const integers = pair(1, add_lists(ones, integers));

L-evaluate input:
list_ref(integers, 17);

L-evaluate value:
18

Note that these lazy lists are even lazier than the streams of chapter 3: The head
of the list, as well as the tail, is delayed.37 In fact, even accessing the head or tail

37. This permits us to create delayed versions of more general kinds of list structures, not just
sequences. Hughes 1990 discusses some applications of “lazy trees.”

374 Chapter 4 Metalinguistic Abstraction

of a lazy pair need not force the value of a list element. The value will be forced
only when it is really needed—e.g., for use as the argument of a primitive, or to be
printed as an answer.

Lazy pairs also help with the problem that arose with streams in section 3.5.4,
where we found that formulating stream models of systems with loops may re-
quire us to sprinkle our programs with additional lambda expressions for delays,
beyond the ones required to construct a stream pair. With lazy evaluation, all
arguments to functions are delayed uniformly. For instance, we can implement func-
tions to integrate lists and solve differential equations as we originally intended in
section 3.5.4:

function integral(integrand, initial_value, dt) {
const int = pair(initial_value,

add_lists(scale_list(integrand, dt),
int));

return int;
}
function solve(f, y0, dt) {

const y = integral(dy, y0, dt);
const dy = map(f, y);
return y;

}

L-evaluate input:
list_ref(solve(x => x, 1, 0.001), 1000);

L-evaluate value:
2.716924

Exercise 4.30
Give some examples that illustrate the difference between the streams of chapter 3 and
the “lazier” lazy lists described in this section. How can you take advantage of this extra
laziness?

Exercise 4.31
Ben Bitdiddle tests the lazy list implementation given above by evaluating the expression

head(list("a", "b", "c"));

To his surprise, this produces an error. After some thought, he realizes that the “lists”
obtained from the primitive list function are different from the lists manipulated by the
new definitions of pair, head, and tail. Modify the evaluator such that applications of
the primitive list function typed at the driver loop will produce true lazy lists.

Exercise 4.32
Modify the driver loop for the evaluator so that lazy pairs and lists will print in some
reasonable way. (What are you going to do about infinite lists?) You may also need to
modify the representation of lazy pairs so that the evaluator can identify them in order to
print them.

4.3 Nondeterministic Computing 375

4.3 Nondeterministic Computing
In this section, we extend the JavaScript evaluator to support a programming
paradigm called nondeterministic computing by building into the evaluator a facility
to support automatic search. This is a much more profound change to the language
than the introduction of lazy evaluation in section 4.2.

Nondeterministic computing, like stream processing, is useful for “generate and
test” applications. Consider the task of starting with two lists of positive integers
and finding a pair of integers—one from the first list and one from the second
list—whose sum is prime. We saw how to handle this with finite sequence opera-
tions in section 2.2.3 and with infinite streams in section 3.5.3. Our approach was to
generate the sequence of all possible pairs and filter these to select the pairs whose
sum is prime. Whether we actually generate the entire sequence of pairs first as in
chapter 2, or interleave the generating and filtering as in chapter 3, is immaterial to
the essential image of how the computation is organized.

The nondeterministic approach evokes a different image. Imagine simply that
we choose (in some way) a number from the first list and a number from the second
list and require (using some mechanism) that their sum be prime. This is expressed
by the following function:

function prime_sum_pair(list1, list2) {
const a = an_element_of(list1);
const b = an_element_of(list2);
require(is_prime(a + b));
return list(a, b);

}

It might seem as if this function merely restates the problem, rather than specifying
a way to solve it. Nevertheless, this is a legitimate nondeterministic program.38

The key idea here is that components in a nondeterministic language can have
more than one possible value. For instance, an_element_of might return any
element of the given list. Our nondeterministic program evaluator will work by
automatically choosing a possible value and keeping track of the choice. If a sub-
sequent requirement is not met, the evaluator will try a different choice, and it
will keep trying new choices until the evaluation succeeds, or until we run out of
choices. Just as the lazy evaluator freed the programmer from the details of how
values are delayed and forced, the nondeterministic program evaluator will free the
programmer from the details of how choices are made.

38. We assume that we have previously defined a function is_prime that tests whether numbers
are prime. Even with is_prime defined, the prime_sum_pair function may look suspiciously
like the unhelpful “pseudo-JavaScript” attempt to define the square-root function, which we
described at the beginning of section 1.1.7. In fact, a square-root function along those lines can
actually be formulated as a nondeterministic program. By incorporating a search mechanism
into the evaluator, we are eroding the distinction between purely declarative descriptions and
imperative specifications of how to compute answers. We’ll go even farther in this direction in
section 4.4.

376 Chapter 4 Metalinguistic Abstraction

It is instructive to contrast the different images of time evoked by nondetermin-
istic evaluation and stream processing. Stream processing uses lazy evaluation to
decouple the time when the stream of possible answers is assembled from the time
when the actual stream elements are produced. The evaluator supports the illusion
that all the possible answers are laid out before us in a timeless sequence. With non-
deterministic evaluation, a component represents the exploration of a set of possible
worlds, each determined by a set of choices. Some of the possible worlds lead to
dead ends, while others have useful values. The nondeterministic program evaluator
supports the illusion that time branches, and that our programs have different possi-
ble execution histories. When we reach a dead end, we can revisit a previous choice
point and proceed along a different branch.

The nondeterministic program evaluator implemented below is called the amb
evaluator because it is based on a new syntactic form called amb. We can type the
above declaration of prime_sum_pair at the amb evaluator driver loop (along with
declarations of is_prime, an_element_of, and require) and run the function as
follows:

amb-evaluate input:
prime_sum_pair(list(1, 3, 5, 8), list(20, 35, 110));

Starting a new problem
amb-evaluate value:
[3, [20, null]]

The value returned was obtained after the evaluator repeatedly chose elements from
each of the lists, until a successful choice was made.

Section 4.3.1 introduces amb and explains how it supports nondeterminism
through the evaluator’s automatic search mechanism. Section 4.3.2 presents exam-
ples of nondeterministic programs, and section 4.3.3 gives the details of how to
implement the amb evaluator by modifying the ordinary JavaScript evaluator.

4.3.1 Search and amb
To extend JavaScript to support nondeterminism, we introduce a new syntactic form
called amb.39 The expression amb(e1, e2, . . . , en) returns the value of one of the n
expressions ei “ambiguously.” For example, the expression

list(amb(1, 2, 3), amb("a", "b"));

can have six possible values:

list(1, "a") list(1, "b") list(2, "a")
list(2, "b") list(3, "a") list(3, "b")

An amb expression with a single choice produces an ordinary (single) value.
An amb expression with no choices—the expression amb()—is an expression

with no acceptable values. Operationally, we can think of amb() as an expression
that when evaluated causes the computation to “fail”: The computation aborts and no

39. The idea of amb for nondeterministic programming was first described in 1961 by John
McCarthy (see McCarthy 1967).

4.3.1 Search and amb 377

value is produced. Using this idea, we can express the requirement that a particular
predicate expression p must be true as follows:

function require(p) {
if (! p) {

amb();
} else {}

}

With amb and require, we can implement the an_element_of function used
above:

function an_element_of(items) {
require(! is_null(items));
return amb(head(items), an_element_of(tail(items)));

}

An application of an_element_of fails if the list is empty. Otherwise it ambigu-
ously returns either the first element of the list or an element chosen from the rest of
the list.

We can also express infinite ranges of choices. The following function potentially
returns any integer greater than or equal to some given n:

function an_integer_starting_from(n) {
return amb(n, an_integer_starting_from(n + 1));

}

This is like the stream function integers_starting_from described in section
3.5.2, but with an important difference: The stream function returns an object that
represents the sequence of all integers beginning with n, whereas the amb function
returns a single integer.40

Abstractly, we can imagine that evaluating an amb expression causes time to
split into branches, where the computation continues on each branch with one of
the possible values of the expression. We say that amb represents a nondeterminis-
tic choice point. If we had a machine with a sufficient number of processors that
could be dynamically allocated, we could implement the search in a straightforward
way. Execution would proceed as in a sequential machine, until an amb expression
is encountered. At this point, more processors would be allocated and initialized
to continue all of the parallel executions implied by the choice. Each processor
would proceed sequentially as if it were the only choice, until it either terminates
by encountering a failure, or it further subdivides, or it finishes.41

40. In actuality, the distinction between nondeterministically returning a single choice and re-
turning all choices depends somewhat on our point of view. From the perspective of the code
that uses the value, the nondeterministic choice returns a single value. From the perspective of
the programmer designing the code, the nondeterministic choice potentially returns all possible
values, and the computation branches so that each value is investigated separately.

41. One might object that this is a hopelessly inefficient mechanism. It might require millions
of processors to solve some easily stated problem this way, and most of the time most of those
processors would be idle. This objection should be taken in the context of history. Memory used
to be considered just such an expensive commodity. In 1965 a megabyte of RAM cost about
$400,000. Now every personal computer has many gigabytes of RAM, and most of the time
most of that RAM is unused. It is hard to underestimate the cost of mass-produced electronics.

378 Chapter 4 Metalinguistic Abstraction

On the other hand, if we have a machine that can execute only one process (or a
few concurrent processes), we must consider the alternatives sequentially. One could
imagine modifying an evaluator to pick at random a branch to follow whenever it
encounters a choice point. Random choice, however, can easily lead to failing val-
ues. We might try running the evaluator over and over, making random choices and
hoping to find a non-failing value, but it is better to systematically search all possible
execution paths. The amb evaluator that we will develop and work with in this section
implements a systematic search as follows: When the evaluator encounters an appli-
cation of amb, it initially selects the first alternative. This selection may itself lead
to a further choice. The evaluator will always initially choose the first alternative at
each choice point. If a choice results in a failure, then the evaluator automagically42

backtracks to the most recent choice point and tries the next alternative. If it runs
out of alternatives at any choice point, the evaluator will back up to the previous
choice point and resume from there. This process leads to a search strategy known
as depth-first search or chronological backtracking.43

42. Automagically: “Automatically, but in a way which, for some reason (typically because
it is too complicated, or too ugly, or perhaps even too trivial), the speaker doesn’t feel like
explaining.” (Steele 1983, Raymond 1996)

43. The integration of automatic search strategies into programming languages has had a
long and checkered history. The first suggestions that nondeterministic algorithms might be
elegantly encoded in a programming language with search and automatic backtracking came
from Robert Floyd (1967). Carl Hewitt (1969) invented a programming language called Planner
that explicitly supported automatic chronological backtracking, providing for a built-in depth-
first search strategy. Sussman, Winograd, and Charniak (1971) implemented a subset of this
language, called MicroPlanner, which was used to support work in problem solving and robot
planning. Similar ideas, arising from logic and theorem proving, led to the genesis in Edin-
burgh and Marseille of the elegant language Prolog (which we will discuss in section 4.4).
After sufficient frustration with automatic search, McDermott and Sussman (1972) developed
a language called Conniver, which included mechanisms for placing the search strategy under
programmer control. This proved unwieldy, however, and Sussman and Stallman (1975) found a
more tractable approach while investigating methods of symbolic analysis for electrical circuits.
They developed a nonchronological backtracking scheme that was based on tracing out the
logical dependencies connecting facts, a technique that has come to be known as dependency-
directed backtracking. Although their method was complex, it produced reasonably efficient
programs because it did little redundant search. Doyle (1979) and McAllester (1978, 1980)
generalized and clarified the methods of Stallman and Sussman, developing a new paradigm
for formulating search that is now called truth maintenance. Many problem-solving systems
use some form of truth-maintenance system as a substrate. See Forbus and de Kleer 1993 for
a discussion of elegant ways to build truth-maintenance systems and applications using truth
maintenance. Zabih, McAllester, and Chapman 1987 describes a nondeterministic extension
to Scheme that is based on amb; it is similar to the interpreter described in this section, but
more sophisticated, because it uses dependency-directed backtracking rather than chronological
backtracking. Winston 1992 gives an introduction to both kinds of backtracking.

4.3.1 Search and amb 379

Driver loop
The driver loop for the amb evaluator has some unusual properties. It reads a program
and prints the value of the first non-failing execution, as in the prime_sum_pair
example shown above. If we want to see the value of the next successful execution,
we can ask the interpreter to backtrack and attempt to generate a second non-failing
execution. This is signaled by typing retry. If any other input except retry is given,
the interpreter will start a new problem, discarding the unexplored alternatives in the
previous problem. Here is a sample interaction:

amb-evaluate input:
prime_sum_pair(list(1, 3, 5, 8), list(20, 35, 110));

Starting a new problem
amb-evaluate value:
[3, [20, null]]

amb-evaluate input:
retry

amb-evaluate value:
[3, [110, null]]

amb-evaluate input:
retry

amb-evaluate value:
[8, [35, null]]

amb-evaluate input:
retry

There are no more values of
prime_sum_pair([1, [3, [5, [8, null]]]], [20, [35, [110, null]]])

amb-evaluate input:
prime_sum_pair(list(19, 27, 30), list(11, 36, 58));

Starting a new problem
amb-evaluate value:
[30, [11, null]]

Exercise 4.33
Write a function an_integer_between that returns an integer between two given bounds.
This can be used to implement a function that finds Pythagorean triples, i.e., triples of
integers (i, j, k) between the given bounds such that i≤ j and i2 + j2 = k2, as follows:

380 Chapter 4 Metalinguistic Abstraction

function a_pythogorean_triple_between(low, high) {
const i = an_integer_between(low, high);
const j = an_integer_between(i, high);
const k = an_integer_between(j, high);
require(i * i + j * j === k * k);
return list(i, j, k);

}

Exercise 4.34
Exercise 3.69 discussed how to generate the stream of all Pythagorean triples, with no
upper bound on the size of the integers to be searched. Explain why simply replacing
an_integer_between by an_integer_starting_from in the function in exercise 4.33 is
not an adequate way to generate arbitrary Pythagorean triples. Write a function that actually
will accomplish this. (That is, write a function for which repeatedly typing retry would in
principle eventually generate all Pythagorean triples.)

Exercise 4.35
Ben Bitdiddle claims that the following method for generating Pythagorean triples is
more efficient than the one in exercise 4.33. Is he correct? (Hint: Consider the number
of possibilities that must be explored.)

function a_pythagorean_triple_between(low, high) {
const i = an_integer_between(low, high);
const hsq = high * high;
const j = an_integer_between(i, high);
const ksq = i * i + j * j;
require(hsq >= ksq);
const k = math_sqrt(ksq);
require(is_integer(k));
return list(i, j, k);

}

4.3.2 Examples of Nondeterministic Programs
Section 4.3.3 describes the implementation of the amb evaluator. First, however, we
give some examples of how it can be used. The advantage of nondeterministic pro-
gramming is that we can suppress the details of how search is carried out, thereby
expressing our programs at a higher level of abstraction.

Logic Puzzles
The following puzzle (adapted from Dinesman 1968) is typical of a large class of
simple logic puzzles:

The software company Gargle is expanding, and Alyssa, Ben, Cy, Lem, and
Louis are moving into a row of five private offices in a new building. Alyssa
does not move into the last office. Ben does not move into the first office. Cy
takes neither the first nor the last office. Lem moves into an office after Ben’s.
Louis’s office is not next to Cy’s. Cy’s office is not next to Ben’s. Who moves
into which office?

4.3.2 Examples of Nondeterministic Programs 381

We can determine who moves into which office in a straightforward way by
enumerating all the possibilities and imposing the given restrictions:44

function office_move() {
const alyssa = amb(1, 2, 3, 4, 5);
const ben = amb(1, 2, 3, 4, 5);
const cy = amb(1, 2, 3, 4, 5);
const lem = amb(1, 2, 3, 4, 5);
const louis = amb(1, 2, 3, 4, 5);
require(distinct(list(alyssa, ben, cy, lem, louis)));
require(alyssa !== 5);
require(ben !== 1);
require(cy !== 5);
require(cy !== 1);
require(lem > ben);
require(math_abs(louis - cy) !== 1);
require(math_abs(cy - ben) !== 1);
return list(list("alyssa", alyssa),

list("ben", ben),
list("cy", cy),
list("lem", lem),
list("louis", louis));

}

Evaluating the expression office_move() produces the result

list(list("alyssa", 3), list("ben", 2), list("cy", 4),
list("lem", 5), list("louis", 1))

Although this simple function works, it is very slow. Exercises 4.37 and 4.38 discuss
some possible improvements.

Exercise 4.36
Modify the office-move function to omit the requirement that Louis’s office is not next to
Cy’s. How many solutions are there to this modified puzzle?

Exercise 4.37
Does the order of the restrictions in the office-move function affect the answer? Does it
affect the time to find an answer? If you think it matters, demonstrate a faster program
obtained from the given one by reordering the restrictions. If you think it does not matter,
argue your case.

44. Our program uses the following function to determine if the elements of a list are distinct:
function distinct(items) {

return is_null(items)
? true
: is_null(tail(items))
? true
: is_null(member(head(items), tail(items)))
? distinct(tail(items))
: false;

}

382 Chapter 4 Metalinguistic Abstraction

Exercise 4.38
In the office move problem, how many sets of assignments are there of people to offices,
both before and after the requirement that office assignments be distinct? It is very in-
efficient to generate all possible assignments of people to offices and then leave it to
backtracking to eliminate them. For example, most of the restrictions depend on only one or
two of the person-office names, and can thus be imposed before offices have been selected
for all the people. Write and demonstrate a much more efficient nondeterministic function
that solves this problem based upon generating only those possibilities that are not already
ruled out by previous restrictions.

Exercise 4.39
Write an ordinary JavaScript program to solve the office move puzzle.

Exercise 4.40
Solve the following “Liars” puzzle (adapted from Phillips 1934):

Alyssa, Cy, Eva, Lem, and Louis meet for a business lunch at SoSoService. Their
meals arrive one after the other, a considerable time after they placed their orders.
To entertain Ben, who expects them back at the office for a meeting, they decide to
each make one true statement and one false statement about their orders:
• Alyssa: “Lem’s meal arrived second. Mine arrived third.”
• Cy: “Mine arrived first. Eva’s arrived second.”
• Eva: “Mine arrived third, and poor Cy’s arrived last.”
• Lem: “Mine arrived second. Louis’s arrived fourth.”
• Louis: “Mine arrived fourth. Alyssa’s meal arrived first.”
What was the real order in which the five diners received their meals?

Exercise 4.41
Use the amb evaluator to solve the following puzzle (adapted from Phillips 1961):

Alyssa, Ben, Cy, Eva, and Louis each pick a different chapter of SICP JS and
solve all the exercises in that chapter. Louis solves the exercises in the “Functions”
chapter, Alyssa the ones in the “Data” chapter, and Cy the ones in the “State” chap-
ter. They decide to check each other’s work, and Alyssa volunteers to check the
exercises in the “Meta” chapter. The exercises in the “Register Machines” chapter
are solved by Ben and checked by Louis. The person who checks the exercises in
the “Functions” chapter solves the exercises that are checked by Eva. Who checks
the exercises in the “Data” chapter?

Try to write the program so that it runs efficiently (see exercise 4.38). Also determine how
many solutions there are if we are not told that Alyssa checks the exercises in the “Meta”
chapter.

Exercise 4.42
Exercise 2.42 described the “eight-queens puzzle” of placing queens on a chessboard so
that no two attack each other. Write a nondeterministic program to solve this puzzle.

4.3.2 Examples of Nondeterministic Programs 383

Parsing natural language
Programs designed to accept natural language as input usually start by attempting
to parse the input, that is, to match the input against some grammatical structure.
For example, we might try to recognize simple sentences consisting of an article
followed by a noun followed by a verb, such as “The cat eats.” To accomplish such
an analysis, we must be able to identify the parts of speech of individual words. We
could start with some lists that classify various words:45

const nouns = list("noun", "student", "professor", "cat", "class");

const verbs = list("verb", "studies", "lectures", "eats", "sleeps");

const articles = list("article", "the", "a");

We also need a grammar, that is, a set of rules describing how grammatical elements
are composed from simpler elements. A very simple grammar might stipulate that
a sentence always consists of two pieces—a noun phrase followed by a verb—and
that a noun phrase consists of an article followed by a noun. With this grammar, the
sentence “The cat eats” is parsed as follows:

list("sentence",
list("noun-phrase", list("article", "the"), list("noun", "cat"),
list("verb", "eats"))

We can generate such a parse with a simple program that has separate functions
for each of the grammatical rules. To parse a sentence, we identify its two constituent
pieces and return a list of these two elements, tagged with the symbol sentence:

function parse_sentence() {
return list("sentence",

parse_noun_phrase(),
parse_word(verbs));

}

A noun phrase, similarly, is parsed by finding an article followed by a noun:

function parse_noun_phrase() {
return list("noun-phrase",

parse_word(articles),
parse_word(nouns));

}

At the lowest level, parsing boils down to repeatedly checking that the next not-
yet-parsed word is a member of the list of words for the required part of speech.
To implement this, we maintain a global variable not_yet_parsed, which is the
input that has not yet been parsed. Each time we check a word, we require that
not_yet_parsed must be nonempty and that it should begin with a word from the

45. Here we use the convention that the first element of each list designates the part of speech
for the rest of the words in the list.

384 Chapter 4 Metalinguistic Abstraction

designated list. If so, we remove that word from not_yet_parsed and return the
word together with its part of speech (which is found at the head of the list):46

function parse_word(word_list) {
require(! is_null(not_yet_parsed));
require(! is_null(member(head(not_yet_parsed), tail(word_list))));
const found_word = head(not_yet_parsed);
not_yet_parsed = tail(not_yet_parsed);
return list(head(word_list), found_word);

}

To start the parsing, all we need to do is set not_yet_parsed to be the entire
input, try to parse a sentence, and check that nothing is left over:

let not_yet_parsed = null;

function parse_input(input) {
not_yet_parsed = input;
const sent = parse_sentence();
require(is_null(not_yet_parsed));
return sent;

}

We can now try the parser and verify that it works for our simple test sentence:

amb-evaluate input:
parse_input(list("the", "cat", "eats"));

Starting a new problem
amb-evaluate value:
list("sentence",

list("noun-phrase", list("article", "the"), list("noun", "cat")),
list("verb", "eats"))

The amb evaluator is useful here because it is convenient to express the parsing
constraints with the aid of require. Automatic search and backtracking really pay
off, however, when we consider more complex grammars where there are choices
for how the units can be decomposed.

Let’s add to our grammar a list of prepositions:

const prepositions = list("prep", "for", "to", "in", "by", "with");

and define a prepositional phrase (e.g., “for the cat”) to be a preposition followed by
a noun phrase:

function parse_prepositional_phrase() {
return list("prep-phrase",

parse_word(prepositions),
parse_noun_phrase());

}

46. Notice that parse_word uses assignment to modify the not-yet-parsed input list. For this to
work, our amb evaluator must undo the effects of assignments when it backtracks.

4.3.2 Examples of Nondeterministic Programs 385

Now we can define a sentence to be a noun phrase followed by a verb phrase, where
a verb phrase can be either a verb or a verb phrase extended by a prepositional
phrase:47

function parse_sentence() {
return list("sentence",

parse_noun_phrase(),
parse_verb_phrase());

}
function parse_verb_phrase() {

function maybe_extend(verb_phrase) {
return amb(verb_phrase,

maybe_extend(list("verb-phrase",
verb_phrase,
parse_prepositional_phrase())));

}
return maybe_extend(parse_word(verbs));

}

While we’re at it, we can also elaborate the definition of noun phrases to permit
such things as “a cat in the class.” What we used to call a noun phrase, we’ll now call
a simple noun phrase, and a noun phrase will now be either a simple noun phrase or
a noun phrase extended by a prepositional phrase:

function parse_simple_noun_phrase() {
return list("simple-noun-phrase",

parse_word(articles),
parse_word(nouns));

}
function parse_noun_phrase() {

function maybe_extend(noun_phrase) {
return amb(noun_phrase,

maybe_extend(list("noun-phrase",
noun_phrase,
parse_prepositional_phrase())));

}
return maybe_extend(parse_simple_noun_phrase());

}

Our new grammar lets us parse more complex sentences. For example

parse_input(list("the", "student", "with", "the", "cat",
"sleeps", "in", "the", "class"));

produces

47. Observe that this definition is recursive—a verb may be followed by any number of
prepositional phrases.

386 Chapter 4 Metalinguistic Abstraction

list("sentence",
list("noun-phrase",

list("simple-noun-phrase",
list("article", "the"), list("noun", "student")),

list("prep-phrase", list("prep", "with"),
list("simple-noun-phrase",

list("article", "the"),
list("noun", "cat")))),

list("verb-phrase",
list("verb", "sleeps"),
list("prep-phrase", list("prep", "in"),

list("simple-noun-phrase",
list("article", "the"),
list("noun", "class")))))

Observe that a given input may have more than one legal parse. In the sentence
“The professor lectures to the student with the cat,” it may be that the professor is
lecturing with the cat, or that the student has the cat. Our nondeterministic program
finds both possibilities:

parse_input(list("the", "professor", "lectures",
"to", "the", "student", "with", "the", "cat"));

produces

list("sentence",
list("simple-noun-phrase",

list("article", "the"), list("noun", "professor")),
list("verb-phrase",

list("verb-phrase",
list("verb", "lectures"),
list("prep-phrase", list("prep", "to"),

list("simple-noun-phrase",
list("article", "the"),
list("noun", "student")))),

list("prep-phrase", list("prep", "with"),
list("simple-noun-phrase",

list("article", "the"),
list("noun", "cat")))))

Asking the evaluator to retry yields

list("sentence",
list("simple-noun-phrase",

list("article", "the"), list("noun", "professor")),
list("verb-phrase",

list("verb", "lectures"),
list("prep-phrase", list("prep", "to"),

list("noun-phrase",
list("simple-noun-phrase",

list("article", "the"),
list("noun", "student")),

list("prep-phrase", list("prep", "with"),
list("simple-noun-phrase",

list("article", "the"),
list("noun", "cat")))))))

4.3.2 Examples of Nondeterministic Programs 387

Exercise 4.43
With the grammar given above, the following sentence can be parsed in five different ways:
“The professor lectures to the student in the class with the cat.” Give the five parses and
explain the differences in shades of meaning among them.

Exercise 4.44
The evaluators in sections 4.1 and 4.2 do not determine what order argument expressions
are evaluated in. We will see that the amb evaluator evaluates them from left to right. Ex-
plain why our parsing program wouldn’t work if the argument expressions were evaluated
in some other order.

Exercise 4.45
Louis Reasoner suggests that, since a verb phrase is either a verb or a verb phrase followed
by a prepositional phrase, it would be much more straightforward to declare the function
parse_verb_phrase as follows (and similarly for noun phrases):

function parse_verb_phrase() {
return amb(parse_word(verbs),

list("verb-phrase",
parse_verb_phrase(),
parse_prepositional_phrase()));

}

Does this work? Does the program’s behavior change if we interchange the order of
expressions in the amb?

Exercise 4.46
Extend the grammar given above to handle more complex sentences. For example, you
could extend noun phrases and verb phrases to include adjectives and adverbs, or you
could handle compound sentences.48

Exercise 4.47
Alyssa P. Hacker is more interested in generating interesting sentences than in parsing them.
She reasons that by simply changing the function parse_word so that it ignores the “input
sentence” and instead always succeeds and generates an appropriate word, we can use the
programs we had built for parsing to do generation instead. Implement Alyssa’s idea, and
show the first half-dozen or so sentences generated.49

48. This kind of grammar can become arbitrarily complex, but it is only a toy as far as real
language understanding is concerned. Real natural-language understanding by computer re-
quires an elaborate mixture of syntactic analysis and interpretation of meaning. On the other
hand, even toy parsers can be useful in supporting flexible command languages for programs
such as information-retrieval systems. Winston 1992 discusses computational approaches to real
language understanding and also the applications of simple grammars to command languages.

49. Although Alyssa’s idea works just fine (and is surprisingly simple), the sentences that it
generates are a bit boring—they don’t sample the possible sentences of this language in a very
interesting way. In fact, the grammar is highly recursive in many places, and Alyssa’s technique
“falls into” one of these recursions and gets stuck. See exercise 4.48 for a way to deal with this.

388 Chapter 4 Metalinguistic Abstraction

4.3.3 Implementing the amb Evaluator
The evaluation of an ordinary JavaScript program may return a value, may never
terminate, or may signal an error. In nondeterministic JavaScript the evaluation
of a program may in addition result in the discovery of a dead end, in which
case evaluation must backtrack to a previous choice point. The interpretation of
nondeterministic JavaScript is complicated by this extra case.

We will construct the amb evaluator for nondeterministic JavaScript by mod-
ifying the analyzing evaluator of section 4.1.7.50 As in the analyzing evaluator,
evaluation of a component is accomplished by calling an execution function pro-
duced by analysis of that component. The difference between the interpretation of
ordinary JavaScript and the interpretation of nondeterministic JavaScript will be
entirely in the execution functions.

Execution functions and continuations
Recall that the execution functions for the ordinary evaluator take one argument:
the environment of execution. In contrast, the execution functions in the amb evalu-
ator take three arguments: the environment, and two functions called continuation
functions. The evaluation of a component will finish by calling one of these two
continuations: If the evaluation results in a value, the success continuation is called
with that value; if the evaluation results in the discovery of a dead end, the fail-
ure continuation is called. Constructing and calling appropriate continuations is the
mechanism by which the nondeterministic evaluator implements backtracking.

It is the job of the success continuation to receive a value and proceed with
the computation. Along with that value, the success continuation is passed another
failure continuation, which is to be called subsequently if the use of that value leads
to a dead end.

It is the job of the failure continuation to try another branch of the nondeter-
ministic process. The essence of the nondeterministic language is in the fact that
components may represent choices among alternatives. The evaluation of such a
component must proceed with one of the indicated alternative choices, even though
it is not known in advance which choices will lead to acceptable results. To deal with
this, the evaluator picks one of the alternatives and passes this value to the success
continuation. Together with this value, the evaluator constructs and passes along a
failure continuation that can be called later to choose a different alternative.

A failure is triggered during evaluation (that is, a failure continuation is called)
when a user program explicitly rejects the current line of attack (for example, a call
to require may result in execution of amb(), an expression that always fails—see

50. We chose to implement the lazy evaluator in section 4.2 as a modification of the ordinary
metacircular evaluator of section 4.1.1. In contrast, we will base the amb evaluator on the an-
alyzing evaluator of section 4.1.7, because the execution functions in that evaluator provide a
convenient framework for implementing backtracking.

4.3.3 Implementing the amb Evaluator 389

section 4.3.1). The failure continuation in hand at that point will cause the most
recent choice point to choose another alternative. If there are no more alternatives
to be considered at that choice point, a failure at an earlier choice point is triggered,
and so on. Failure continuations are also invoked by the driver loop in response to a
retry request, to find another value of the program.

In addition, if a side-effect operation (such as assignment to a variable) occurs
on a branch of the process resulting from a choice, it may be necessary, when the
process finds a dead end, to undo the side effect before making a new choice. This
is accomplished by having the side-effect operation produce a failure continuation
that undoes the side effect and propagates the failure.

In summary, failure continuations are constructed by

• amb expressions—to provide a mechanism to make alternative choices if the
current choice made by the amb expression leads to a dead end;

• the top-level driver—to provide a mechanism to report failure when the choices
are exhausted;

• assignments—to intercept failures and undo assignments during backtracking.

Failures are initiated only when a dead end is encountered. This occurs

• if the user program executes amb();
• if the user types retry at the top-level driver.

Failure continuations are also called during processing of a failure:

• When the failure continuation created by an assignment finishes undoing a side
effect, it calls the failure continuation it intercepted, in order to propagate the
failure back to the choice point that led to this assignment or to the top level.

• When the failure continuation for an amb runs out of choices, it calls the failure
continuation that was originally given to the amb, in order to propagate the failure
back to the previous choice point or to the top level.

Structure of the evaluator
The syntax- and data-representation functions for the amb evaluator, and also the
basic analyze function, are identical to those in the evaluator of section 4.1.7,
except for the fact that we need additional syntax functions to recognize the amb
syntactic form:

function is_amb(component) {
return is_tagged_list(component, "application") &&

is_name(function_expression(component)) &&
symbol_of_name(function_expression(component)) === "amb";

}
function amb_choices(component) {

return arg_expressions(component);
}

390 Chapter 4 Metalinguistic Abstraction

We continue to use the parse function of section 4.1.2, which doesn’t support amb as
a syntactic form and instead treats amb(. . .) as a function application. The function
is_amb ensures that whenever the name amb appears as the function expression of
an application, the evaluator treats the “application” as a nondeterministic choice
point.51

We must also add to the dispatch in analyze a clause that will recognize such
expressions and generate an appropriate execution function:

. . .
: is_amb(component)
? analyze_amb(component)
: is_application(component)
. . .

The top-level function ambeval (similar to the version of evaluate given in
section 4.1.7) analyzes the given component and applies the resulting execution
function to the given environment, together with two given continuations:

function ambeval(component, env, succeed, fail) {
return analyze(component)(env, succeed, fail);

}

A success continuation is a function of two arguments: the value just obtained
and another failure continuation to be used if that value leads to a subsequent failure.
A failure continuation is a function of no arguments. So the general form of an
execution function is

(env, succeed, fail) => {
// succeed is (value, fail) => . . .
// fail is () => . . .
. . .

}

For example, executing

ambeval(component,
the_global_environment,
(value, fail) => value,
() => "failed");

will attempt to evaluate the given component and will return either the component’s
value (if the evaluation succeeds) or the string "failed" (if the evaluation fails).
The call to ambeval in the driver loop shown below uses much more complicated
continuation functions, which continue the loop and support the retry request.

Most of the complexity of the amb evaluator results from the mechanics of pass-
ing the continuations around as the execution functions call each other. In going
through the following code, you should compare each of the execution functions
with the corresponding function for the ordinary evaluator given in section 4.1.7.

51. With this treatment, amb is no longer a name with proper scoping. To avoid confusion, we
must refrain from declaring amb as a name in our nondeterministic programs.

4.3.3 Implementing the amb Evaluator 391

Simple expressions
The execution functions for the simplest kinds of expressions are essentially the
same as those for the ordinary evaluator, except for the need to manage the contin-
uations. The execution functions simply succeed with the value of the expression,
passing along the failure continuation that was passed to them.

function analyze_literal(component) {
return (env, succeed, fail) =>

succeed(literal_value(component), fail);
}

function analyze_name(component) {
return (env, succeed, fail) =>

succeed(lookup_symbol_value(symbol_of_name(component),
env),

fail);
}

function analyze_lambda_expression(component) {
const params = lambda_parameter_symbols(component);
const bfun = analyze(lambda_body(component));
return (env, succeed, fail) =>

succeed(make_function(params, bfun, env),
fail);

}

Notice that looking up a name always “succeeds.” If lookup_symbol_value
fails to find the name, it signals an error, as usual. Such a “failure” indicates a
program bug—a reference to an unbound name; it is not an indication that we should
try another nondeterministic choice instead of the one that is currently being tried.

Conditionals and sequences
Conditionals are also handled in a similar way as in the ordinary evaluator. The
execution function generated by analyze_conditional invokes the predicate exe-
cution function pfun with a success continuation that checks whether the predicate
value is true and goes on to execute either the consequent or the alternative. If
the execution of pfun fails, the original failure continuation for the conditional
expression is called.

function analyze_conditional(component) {
const pfun = analyze(conditional_predicate(component));
const cfun = analyze(conditional_consequent(component));
const afun = analyze(conditional_alternative(component));
return (env, succeed, fail) =>

pfun(env,
// success continuation for evaluating the predicate
// to obtain pred_value
(pred_value, fail2) =>
is_truthy(pred_value)
? cfun(env, succeed, fail2)
: afun(env, succeed, fail2),

// failure continuation for evaluating the predicate
fail);

}

392 Chapter 4 Metalinguistic Abstraction

Sequences are also handled in the same way as in the previous evaluator, except
for the machinations in the subfunction sequentially that are required for passing
the continuations. Namely, to sequentially execute a and then b, we call a with a
success continuation that calls b.

function analyze_sequence(stmts) {
function sequentially(a, b) {

return (env, succeed, fail) =>
a(env,

// success continuation for calling a
(a_value, fail2) =>
is_return_value(a_value)
? succeed(a_value, fail2)
: b(env, succeed, fail2),

// failure continuation for calling a
fail);

}
function loop(first_fun, rest_funs) {

return is_null(rest_funs)
? first_fun
: loop(sequentially(first_fun, head(rest_funs)),

tail(rest_funs));
}
const funs = map(analyze, stmts);
return is_null(funs)

? env => undefined
: loop(head(funs), tail(funs));

}

Declarations and assignments
Declarations are another case where we must go to some trouble to manage the
continuations, because it is necessary to evaluate the declaration-value expression
before actually declaring the new name. To accomplish this, the declaration-value
execution function vfun is called with the environment, a success continuation, and
the failure continuation. If the execution of vfun succeeds, obtaining a value val
for the declared name, the name is declared and the success is propagated:

function analyze_declaration(component) {
const symbol = declaration_symbol(component);
const vfun = analyze(declaration_value_expression(component));
return (env, succeed, fail) =>

vfun(env,
(val, fail2) => {

assign_symbol_value(symbol, val, env);
return succeed(undefined, fail2);

},
fail);

}

Assignments are more interesting. This is the first place where we really use
the continuations, rather than just passing them around. The execution function for
assignments starts out like the one for declarations. It first attempts to obtain the new
value to be assigned to the name. If this evaluation of vfun fails, the assignment fails.

4.3.3 Implementing the amb Evaluator 393

If vfun succeeds, however, and we go on to make the assignment, we must
consider the possibility that this branch of the computation might later fail, which
will require us to backtrack out of the assignment. Thus, we must arrange to undo
the assignment as part of the backtracking process.52

This is accomplished by giving vfun a success continuation (marked with the
comment “*1*” below) that saves the old value of the variable before assigning
the new value to the variable and proceeding from the assignment. The failure
continuation that is passed along with the value of the assignment (marked with
the comment “*2*” below) restores the old value of the variable before continuing
the failure. That is, a successful assignment provides a failure continuation that will
intercept a subsequent failure; whatever failure would otherwise have called fail2
calls this function instead, to undo the assignment before actually calling fail2.

function analyze_assignment(component) {
const symbol = assignment_symbol(component);
const vfun = analyze(assignment_value_expression(component));
return (env, succeed, fail) =>

vfun(env,
(val, fail2) => { // *1*

const old_value = lookup_symbol_value(symbol,
env);

assign_symbol_value(symbol, val, env);
return succeed(val,

() => { // *2*
assign_symbol_value(symbol,

old_value,
env);

return fail2();
});

},
fail);

}

Return statements and blocks
Analyzing return statements is straightforward. The return expression is analyzed to
produce an execution function. The execution function for the return statement calls
that execution function with a success continuation that wraps the return value in a
return value object and passes it to the original success continuation.

function analyze_return_statement(component) {
const rfun = analyze(return_expression(component));
return (env, succeed, fail) =>

rfun(env,
(val, fail2) =>
succeed(make_return_value(val), fail2),

fail);
}

52. We didn’t worry about undoing declarations, since we assume that a name can’t be used
prior to the evaluation of its declaration, so its previous value doesn’t matter.

394 Chapter 4 Metalinguistic Abstraction

The execution function for blocks calls the body’s execution function on an
extended environment, without changing success or failure continuations.

function analyze_block(component) {
const body = block_body(component);
const locals = scan_out_declarations(body);
const unassigneds = list_of_unassigned(locals);
const bfun = analyze(body);
return (env, succeed, fail) =>

bfun(extend_environment(locals, unassigneds, env),
succeed,
fail);

}

Function applications
The execution function for applications contains no new ideas except for the techni-
cal complexity of managing the continuations. This complexity arises in analyze_
application, due to the need to keep track of the success and failure continuations
as we evaluate the argument expressions. We use a function get_args to evalu-
ate the list of argument expressions, rather than a simple map as in the ordinary
evaluator.

function analyze_application(component) {
const ffun = analyze(function_expression(component));
const afuns = map(analyze, arg_expressions(component));
return (env, succeed, fail) =>

ffun(env,
(fun, fail2) =>
get_args(afuns,

env,
(args, fail3) =>

execute_application(fun,
args,
succeed,
fail3),

fail2),
fail);

}

In get_args, notice how walking down the list of afun execution functions
and constructing the resulting list of args is accomplished by calling each afun
in the list with a success continuation that recursively calls get_args. Each of

4.3.3 Implementing the amb Evaluator 395

these recursive calls to get_args has a success continuation whose value is the
new list resulting from using pair to adjoin the newly obtained argument to the list
of accumulated arguments:

function get_args(afuns, env, succeed, fail) {
return is_null(afuns)

? succeed(null, fail)
: head(afuns)(env,

// success continuation for this afun
(arg, fail2) =>
get_args(tail(afuns),

env,
// success continuation for
// recursive call to get_args
(args, fail3) =>

succeed(pair(arg, args),
fail3),

fail2),
fail);

}

The actual function application, which is performed by execute_application,
is accomplished in the same way as for the ordinary evaluator, except for the need
to manage the continuations.

function execute_application(fun, args, succeed, fail) {
return is_primitive_function(fun)

? succeed(apply_primitive_function(fun, args),
fail)

: is_compound_function(fun)
? function_body(fun)(

extend_environment(function_parameters(fun),
args,
function_environment(fun)),

(body_result, fail2) =>
succeed(is_return_value(body_result)

? return_value_content(body_result)
: undefined,
fail2),

fail)
: error(fun, "unknown function type - execute_application");

}

396 Chapter 4 Metalinguistic Abstraction

Evaluating amb expressions
The amb syntactic form is the key element in the nondeterministic language. Here we
see the essence of the interpretation process and the reason for keeping track of the
continuations. The execution function for amb defines a loop try_next that cycles
through the execution functions for all the possible values of the amb expression.
Each execution function is called with a failure continuation that will try the next
one. When there are no more alternatives to try, the entire amb expression fails.

function analyze_amb(component) {
const cfuns = map(analyze, amb_choices(component));
return (env, succeed, fail) => {

function try_next(choices) {
return is_null(choices)

? fail()
: head(choices)(env,

succeed,
() =>

try_next(tail(choices)));
}
return try_next(cfuns);

};
}

Driver loop
The driver loop for the amb evaluator is complex, due to the mechanism that per-
mits the user to retry in evaluating a program. The driver uses a function called
internal_loop, which takes as argument a function retry. The intent is that
calling retry should go on to the next untried alternative in the nondeterministic
evaluation. The function internal_loop either calls retry in response to the user
typing retry at the driver loop, or else starts a new evaluation by calling ambeval.

The failure continuation for this call to ambeval informs the user that there are
no more values and reinvokes the driver loop.

The success continuation for the call to ambeval is more subtle. We print the
obtained value and then reinvoke the internal loop with a retry function that will be
able to try the next alternative. This next_alternative function is the second argu-
ment that was passed to the success continuation. Ordinarily, we think of this second
argument as a failure continuation to be used if the current evaluation branch later
fails. In this case, however, we have completed a successful evaluation, so we can
invoke the “failure” alternative branch in order to search for additional successful
evaluations.

4.3.3 Implementing the amb Evaluator 397

const input_prompt = "amb-evaluate input:";
const output_prompt = "amb-evaluate value:";

function driver_loop(env) {
function internal_loop(retry) {

const input = user_read(input_prompt);
if (is_null(input)) {

display("evaluator terminated");
} else if (input === "retry") {

return retry();
} else {

display("Starting a new problem");
const program = parse(input);
const locals = scan_out_declarations(program);
const unassigneds = list_of_unassigned(locals);
const program_env = extend_environment(

locals, unassigneds, env);
return ambeval(

program,
program_env,
// ambeval success
(val, next_alternative) => {

user_print(output_prompt, val);
return internal_loop(next_alternative);

},
// ambeval failure
() => {

display("There are no more values of");
display(input);
return driver_loop(program_env);

});
}

}
return internal_loop(() => {

display("There is no current problem");
return driver_loop(env);

});
}

The initial call to internal_loop uses a retry function that complains that there is
no current problem and restarts the driver loop. This is the behavior that will happen
if the user types retry when there is no evaluation in progress.

We start the driver loop as usual, by setting up the global environment and
passing it as the enclosing environment for the first iteration of driver_loop.

const the_global_environment = setup_environment();
driver_loop(the_global_environment);

398 Chapter 4 Metalinguistic Abstraction

Exercise 4.48
Implement a new syntactic form ramb that is like amb except that it searches alternatives
in a random order, rather than from left to right. Show how this can help with Alyssa’s
problem in exercise 4.47.

Exercise 4.49
Change the implementation of assignment so that it is not undone upon failure. For exam-
ple, we can choose two distinct elements from a list and count the number of trials required
to make a successful choice as follows:

let count = 0;

let x = an_element_of("a", "b", "c");
let y = an_element_of("a", "b", "c");
count = count + 1;
require(x !== y);
list(x, y, count);
Starting a new problem
amb-evaluate value:
["a", ["b", [2, null]]]

amb-evaluate input:
retry

amb-evaluate value:
["a", ["c", [3, null]]]

What values would have been displayed if we had used the original meaning of assignment
rather than permanent assignment?

Exercise 4.50
We shall horribly abuse the syntax for conditional statements, by implementing a construct
of the following form:

if (evaluation_succeeds_take) { statement } else { alternative }

The construct permits the user to catch the failure of a statement. It evaluates the statement
as usual and returns as usual if the evaluation succeeds. If the evaluation fails, however, the
given alternative statement is evaluated, as in the following example:

amb-evaluate input:
if (evaluation_succeeds_take) {

const x = an_element_of(list(1, 3, 5));
require(is_even(x));
x;

} else {
"all odd";

}

Starting a new problem
amb-evaluate value:
"all odd"

4.3.3 Implementing the amb Evaluator 399

amb-evaluate input:
if (evaluation_succeeds_take) {

const x = an_element_of(list(1, 3, 5, 8));
require(is_even(x));
x;

} else {
"all odd";

}

Starting a new problem
amb-evaluate value:
8

Implement this construct by extending the amb evaluator. Hint: The function is_amb shows
how to abuse the existing JavaScript syntax in order to implement a new syntactic form.

Exercise 4.51
With the new kind of assignment as described in exercise 4.49 and the construct

if (evaluation_succeeds_take) { . . . } else { . . . }

as in exercise 4.50, what will be the result of evaluating

let pairs = null;
if (evaluation_succeeds_take) {

const p = prime_sum_pair(list(1, 3, 5, 8), list(20, 35, 110));
pairs = pair(p, pairs); // using permanent assignment
amb();

} else {
pairs;

}

Exercise 4.52
If we had not realized that require could be implemented as an ordinary function that uses
amb, to be defined by the user as part of a nondeterministic program, we would have had to
implement it as a syntactic form. This would require syntax functions

function is_require(component) {
return is_tagged_list(component, "require");

}
function require_predicate(component) { return head(tail(component)); }

and a new clause in the dispatch in analyze

: is_require(component)
? analyze_require(component)

as well the function analyze_require that handles require expressions. Complete the
following definition of analyze_require.

400 Chapter 4 Metalinguistic Abstraction

function analyze_require(component) {
const pfun = analyze(require_predicate(component));
return (env, succeed, fail) =>

pfun(env,
(pred_value, fail2) =>
〈??〉
? 〈??〉
: succeed("ok", fail2),

fail);
}

4.4 Logic Programming
In chapter 1 we stressed that computer science deals with imperative (how to)
knowledge, whereas mathematics deals with declarative (what is) knowledge. In-
deed, programming languages require that the programmer express knowledge in a
form that indicates the step-by-step methods for solving particular problems. On the
other hand, high-level languages provide, as part of the language implementation, a
substantial amount of methodological knowledge that frees the user from concern
with numerous details of how a specified computation will progress.

Most programming languages, including JavaScript, are organized around com-
puting the values of mathematical functions. Expression-oriented languages (such
as Lisp, C, Python, and JavaScript) capitalize on the “pun” that an expression that
describes the value of a function may also be interpreted as a means of computing
that value. Because of this, most programming languages are strongly biased toward
unidirectional computations (computations with well-defined inputs and outputs).
There are, however, radically different programming languages that relax this bias.
We saw one such example in section 3.3.5, where the objects of computation were
arithmetic constraints. In a constraint system the direction and the order of com-
putation are not so well specified; in carrying out a computation the system must
therefore provide more detailed “how to” knowledge than would be the case with
an ordinary arithmetic computation. This does not mean, however, that the user
is released altogether from the responsibility of providing imperative knowledge.
There are many constraint networks that implement the same set of constraints, and
the user must choose from the set of mathematically equivalent networks a suitable
network to specify a particular computation.

The nondeterministic program evaluator of section 4.3 also moves away from
the view that programming is about constructing algorithms for computing unidi-
rectional functions. In a nondeterministic language, expressions can have more than
one value, and, as a result, the computation is dealing with relations rather than
with single-valued functions. Logic programming extends this idea by combining a
relational vision of programming with a powerful kind of symbolic pattern matching
called unification.53

53. Logic programming has grown out of a long history of research in automatic theorem
proving. Early theorem-proving programs could accomplish very little, because they exhaus-
tively searched the space of possible proofs. The major breakthrough that made such a search
plausible was the discovery in the early 1960s of the unification algorithm and the resolution

4.4 Logic Programming 401

This approach, when it works, can be a very powerful way to write programs.
Part of the power comes from the fact that a single “what is” fact can be used to solve
a number of different problems that would have different “how to” components.
As an example, consider the append operation, which takes two lists as arguments
and combines their elements to form a single list. In a procedural language such as
JavaScript, we could define append in terms of the basic list constructor pair, as
we did in section 2.2.1:

function append(x, y) {
return is_null(x)

? y
: pair(head(x), append(tail(x), y));

}

This function can be regarded as a translation into JavaScript of the following two
rules, the first of which covers the case where the first list is empty and the second
of which handles the case of a nonempty list, which is a pair of two parts:

• For any list y, the empty list and y append to form y.
• For any u, v, y, and z, pair(u, v) and y append to form pair(u, z) if v and
y append to form z.54

Using the append function, we can answer questions such as

Find the append of list("a", "b") and list("c", "d").

But the same two rules are also sufficient for answering the following sorts of
questions, which the function can’t answer:

Find a list y that appends with list("a", "b") to produce
list("a", "b", "c", "d").

Find all x and y that append to form list("a", "b", "c", "d").

principle (Robinson 1965). Resolution was used, for example, by Green and Raphael (1968)
(see also Green 1969) as the basis for a deductive question-answering system. During most of
this period, researchers concentrated on algorithms that are guaranteed to find a proof if one
exists. Such algorithms were difficult to control and to direct toward a proof. Hewitt (1969)
recognized the possibility of merging the control structure of a programming language with the
operations of a logic-manipulation system, leading to the work in automatic search mentioned
in section 4.3.1 (footnote 43). At the same time that this was being done, Colmerauer, in Mar-
seille, was developing rule-based systems for manipulating natural language (see Colmerauer
et al. 1973). He invented a programming language called Prolog for representing those rules.
Kowalski (1973; 1979) in Edinburgh, recognized that execution of a Prolog program could be
interpreted as proving theorems (using a proof technique called linear Horn-clause resolution).
The merging of the last two strands led to the logic-programming movement. Thus, in assigning
credit for the development of logic programming, the French can point to Prolog’s genesis at the
University of Marseille, while the British can highlight the work at the University of Edinburgh.
According to people at MIT, logic programming was developed by these groups in an attempt
to figure out what Hewitt was talking about in his brilliant but impenetrable Ph.D. thesis. For a
history of logic programming, see Robinson 1983.

54. To see the correspondence between the rules and the function, let x in the function (where
x is nonempty) correspond to pair(u, v) in the rule. Then z in the rule corresponds to the
append of tail(x) and y.

402 Chapter 4 Metalinguistic Abstraction

In a logic programming language, the programmer writes an append “function” by
stating the two rules about append given above. “How to” knowledge is provided
automatically by the interpreter to allow this single pair of rules to be used to answer
all three types of questions about append.55

Contemporary logic programming languages (including the one we implement
here) have substantial deficiencies, in that their general “how to” methods can lead
them into spurious infinite loops or other undesirable behavior. Logic programming
is an active field of research in computer science.56

Earlier in this chapter we explored the technology of implementing interpreters
and described the elements that are essential to an interpreter for a JavaScript-like
language (indeed, to an interpreter for any conventional language). Now we will
apply these ideas to discuss an interpreter for a logic programming language. We call
this language the query language, because it is very useful for retrieving information
from data bases by formulating queries, or questions, expressed in the language.
Even though the query language is very different from JavaScript, we will find it
convenient to describe the language in terms of the same general framework we have
been using all along: as a collection of primitive elements, together with means of
combination that enable us to combine simple elements to create more complex ele-
ments and means of abstraction that enable us to regard complex elements as single
conceptual units. An interpreter for a logic programming language is considerably
more complex than an interpreter for a language like JavaScript. Nevertheless, we
will see that our query-language interpreter contains many of the same elements
found in the interpreter of section 4.1. In particular, there will be an “evaluate” part
that classifies expressions according to type and an “apply” part that implements the
language’s abstraction mechanism (functions in the case of JavaScript, and rules in
the case of logic programming). Also, a central role is played in the implementation
by a frame data structure, which determines the correspondence between symbols
and their associated values. One additional interesting aspect of our query-language
implementation is that we make substantial use of streams, which were introduced
in chapter 3.

55. This certainly does not relieve the user of the entire problem of how to compute the answer.
There are many different mathematically equivalent sets of rules for formulating the append
relation, only some of which can be turned into effective devices for computing in any direction.
In addition, sometimes “what is” information gives no clue “how to” compute an answer. For
example, consider the problem of computing the y such that y2 = x.

56. Interest in logic programming peaked during the early 1980s when the Japanese govern-
ment began an ambitious project aimed at building superfast computers optimized to run logic
programming languages. The speed of such computers was to be measured in LIPS (Logical
Inferences Per Second) rather than the usual FLOPS (FLoating-point Operations Per Second).
Although the project succeeded in developing hardware and software as originally planned, the
international computer industry moved in a different direction. See Feigenbaum and Shrobe
1993 for an overview evaluation of the Japanese project. The logic programming community
has also moved on to consider relational programming based on techniques other than sim-
ple pattern matching, such as the ability to deal with numerical constraints such as the ones
illustrated in the constraint-propagation system of section 3.3.5.

4.4.1 Deductive Information Retrieval 403

4.4.1 Deductive Information Retrieval
Logic programming excels in providing interfaces to data bases for information
retrieval. The query language we shall implement in this chapter is designed to be
used in this way.

In order to illustrate what the query system does, we will show how it can be used
to manage the data base of personnel records for Gargle, a thriving high-technology
company in the Boston area. The language provides pattern-directed access to per-
sonnel information and can also take advantage of general rules in order to make
logical deductions.

A sample data base
The personnel data base for Gargle contains assertions about company personnel.
Here is the information about Ben Bitdiddle, the resident computer wizard:

address(list("Bitdiddle", "Ben"),
list("Slumerville", list("Ridge", "Road"), 10))

job(list("Bitdiddle", "Ben"), list("computer", "wizard"))
salary(list("Bitdiddle", "Ben"), 122000)

Assertions look just like function applications in JavaScript, but they actually rep-
resent information in the data base. The first symbols—here address, job and
salary—describe the kind of information contained in the respective assertion, and
the “arguments” are lists or primitive values such as strings and numbers. The first
symbols do not need to be declared, as do constants or variables in JavaScript; their
scope is global.

As resident wizard, Ben is in charge of the company’s computer division, and
he supervises two programmers and one technician. Here is the information about
them:

address(list("Hacker", "Alyssa", "P"),
list("Cambridge", list("Mass", "Ave"), 78))

job(list("Hacker", "Alyssa", "P"), list("computer", "programmer"))
salary(list("Hacker", "Alyssa", "P"), 81000)
supervisor(list("Hacker", "Alyssa", "P"), list("Bitdiddle", "Ben"))

address(list("Fect", "Cy", "D"),
list("Cambridge", list("Ames", "Street"), 3))

job(list("Fect", "Cy", "D"), list("computer", "programmer"))
salary(list("Fect", "Cy", "D"), 70000)
supervisor(list("Fect", "Cy", "D"), list("Bitdiddle", "Ben"))

address(list("Tweakit", "Lem", "E"),
list("Boston", list("Bay", "State", "Road"), 22))

job(list("Tweakit", "Lem", "E"), list("computer", "technician"))
salary(list("Tweakit", "Lem", "E"), 51000)
supervisor(list("Tweakit", "Lem", "E"), list("Bitdiddle", "Ben"))

404 Chapter 4 Metalinguistic Abstraction

There is also a programmer trainee, who is supervised by Alyssa:

address(list("Reasoner", "Louis"),
list("Slumerville", list("Pine", "Tree", "Road"), 80))

job(list("Reasoner", "Louis"),
list("computer", "programmer", "trainee"))

salary(list("Reasoner", "Louis"), 62000)
supervisor(list("Reasoner", "Louis"), list("Hacker", "Alyssa", "P"))

All these people are in the computer division, as indicated by the word "computer"
as the first item in their job descriptions.

Ben is a high-level employee. His supervisor is the company’s big wheel himself:

supervisor(list("Bitdiddle", "Ben"), list("Warbucks", "Oliver"))

address(list("Warbucks", "Oliver"),
list("Swellesley", list("Top", "Heap", "Road")))

job(list("Warbucks", "Oliver"), list("administration", "big", "wheel"))
salary(list("Warbucks", "Oliver"), 314159)

Besides the computer division supervised by Ben, the company has an account-
ing division, consisting of a chief accountant and his assistant:

address(list("Scrooge", "Eben"),
list("Weston", list("Shady", "Lane"), 10))

job(list("Scrooge", "Eben"), list("accounting", "chief", "accountant"))
salary(list("Scrooge", "Eben"), 141421)
supervisor(list("Scrooge", "Eben"), list("Warbucks", "Oliver"))

address(list("Cratchit", "Robert"),
list("Allston", list("N", "Harvard", "Street"), 16))

job(list("Cratchit", "Robert"), list("accounting", "scrivener"))
salary(list("Cratchit", "Robert"), 26100)
supervisor(list("Cratchit", "Robert"), list("Scrooge", "Eben"))

There is also an administrative assistant for the big wheel:

address(list("Aull", "DeWitt"),
list("Slumerville", list("Onion", "Square"), 5))

job(list("Aull", "DeWitt"), list("administration", "assistant"))
salary(list("Aull", "DeWitt"), 42195)
supervisor(list("Aull", "DeWitt"), list("Warbucks", "Oliver"))

The data base also contains assertions about which kinds of jobs can be done by
people holding other kinds of jobs. For instance, a computer wizard can do the jobs
of both a computer programmer and a computer technician:

can_do_job(list("computer", "wizard"),
list("computer", "programmer"))

can_do_job(list("computer", "wizard"),
list("computer", "technician"))

A computer programmer could fill in for a trainee:

can_do_job(list("computer", "programmer"),
list("computer", "programmer", "trainee"))

4.4.1 Deductive Information Retrieval 405

Also, as is well known,

can_do_job(list("administration", "assistant"),
list("administration", "big", "wheel"))

Simple queries
The query language allows users to retrieve information from the data base by pos-
ing queries in response to the system’s prompt. For example, to find all computer
programmers one can say

Query input:
job($x, list("computer", "programmer"))

The system will respond with the following items:

Query results:
job(list("Hacker", "Alyssa", "P"), list("computer", "programmer"))
job(list("Fect", "Cy", "D"), list("computer", "programmer"))

The input query specifies that we are looking for entries in the data base that
match a certain pattern. In this example, the pattern specifies job as the kind of
information that we are looking for. The first item can be anything, and the second
is the literal list list("computer", "programmer"). The “anything” that can be
the first item in the matching assertion is specified by a pattern variable, $x. As
pattern variables, we use JavaScript names that start with a dollar sign. We will see
below why it is useful to specify names for pattern variables rather than just putting a
single symbol such as $ into patterns to represent “anything.” The system responds
to a simple query by showing all entries in the data base that match the specified
pattern.

A pattern can have more than one variable. For example, the query

address($x, $y)

will list all the employees’ addresses.
A pattern can have no variables, in which case the query simply determines

whether that pattern is an entry in the data base. If so, there will be one match;
if not, there will be no matches.

The same pattern variable can appear more than once in a query, specifying that
the same “anything” must appear in each position. This is why variables have names.
For example,

supervisor($x, $x)

finds all people who supervise themselves (though there are no such assertions in
our sample data base).

The query

job($x, list("computer", $type))

matches all job entries whose second item is a two-element list whose first item is
"computer":

406 Chapter 4 Metalinguistic Abstraction

job(list("Bitdiddle", "Ben"), list("computer", "wizard"))
job(list("Hacker", "Alyssa", "P"), list("computer", "programmer"))
job(list("Fect", "Cy", "D"), list("computer", "programmer"))
job(list("Tweakit", "Lem", "E"), list("computer", "technician"))

This same pattern does not match

job(list("Reasoner", "Louis"),
list("computer", "programmer", "trainee"))

because the second item in the assertion is a list of three elements, and the pattern’s
second item specifies that there should be two elements. If we wanted to change the
pattern so that the second item could be any list beginning with "computer", we
could specify

job($x, pair("computer", $type))

For example,

pair("computer", $type)

matches the data

list("computer", "programmer", "trainee")

with $type as list("programmer", "trainee"). It also matches the data

list("computer", "programmer")

with $type as list("programmer"), and matches the data

list("computer")

with $type as the empty list, null.
We can describe the query language’s processing of simple queries as follows:

• The system finds all assignments to variables in the query pattern that satisfy the
pattern—that is, all sets of values for the variables such that if the pattern variables
are instantiated with (replaced by) the values, the result is in the data base.

• The system responds to the query by listing all instantiations of the query pattern
with the variable assignments that satisfy it.

Note that if the pattern has no variables, the query reduces to a determination of
whether that pattern is in the data base. If so, the empty assignment, which assigns
no values to variables, satisfies that pattern for that data base.

Exercise 4.53
Give simple queries that retrieve the following information from the data base:

a. all people supervised by Ben Bitdiddle;

b. the names and jobs of all people in the accounting division;

c. the names and addresses of all people who live in Slumerville.

4.4.1 Deductive Information Retrieval 407

Compound queries
Simple queries form the primitive operations of the query language. In order to
form compound operations, the query language provides means of combination.
One thing that makes the query language a logic programming language is that
the means of combination mirror the means of combination used in forming logical
expressions: and, or, and not.

We can use and as follows to find the addresses of all the computer programmers:

and(job($person, list("computer", "programmer")),
address($person, $where))

The resulting output is

and(job(list("Hacker", "Alyssa", "P"), list("computer", "programmer")),
address(list("Hacker", "Alyssa", "P"),

list("Cambridge", list("Mass", "Ave"), 78)))

and(job(list("Fect", "Cy", "D"), list("computer", "programmer")),
address(list("Fect", "Cy", "D"),

list("Cambridge", list("Ames", "Street"), 3)))

In general,

and(query1, query2, . . ., queryn)

is satisfied by all sets of values for the pattern variables that simultaneously satisfy
query1, . . . , queryn.

As for simple queries, the system processes a compound query by finding
all assignments to the pattern variables that satisfy the query, then displaying
instantiations of the query with those values.

Another means of constructing compound queries is through or. For example,

or(supervisor($x, list("Bitdiddle", "Ben")),
supervisor($x, list("Hacker", "Alyssa", "P")))

will find all employees supervised by Ben Bitdiddle or Alyssa P. Hacker:

or(supervisor(list("Hacker", "Alyssa", "P"),
list("Bitdiddle", "Ben")),

supervisor(list("Hacker", "Alyssa", "P"),
list("Hacker", "Alyssa", "P")))

or(supervisor(list("Fect", "Cy", "D"),
list("Bitdiddle", "Ben")),

supervisor(list("Fect", "Cy", "D"),
list("Hacker", "Alyssa", "P")))

or(supervisor(list("Tweakit", "Lem", "E"),
list("Bitdiddle", "Ben")),

supervisor(list("Tweakit", "Lem", "E"),
list("Hacker", "Alyssa", "P")))

or(supervisor(list("Reasoner", "Louis"),
list("Bitdiddle", "Ben")),

supervisor(list("Reasoner", "Louis"),
list("Hacker", "Alyssa", "P")))

408 Chapter 4 Metalinguistic Abstraction

In general,

or(query1, query2, . . ., queryn)

is satisfied by all sets of values for the pattern variables that satisfy at least one of
query1 . . . queryn.

Compound queries can also be formed with not. For example,

and(supervisor($x, list("Bitdiddle", "Ben")),
not(job($x, list("computer", "programmer"))))

finds all people supervised by Ben Bitdiddle who are not computer programmers. In
general,

not(query1)

is satisfied by all assignments to the pattern variables that do not satisfy query1.57

The final combining form starts with javascript_predicate and contains a
JavaScript predicate. In general,

javascript_predicate(predicate)

will be satisfied by assignments to the pattern variables in the predicate for which
the instantiated predicate is true. For example, to find all people whose salary is
greater than $50,000 we could write58

and(salary($person, $amount), javascript_predicate($amount > 50000))

Exercise 4.54
Formulate compound queries that retrieve the following information:

a. the names of all people who are supervised by Ben Bitdiddle, together with their
addresses;

b. all people whose salary is less than Ben Bitdiddle’s, together with their salary and Ben
Bitdiddle’s salary;

c. all people who are supervised by someone who is not in the computer division, together
with the supervisor’s name and job.

57. Actually, this description of not is valid only for simple cases. The real behavior of not is
more complex. We will examine not’s peculiarities in sections 4.4.2 and 4.4.3.

58. A query should use javascript_predicate only to perform an operation not provided in
the query language. In particular, javascript_predicate should not be used to test equality
(since that is what the matching in the query language is designed to do) or inequality (since
that can be done with the same rule shown below).

4.4.1 Deductive Information Retrieval 409

Rules
In addition to primitive queries and compound queries, the query language provides
means for abstracting queries. These are given by rules. The rule

rule(lives_near($person_1, $person_2),
and(address($person_1, pair($town, $rest_1)),

address($person_2, pair($town, $rest_2)),
not(same($person_1, $person_2))))

specifies that two people live near each other if they live in the same town. The final
not clause prevents the rule from saying that all people live near themselves. The
same relation is defined by a very simple rule:59

rule(same($x, $x))

The following rule declares that a person is a “wheel” in an organization if he
supervises someone who is in turn a supervisor:

rule(wheel($person),
and(supervisor($middle_manager, $person),

supervisor($x, $middle_manager)))

The general form of a rule is

rule(conclusion, body)

where conclusion is a pattern and body is any query.60 We can think of a rule as
representing a large (even infinite) set of assertions, namely all instantiations of
the rule conclusion with variable assignments that satisfy the rule body. When we
described simple queries (patterns), we said that an assignment to variables satisfies
a pattern if the instantiated pattern is in the data base. But the pattern needn’t be
explicitly in the data base as an assertion. It can be an implicit assertion implied by
a rule. For example, the query

59. Notice that we do not need same in order to make two things be the same: We just use the
same pattern variable for each—in effect, we have one thing instead of two things in the first
place. For example, see $town in the lives_near rule and $middle_manager in the wheel rule
below. The same relation is useful when we want to force two things to be different, such as
$person_1 and $person_2 in the lives_near rule. Although using the same pattern variable
in two parts of a query forces the same value to appear in both places, using different pattern
variables does not force different values to appear. (The values assigned to different pattern
variables may be the same or different.)

60. We will also allow rules without bodies, as in same, and we will interpret such a rule to
mean that the rule conclusion is satisfied by any values of the variables.

410 Chapter 4 Metalinguistic Abstraction

lives_near($x, list("Bitdiddle", "Ben"))

results in

lives_near(list("Reasoner", "Louis"), list("Bitdiddle", "Ben"))
lives_near(list("Aull", "DeWitt"), list("Bitdiddle", "Ben"))

To find all computer programmers who live near Ben Bitdiddle, we can ask

and(job($x, list("computer", "programmer")),
lives_near($x, list("Bitdiddle", "Ben")))

As in the case of compound functions, rules can be used as parts of other rules
(as we saw with the lives_near rule above) or even be defined recursively. For
instance, the rule

rule(outranked_by($staff_person, $boss),
or(supervisor($staff_person, $boss),

and(supervisor($staff_person, $middle_manager),
outranked_by($middle_manager, $boss))))

says that a staff person is outranked by a boss in the organization if the boss is the per-
son’s supervisor or (recursively) if the person’s supervisor is outranked by the boss.

Exercise 4.55
Define a rule that says that person 1 can replace person 2 if either person 1 does the same
job as person 2 or someone who does person 1’s job can also do person 2’s job, and if
person 1 and person 2 are not the same person. Using your rule, give queries that find the
following:

a. all people who can replace Cy D. Fect;

b. all people who can replace someone who is being paid more than they are, together
with the two salaries.

Exercise 4.56
Define a rule that says that a person is a “big shot” in a division if the person works in the
division but does not have a supervisor who works in the division.

Exercise 4.57
Ben Bitdiddle has missed one meeting too many. Fearing that his habit of forgetting meet-
ings could cost him his job, Ben decides to do something about it. He adds all the weekly
meetings of the firm to the Gargle data base by asserting the following:

meeting("accounting", list("Monday", "9am"))
meeting("administration", list("Monday", "10am"))
meeting("computer", list("Wednesday", "3pm"))
meeting("administration", list("Friday", "1pm"))

Each of the above assertions is for a meeting of an entire division. Ben also adds an entry
for the company-wide meeting that spans all the divisions. All of the company’s employees
attend this meeting.

meeting("whole-company", list("Wednesday", "4pm"))

4.4.1 Deductive Information Retrieval 411

a. On Friday morning, Ben wants to query the data base for all the meetings that occur
that day. What query should he use?

b. Alyssa P. Hacker is unimpressed. She thinks it would be much more useful to be able
to ask for her meetings by specifying her name. So she designs a rule that says that
a person’s meetings include all "whole-company" meetings plus all meetings of that
person’s division. Fill in the body of Alyssa’s rule.

rule(meeting_time($person, $day_and_time),
rule-body)

c. Alyssa arrives at work on Wednesday morning and wonders what meetings she has to
attend that day. Having defined the above rule, what query should she make to find this
out?

Exercise 4.58
By giving the query

lives_near($person, list("Hacker", "Alyssa", "P"))

Alyssa P. Hacker is able to find people who live near her, with whom she can ride to work.
On the other hand, when she tries to find all pairs of people who live near each other by
querying

lives_near($person_1, $person_2)

she notices that each pair of people who live near each other is listed twice; for example,

lives_near(list("Hacker", "Alyssa", "P"), list("Fect", "Cy", "D"))
lives_near(list("Fect", "Cy", "D"), list("Hacker", "Alyssa", "P"))

Why does this happen? Is there a way to find a list of people who live near each other, in
which each pair appears only once? Explain.

Logic as programs
We can regard a rule as a kind of logical implication: If an assignment of values to
pattern variables satisfies the body, then it satisfies the conclusion. Consequently, we
can regard the query language as having the ability to perform logical deductions
based upon the rules. As an example, consider the append operation described at the
beginning of section 4.4. As we said, append can be characterized by the following
two rules:

• For any list y, the empty list and y append to form y.
• For any u, v, y, and z, pair(u, v) and y append to form pair(u, z) if v and
y append to form z.

To express this in our query language, we define two rules for a relation

append_to_form(x, y, z)

which we can interpret to mean “x and y append to form z”:

412 Chapter 4 Metalinguistic Abstraction

rule(append_to_form(null, $y, $y))

rule(append_to_form(pair($u, $v), $y, pair($u, $z)),
append_to_form($v, $y, $z))

The first rule has no body, which means that the conclusion holds for any value of
$y. Note how the second rule makes use of pair to name the head and tail of a list.

Given these two rules, we can formulate queries that compute the append of two
lists:

Query input:
append_to_form(list("a", "b"), list("c", "d"), $z)

Query results:
append_to_form(list("a", "b"), list("c", "d"), list("a", "b", "c", "d"))

What is more striking, we can use the same rules to ask the question “Which list,
when appended to list("a", "b"), yields list("a", "b", "c", "d")? ” This
is done as follows:

Query input:
append_to_form(list("a", "b"), $y, list("a", "b", "c", "d"))

Query results:
append_to_form(list("a", "b"), list("c", "d"), list("a", "b", "c", "d"))

We can ask for all pairs of lists that append to form list("a", "b", "c", "d"):

Query input:
append_to_form($x, $y, list("a", "b", "c", "d"))

Query results:
append_to_form(null, list("a", "b", "c", "d"), list("a", "b", "c", "d"))
append_to_form(list("a"), list("b", "c", "d"), list("a", "b", "c", "d"))
append_to_form(list("a", "b"), list("c", "d"), list("a", "b", "c", "d"))
append_to_form(list("a", "b", "c"), list("d"), list("a", "b", "c", "d"))
append_to_form(list("a", "b", "c", "d"), null, list("a", "b", "c", "d"))

The query system may seem to exhibit quite a bit of intelligence in using the
rules to deduce the answers to the queries above. Actually, as we will see in the
next section, the system is following a well-determined algorithm in unraveling the
rules. Unfortunately, although the system works impressively in the append case,
the general methods may break down in more complex cases, as we will see in
section 4.4.3.

Exercise 4.59
The following rules implement a next_to_in relation that finds adjacent elements of a list:

rule(next_to_in($x, $y, pair($x, pair($y, $u))))

rule(next_to_in($x, $y, pair($v, $z)),
next_to_in($x, $y, $z))

4.4.2 How the Query System Works 413

What will the response be to the following queries?

next_to_in($x, $y, list(1, list(2, 3), 4))

next_to_in($x, 1, list(2, 1, 3, 1))

Exercise 4.60
Define rules to implement the last_pair operation of exercise 2.17, which returns a list
containing the last element of a nonempty list. Check your rules on the following queries:

• last_pair(list(3), $x)

• last_pair(list(1, 2, 3), $x)

• last_pair(list(2, $x), list(3))

Do your rules work correctly on queries such as last_pair($x, list(3))?

Exercise 4.61
The following data base (see Genesis 4) traces the genealogy of the descendants of Ada
back to Adam, by way of Cain:

son("Adam", "Cain")
son("Cain", "Enoch")
son("Enoch", "Irad")
son("Irad", "Mehujael")
son("Mehujael", "Methushael")
son("Methushael", "Lamech")
wife("Lamech", "Ada")
son("Ada", "Jabal")
son("Ada", "Jubal")

Formulate rules such as “If S is the son of F, and F is the son of G, then S is the grandson
of G” and “If W is the wife of M, and S is the son of W, then S is the son of M” (which was
supposedly more true in biblical times than today) that will enable the query system to find
the grandson of Cain; the sons of Lamech; the grandsons of Methushael. (See exercise 4.67
for some rules to deduce more complicated relationships.)

4.4.2 How the Query System Works
In section 4.4.4 we will present an implementation of the query interpreter as a
collection of functions. In this section we give an overview that explains the general
structure of the system independent of low-level implementation details. After de-
scribing the implementation of the interpreter, we will be in a position to understand
some of its limitations and some of the subtle ways in which the query language’s
logical operations differ from the operations of mathematical logic.

It should be apparent that the query evaluator must perform some kind of search
in order to match queries against facts and rules in the data base. One way to do this
would be to implement the query system as a nondeterministic program, using the
amb evaluator of section 4.3 (see exercise 4.75). Another possibility is to manage the
search with the aid of streams. Our implementation follows this second approach.

414 Chapter 4 Metalinguistic Abstraction

The query system is organized around two central operations, called pattern
matching and unification. We first describe pattern matching and explain how this op-
eration, together with the organization of information in terms of streams of frames,
enables us to implement both simple and compound queries. We next discuss unifi-
cation, a generalization of pattern matching needed to implement rules. Finally, we
show how the entire query interpreter fits together through a function that classifies
queries in a manner analogous to the way evaluate classifies expressions for the
interpreter described in section 4.1.

Pattern matching
A pattern matcher is a program that tests whether some datum fits a specified pat-
tern. For example, the datum list(list("a", "b"), "c", list("a", "b"))
matches the pattern list($x, "c", $x) with the pattern variable $x bound to
list("a", "b"). The same data list matches the pattern list($x, $y, $z) with
$x and $z both bound to list("a", "b") and $y bound to "c". It also matches
the pattern list(list($x, $y), "c", list($x, $y)) with $x bound to "a"
and $y bound to "b". However, it does not match the pattern list($x, "a", $y),
since that pattern specifies a list whose second element is the string "a".

The pattern matcher used by the query system takes as inputs a pattern, a datum,
and a frame that specifies bindings for various pattern variables. It checks whether
the datum matches the pattern in a way that is consistent with the bindings already in
the frame. If so, it returns the given frame augmented by any bindings that may have
been determined by the match. Otherwise, it indicates that the match has failed.

Using the pattern list($x, $y, $x) to match list("a", "b", "a") given
an empty frame, for example, will return a frame specifying that $x is bound to "a"
and $y is bound to "b". Trying the match with the same pattern, the same datum,
and a frame specifying that $y is bound to "a" will fail. Trying the match with the
same pattern, the same datum, and a frame in which $y is bound to "b" and $x is
unbound will return the given frame augmented by a binding of $x to "a".

The pattern matcher is all the mechanism that is needed to process simple queries
that don’t involve rules. For instance, to process the query

job($x, list("computer", "programmer"))

we scan through all assertions in the data base and select those that match the pattern
with respect to an initially empty frame. For each match we find, we use the frame
returned by the match to instantiate the pattern with a value for $x.

Streams of frames
The testing of patterns against frames is organized through the use of streams. Given
a single frame, the matching process runs through the data-base entries one by one.
For each data-base entry, the matcher generates either a special symbol indicating
that the match has failed or an extension to the frame. The results for all the data-
base entries are collected into a stream, which is passed through a filter to weed out

4.4.2 How the Query System Works 415

input stream

of frames

output stream of frames,

filtered and extendedquery

job($x, $y)

stream of assertions

from data base

Figure 4.5 A query processes a stream of frames.

the failures. The result is a stream of all the frames that extend the given frame via
a match to some assertion in the data base.61

In our system, a query takes an input stream of frames and performs the above
matching operation for every frame in the stream, as indicated in figure 4.5. That is,
for each frame in the input stream, the query generates a new stream consisting of all
extensions to that frame by matches to assertions in the data base. All these streams
are then combined to form one huge stream, which contains all possible extensions
of every frame in the input stream. This stream is the output of the query.

To answer a simple query, we use the query with an input stream consisting
of a single empty frame. The resulting output stream contains all extensions to
the empty frame (that is, all answers to our query). This stream of frames is then
used to generate a stream of copies of the original query pattern with the variables
instantiated by the values in each frame, and this is the stream that is finally printed.

Compound queries
The real elegance of the stream-of-frames implementation is evident when we deal
with compound queries. The processing of compound queries makes use of the
ability of our matcher to demand that a match be consistent with a specified frame.
For example, to handle the and of two queries, such as

and(can_do_job($x, list("computer", "programmer", "trainee")),
job($person, $x))

(informally, “Find all people who can do the job of a computer programmer trainee”),
we first find all entries that match the pattern

can_do_job($x, list("computer", "programmer", "trainee"))

61. Because matching is generally very expensive, we would like to avoid applying the full
matcher to every element of the data base. This is usually arranged by breaking up the process
into a fast, coarse match and the final match. The coarse match filters the data base to produce
a small set of candidates for the final match. With care, we can arrange our data base so that
some of the work of coarse matching can be done when the data base is constructed rather
then when we want to select the candidates. This is called indexing the data base. There is
a vast technology built around data-base-indexing schemes. Our implementation, described in
section 4.4.4, contains a simpleminded form of such an optimization.

416 Chapter 4 Metalinguistic Abstraction

and(A, B)

data base

input stream

of frames

output stream

of frames
A B

Figure 4.6 The and combination of two queries is produced by operating on the stream
of frames in series.

merge

A

B

or(A, B)

data base

output stream

of frames

input stream

of frames

Figure 4.7 The or combination of two queries is produced by operating on the stream
of frames in parallel and merging the results.

This produces a stream of frames, each of which contains a binding for $x. Then for
each frame in the stream we find all entries that match

job($person, $x)

in a way that is consistent with the given binding for $x. Each such match will
produce a frame containing bindings for $x and $person. The and of two queries
can be viewed as a series combination of the two component queries, as shown in
figure 4.6. The frames that pass through the first query filter are filtered and further
extended by the second query.

Figure 4.7 shows the analogous method for computing the or of two queries as
a parallel combination of the two component queries. The input stream of frames
is extended separately by each query. The two resulting streams are then merged to
produce the final output stream.

Even from this high-level description, it is apparent that the processing of com-
pound queries can be slow. For example, since a query may produce more than one
output frame for each input frame, and each query in an and gets its input frames

4.4.2 How the Query System Works 417

from the previous query, an and query could, in the worst case, have to perform a
number of matches that is exponential in the number of queries (see exercise 4.73).62

Though systems for handling only simple queries are quite practical, dealing with
complex queries is extremely difficult.63

From the stream-of-frames viewpoint, the not of some query acts as a filter that
removes all frames for which the query can be satisfied. For instance, given the
pattern

not(job($x, list("computer", "programmer")))

we attempt, for each frame in the input stream, to produce extension frames that
satisfy job($x, list("computer", "programmer")). We remove from the in-
put stream all frames for which such extensions exist. The result is a stream
consisting of only those frames in which the binding for $x does not satisfy
job($x, list("computer", "programmer")). For example, in processing the
query

and(supervisor($x, $y),
not(job($x, list("computer", "programmer"))))

the first clause will generate frames with bindings for $x and $y. The not clause
will then filter these by removing all frames in which the binding for $x satisfies the
restriction that $x is a computer programmer.64

The javascript_predicate syntactic form is implemented as a similar filter
on frame streams. We use each frame in the stream to instantiate any variables in
the pattern, then apply the JavaScript predicate. We remove from the input stream
all frames for which the predicate fails.

Unification
In order to handle rules in the query language, we must be able to find the rules
whose conclusions match a given query pattern. Rule conclusions are like assertions
except that they can contain variables, so we will need a generalization of pattern
matching—called unification—in which both the “pattern” and the “datum” may
contain variables.

A unifier takes two patterns, each containing constants and variables, and de-
termines whether it is possible to assign values to the variables that will make the
two patterns equal. If so, it returns a frame containing these bindings. For exam-
ple, unifying list($x, "a", $y) and list($y, $z, "a") will specify a frame
in which $x, $y, and $z must all be bound to "a". On the other hand, unifying
list($x, $y, "a") and list($x, "b", $y) will fail, because there is no value
for $y that can make the two patterns equal. (For the second elements of the patterns

62. But this kind of exponential explosion is not common in and queries because the added
conditions tend to reduce rather than expand the number of frames produced.

63. There is a large literature on data-base-management systems that is concerned with how to
handle complex queries efficiently.

64. There is a subtle difference between this filter implementation of not and the usual meaning
of not in mathematical logic. See section 4.4.3.

418 Chapter 4 Metalinguistic Abstraction

to be equal, $y would have to be "b"; however, for the third elements to be equal,
$y would have to be "a".) The unifier used in the query system, like the pattern
matcher, takes a frame as input and performs unifications that are consistent with
this frame.

The unification algorithm is the most technically difficult part of the query sys-
tem. With complex patterns, performing unification may seem to require deduction.
To unify

list($x, $x)

and

list(list("a", $y, "c"), list("a", "b", $z))

for example, the algorithm must infer that $x should be list("a", "b", "c"),
$y should be "b", and $z should be "c". We may think of this process as solving a
set of equations among the pattern components. In general, these are simultaneous
equations, which may require substantial manipulation to solve.65 For example, uni-
fying list($x, $x) and list(list("a", $y, "c"), list("a", "b", $z))
may be thought of as specifying the simultaneous equations

$x = list("a", $y, "c")
$x = list("a", "b", $z)

These equations imply that

list("a", $y, "c") = list("a", "b", $z)

which in turn implies that

"a" = "a", $y = "b", "c" = $z

and hence that

$x = list("a", "b", "c")

In a successful pattern match, all pattern variables become bound, and the values
to which they are bound contain only constants. This is also true of all the examples
of unification we have seen so far. In general, however, a successful unification may
not completely determine the variable values; some variables may remain unbound
and others may be bound to values that contain variables.

Consider the unification of list($x, "a") and list(list("b", $y), $z).
We can deduce that $x = list("b", $y) and "a" = $z, but we cannot further solve
for $x or $y. The unification doesn’t fail, since it is certainly possible to make the
two patterns equal by assigning values to $x and $y. Since this match in no way
restricts the values $y can take on, no binding for $y is put into the result frame.
The match does, however, restrict the value of $x. Whatever value $y has, $x must
be list("b", $y). A binding of $x to the pattern list("b", $y) is thus put into
the frame. If a value for $y is later determined and added to the frame (by a pattern

65. In one-sided pattern matching, all the equations that contain pattern variables are explicit
and already solved for the unknown (the pattern variable).

4.4.2 How the Query System Works 419

match or unification that is required to be consistent with this frame), the previously
bound $x will refer to this value.66

Applying rules
Unification is the key to the component of the query system that makes inferences
from rules. To see how this is accomplished, consider processing a query that
involves applying a rule, such as

lives_near($x, list("Hacker", "Alyssa", "P"))

To process this query, we first use the ordinary pattern-match function described
above to see if there are any assertions in the data base that match this pattern. (There
will not be any in this case, since our data base includes no direct assertions about
who lives near whom.) The next step is to attempt to unify the query pattern with
the conclusion of each rule. We find that the pattern unifies with the conclusion of
the rule

rule(lives_near($person_1, $person_2),
and(address($person_1, pair($town, $rest_1)),

address($person_2, list($town, $rest_2)),
not(same($person_1, $person_2))))

resulting in a frame specifying that $x should be bound to (have the same value as)
$person_1 and that $person_2 is bound to list("Hacker", "Alyssa", "P").
Now, relative to this frame, we evaluate the compound query given by the body
of the rule. Successful matches will extend this frame by providing a binding for
$person_1, and consequently a value for $x, which we can use to instantiate the
original query pattern.

In general, the query evaluator uses the following method to apply a rule when
trying to establish a query pattern in a frame that specifies bindings for some of the
pattern variables:

• Unify the query with the conclusion of the rule to form, if successful, an extension
of the original frame.

• Relative to the extended frame, evaluate the query formed by the body of the rule.

Notice how similar this is to the method for applying a function in the evaluate/
apply evaluator for JavaScript:

• Bind the function’s parameters to its arguments to form a frame that extends the
original function environment.

• Relative to the extended environment, evaluate the expression formed by the body
of the function.

66. Another way to think of unification is that it generates the most general pattern that is
a specialization of the two input patterns. This means that the unification of list($x, "a")
and list(list("b", $y), $z) is list(list("b", $y), "a") and that the unification of
list($x, "a", $y) and list($y, $z, "a"), discussed above, is list("a", "a", "a").
For our implementation, it is more convenient to think of the result of unification as a frame
rather than a pattern.

420 Chapter 4 Metalinguistic Abstraction

The similarity between the two evaluators should come as no surprise. Just as func-
tion definitions are the means of abstraction in JavaScript, rule definitions are the
means of abstraction in the query language. In each case, we unwind the abstraction
by creating appropriate bindings and evaluating the rule or function body relative to
these.

Simple queries
We saw earlier in this section how to evaluate simple queries in the absence of rules.
Now that we have seen how to apply rules, we can describe how to evaluate simple
queries by using both rules and assertions.

Given the query pattern and a stream of frames, we produce, for each frame in
the input stream, two streams:

• a stream of extended frames obtained by matching the pattern against all asser-
tions in the data base (using the pattern matcher), and

• a stream of extended frames obtained by applying all possible rules (using the
unifier).67

Appending these two streams produces a stream that consists of all the ways that the
given pattern can be satisfied consistent with the original frame. These streams (one
for each frame in the input stream) are now all combined to form one large stream,
which therefore consists of all the ways that any of the frames in the original input
stream can be extended to produce a match with the given pattern.

The query evaluator and the driver loop
Despite the complexity of the underlying matching operations, the system is orga-
nized much like an evaluator for any language. The function that coordinates the
matching operations is called evaluate_query, and it plays a role analogous to
that of the evaluate function for JavaScript. The function evaluate_query takes
as inputs a query and a stream of frames. Its output is a stream of frames, corre-
sponding to successful matches to the query pattern, that extend some frame in the
input stream, as indicated in figure 4.5. Like evaluate, evaluate_query classi-
fies the different types of expressions (queries) and dispatches to an appropriate
function for each. There is a function for each syntactic form (and, or, not, and
javascript_predicate) and one for simple queries.

The driver loop, which is analogous to the driver_loop function for the other
evaluators in this chapter, reads queries typed by the user. For each query, it calls
evaluate_query with the query and a stream that consists of a single empty frame.
This will produce the stream of all possible matches (all possible extensions to the
empty frame). For each frame in the resulting stream, it instantiates the original

67. Since unification is a generalization of matching, we could simplify the system by using
the unifier to produce both streams. Treating the easy case with the simple matcher, however,
illustrates how matching (as opposed to full-blown unification) can be useful in its own right.

4.4.3 Is Logic Programming Mathematical Logic? 421

query using the values of the variables found in the frame. This stream of instantiated
queries is then printed.68

The driver also checks for the special command assert, which signals that the
input is not a query but rather an assertion or rule to be added to the data base. For
instance,

assert(job(list("Bitdiddle", "Ben"), list("computer", "wizard")))

assert(rule(wheel($person),
and(supervisor($middle_manager, $person),

supervisor($x, $middle_manager))))

4.4.3 Is Logic Programming Mathematical Logic?
The means of combination used in the query language may at first seem identical to
the operations and, or, and not of mathematical logic, and the application of query-
language rules is in fact accomplished through a legitimate method of inference.69

This identification of the query language with mathematical logic is not really valid,
though, because the query language provides a control structure that interprets the
logical statements procedurally. We can often take advantage of this control struc-
ture. For example, to find all of the supervisors of programmers we could formulate
a query in either of two logically equivalent forms:

and(job($x, list("computer", "programmer")),
supervisor($x, $y))

or

and(supervisor($x, $y),
job($x, list("computer", "programmer")))

If a company has many more supervisors than programmers, it is better to use the
first form rather than the second, because the data base must be scanned for each
intermediate result (frame) produced by the first clause of the and.

The aim of logic programming is to provide the programmer with techniques for
decomposing a computational problem into two separate problems: “what” is to be
computed, and “how” this should be computed. This is accomplished by selecting a
subset of the statements of mathematical logic that is powerful enough to be able to
describe anything one might want to compute, yet weak enough to have a control-
lable procedural interpretation. The intention here is that, on the one hand, a program

68. The reason we use streams (rather than lists) of frames is that the recursive application
of rules can generate infinite numbers of values that satisfy a query. The delayed evaluation
embodied in streams is crucial here: The system will print responses one by one as they are
generated, regardless of whether there are a finite or infinite number of responses.

69. That a particular method of inference is legitimate is not a trivial assertion. One must prove
that if one starts with true premises, only true conclusions can be derived. The method of
inference represented by rule applications is modus ponens, the familiar method of inference
that says that if A is true and A implies B is true, then we may conclude that B is true.

422 Chapter 4 Metalinguistic Abstraction

specified in a logic programming language should be an effective program that can
be carried out by a computer. Control (“how” to compute) is effected by using the
order of evaluation of the language. We should be able to arrange the order of clauses
and the order of subgoals within each clause so that the computation is done in an
order deemed to be effective and efficient. At the same time, we should be able to
view the result of the computation (“what” to compute) as a simple consequence of
the laws of logic.

Our query language can be regarded as just such a procedurally interpretable
subset of mathematical logic. An assertion represents a simple fact (an atomic propo-
sition). A rule represents the implication that the rule conclusion holds for those
cases where the rule body holds. A rule has a natural procedural interpretation: To
establish the conclusion of the rule, establish the body of the rule. Rules, therefore,
specify computations. However, because rules can also be regarded as statements
of mathematical logic, we can justify any “inference” accomplished by a logic pro-
gram by asserting that the same result could be obtained by working entirely within
mathematical logic.70

Infinite loops
A consequence of the procedural interpretation of logic programs is that it is possible
to construct hopelessly inefficient programs for solving certain problems. An ex-
treme case of inefficiency occurs when the system falls into infinite loops in making
deductions. As a simple example, suppose we are setting up a data base of famous
marriages, including

assert(married("Minnie", "Mickey"))

If we now ask

married("Mickey", $who)

we will get no response, because the system doesn’t know that if A is married to B,
then B is married to A. So we assert the rule

assert(rule(married($x, $y),
married($y, $x)))

and again query

70. We must qualify this statement by agreeing that, in speaking of the “inference” accom-
plished by a logic program, we assume that the computation terminates. Unfortunately, even this
qualified statement is false for our implementation of the query language (and also false for pro-
grams in Prolog and most other current logic programming languages) because of our use of not
and javascript_predicate. As we will describe below, the not implemented in the query lan-
guage is not always consistent with the not of mathematical logic, and javascript_predicate
introduces additional complications. We could implement a language consistent with mathe-
matical logic by simply removing not and javascript_predicate from the language and
agreeing to write programs using only simple queries, and, and or. However, this would greatly
restrict the expressive power of the language. One of the major concerns of research in logic
programming was to find ways to achieve more consistency with mathematical logic without
unduly sacrificing expressive power.

4.4.3 Is Logic Programming Mathematical Logic? 423

married("Mickey", $who)

Unfortunately, this will drive the system into an infinite loop, as follows:

• The system finds that the married rule is applicable; that is, the rule conclusion
married($x, $y) unifies with the query pattern married("Mickey", $who)
to produce a frame in which $x is bound to "Mickey" and $y is bound to $who.
So the interpreter proceeds to evaluate the rule body married($y, $x) in this
frame—in effect, to process the query married($who, "Mickey").

• One answer, married("Minnie", "Mickey"), appears directly as an assertion
in the data base.

• The married rule is also applicable, so the interpreter again evaluates the rule
body, which this time is equivalent to married("Mickey", $who).

The system is now in an infinite loop. Indeed, whether the system will find the simple
answer married("Minnie", "Mickey") before it goes into the loop depends on
implementation details concerning the order in which the system checks the items
in the data base. This is a very simple example of the kinds of loops that can occur.
Collections of interrelated rules can lead to loops that are much harder to anticipate,
and the appearance of a loop can depend on the order of clauses in an and (see
exercise 4.62) or on low-level details concerning the order in which the system
processes queries.71

Problems with not
Another quirk in the query system concerns not. Given the data base of section 4.4.1,
consider the following two queries:

and(supervisor($x, $y),
not(job($x, list("computer", "programmer"))))

and(not(job($x, list("computer", "programmer"))),
supervisor($x, $y))

These two queries do not produce the same result. The first query begins by finding
all entries in the data base that match supervisor($x, $y), and then filters the
resulting frames by removing the ones in which the value of $x satisfies job($x,
list("computer", "programmer")). The second query begins by filtering the

71. This is not a problem of the logic but one of the procedural interpretation of the logic
provided by our interpreter. We could write an interpreter that would not fall into a loop here.
For example, we could enumerate all the proofs derivable from our assertions and our rules in
a breadth-first rather than a depth-first order. However, such a system makes it more difficult to
take advantage of the order of deductions in our programs. One attempt to build sophisticated
control into such a program is described in de Kleer et al. 1977. Another technique, which does
not lead to such serious control problems, is to put in special knowledge, such as detectors
for particular kinds of loops (exercise 4.65). However, there can be no general scheme for
reliably preventing a system from going down infinite paths in performing deductions. Imagine
a diabolical rule of the form “To show P(x) is true, show that P(f (x)) is true,” for some suitably
chosen function f .

424 Chapter 4 Metalinguistic Abstraction

incoming frames to remove those that can satisfy job($x, list("computer",
"programmer")). Since the only incoming frame is empty, it checks the data base
for patterns that satisfy job($x, list("computer", "programmer")). Since
there generally are entries of this form, the not clause filters out the empty frame
and returns an empty stream of frames. Consequently, the entire compound query
returns an empty stream.

The trouble is that our implementation of not really is meant to serve as a
filter on values for the variables. If a not clause is processed with a frame in
which some of the variables remain unbound (as does $x in the example above),
the system will produce unexpected results. Similar problems occur with the use
of javascript_predicate—the JavaScript predicate can’t work if some of its
variables are unbound. See exercise 4.74.

There is also a much more serious way in which the not of the query language
differs from the not of mathematical logic. In logic, we interpret the statement
“not P” to mean that P is not true. In the query system, however, “not P” means
that P is not deducible from the knowledge in the data base. For example, given the
personnel data base of section 4.4.1, the system would happily deduce all sorts of
not statements, such as that Ben Bitdiddle is not a baseball fan, that it is not raining
outside, and that 2 + 2 is not 4.72 In other words, the not of logic programming lan-
guages reflects the so-called closed world assumption that all relevant information
has been included in the data base.73

Exercise 4.62
Louis Reasoner mistakenly deletes the outranked_by rule (section 4.4.1) from the data
base. When he realizes this, he quickly reinstalls it. Unfortunately, he makes a slight change
in the rule, and types it in as

rule(outranked_by($staff_person, $boss),
or(supervisor($staff_person, $boss),

and(outranked_by($middle_manager, $boss),
supervisor($staff_person, $middle_manager))))

Just after Louis types this information into the system, DeWitt Aull comes by to find out
who outranks Ben Bitdiddle. He issues the query

outanked_by(list("Bitdiddle", "Ben"), $who)

After answering, the system goes into an infinite loop. Explain why.

72. Consider the query not(baseball_fan(list("Bitdiddle", "Ben"))). The system finds
that baseball_fan(list("Bitdiddle", "Ben")) is not in the data base, so the empty frame
does not satisfy the pattern and is not filtered out of the initial stream of frames. The result
of the query is thus the empty frame, which is used to instantiate the input query to produce
not(baseball_fan(list("Bitdiddle", "Ben"))).

73. A discussion and justification of this treatment of not can be found in the article “Negation
as Failure” by Clark (1978).

4.4.3 Is Logic Programming Mathematical Logic? 425

Exercise 4.63
Cy D. Fect, looking forward to the day when he will rise in the organization, gives a query
to find all the wheels (using the wheel rule of section 4.4.1):

wheel($who)

To his surprise, the system responds

Query results:
wheel(list("Warbucks", "Oliver"))
wheel(list("Bitdiddle", "Ben"))
wheel(list("Warbucks", "Oliver"))
wheel(list("Warbucks", "Oliver"))
wheel(list("Warbucks", "Oliver"))

Why is Oliver Warbucks listed four times?

Exercise 4.64
Ben has been generalizing the query system to provide statistics about the company. For
example, to find the total salaries of all the computer programmers one will be able to say

sum($amount,
and(job($x, list("computer", "programmer")),

salary($x, $amount)))

In general, Ben’s new system allows expressions of the form

accumulation_function(variable,
query-pattern)

where accumulation_function can be things like sum, average, or maximum. Ben rea-
sons that it should be a cinch to implement this. He will simply feed the query pattern
to evaluate_query. This will produce a stream of frames. He will then pass this stream
through a mapping function that extracts the value of the designated variable from each
frame in the stream and feed the resulting stream of values to the accumulation function.
Just as Ben completes the implementation and is about to try it out, Cy walks by, still
puzzling over the wheel query result in exercise 4.63. When Cy shows Ben the system’s
response, Ben groans, “Oh, no, my simple accumulation scheme won’t work!”

What has Ben just realized? Outline a method he can use to salvage the situation.

Exercise 4.65
Devise a way to install a loop detector in the query system so as to avoid the kinds of
simple loops illustrated in the text and in exercise 4.62. The general idea is that the system
should maintain some sort of history of its current chain of deductions and should not
begin processing a query that it is already working on. Describe what kind of information
(patterns and frames) is included in this history, and how the check should be made. (After
you study the details of the query-system implementation in section 4.4.4, you may want
to modify the system to include your loop detector.)

426 Chapter 4 Metalinguistic Abstraction

Exercise 4.66
Define rules to implement the reverse operation of exercise 2.18, which returns a list
containing the same elements as a given list in reverse order. (Hint: Use append_to_form.)
Can your rules answer both the query reverse(list(1, 2, 3), $x) and the query
reverse($x, list(1, 2, 3))?

Exercise 4.67
Let us modify the data base and the rules of exercise 4.61 to add “great” to a grandson
relationship. This should enable the system to deduce that Irad is the great-grandson of
Adam, or that Jabal and Jubal are the great-great-great-great-great-grandsons of Adam.

a. Change the assertions in the data base such that there is only one kind of relationship
information, namely related. The first item then describes the relationship. Thus, in-
stead of son("Adam", "Cain"), you would write related("son", "Adam", "Cain").
Represent the fact about Irad, for example, as

related(list("great", "grandson"), "Adam", "Irad")

b. Write rules that determine if a list ends in the word "grandson".

c. Use this to express a rule that allows one to derive the relationship

list(pair("great", $rel), $x, $y)

where $rel is a list ending in "grandson".

d. Check your rules on the queries related(list("great", "grandson"), $g, $ggs)
and related($relationship, "Adam", "Irad").

4.4.4 Implementing the Query System
Section 4.4.2 described how the query system works. Now we fill in the details by
presenting a complete implementation of the system.

4.4.4.1 The Driver Loop
The driver loop for the query system repeatedly reads input expressions. If the ex-
pression is a rule or assertion to be added to the data base, then the information is
added. Otherwise the expression is assumed to be a query. The driver passes this
query to evaluate_query together with an initial frame stream consisting of a
single empty frame. The result of the evaluation is a stream of frames generated
by satisfying the query with variable values found in the data base. These frames
are used to form a new stream consisting of copies of the original query in which
the variables are instantiated with values supplied by the stream of frames, and this
final stream is displayed:

4.4.4.2 The Evaluator 427

const input_prompt = "Query input:";
const output_prompt = "Query results:";

function query_driver_loop() {
const input = user_read(input_prompt) + ";";
if (is_null(input)) {

display("evaluator terminated");
} else {

const expression = parse(input);
const query = convert_to_query_syntax(expression);
if (is_assertion(query)) {

add_rule_or_assertion(assertion_body(query));
display("Assertion added to data base.");

} else {
display(output_prompt);
display_stream(
stream_map(

frame =>
unparse(instantiate_expression(expression, frame)),

evaluate_query(query, singleton_stream(null))));
}
return query_driver_loop();

}
}

Here, as in the other evaluators in this chapter, we use parse to transform a compo-
nent of the query language given as a string into a JavaScript syntax representation.
(We append a semicolon to the input expression string because parse expects a
statement.) Then we further transform the syntax representation to a conceptual
level appropriate for the query system using convert_to_query_syntax, which
is declared in section 4.4.4.7 along with the predicate is_assertion and the se-
lector assertion_body. The function add_rule_or_assertion is declared in
section 4.4.4.5. The frames resulting from query evaluation are used to instantiate
the syntax representation, and the result is unparsed into a string for display. The
functions instantiate_expression and unparse are declared in section 4.4.4.7.

4.4.4.2 The Evaluator
The evaluate_query function, called by the query_driver_loop, is the basic
evaluator of the query system. It takes as inputs a query and a stream of frames, and
it returns a stream of extended frames. It identifies syntactic forms by a data-directed
dispatch using get and put, just as we did in implementing generic operations in
chapter 2. Any query that is not identified as a syntactic form is assumed to be a
simple query, to be processed by simple_query.

428 Chapter 4 Metalinguistic Abstraction

function evaluate_query(query, frame_stream) {
const qfun = get(type(query), "evaluate_query");
return is_undefined(qfun)

? simple_query(query, frame_stream)
: qfun(contents(query), frame_stream);

}

The functions type and contents, defined in section 4.4.4.7, implement the ab-
stract syntax of the syntactic forms.

Simple queries
The simple_query function handles simple queries. It takes as arguments a simple
query (a pattern) together with a stream of frames, and it returns the stream formed
by extending each frame by all data-base matches of the query.

function simple_query(query_pattern, frame_stream) {
return stream_flatmap(

frame =>
stream_append_delayed(

find_assertions(query_pattern, frame),
() => apply_rules(query_pattern, frame)),

frame_stream);
}

For each frame in the input stream, we use find_assertions (section 4.4.4.3)
to match the pattern against all assertions in the data base, producing a stream of
extended frames, and we use apply_rules (section 4.4.4.4) to apply all possible
rules, producing another stream of extended frames. These two streams are com-
bined (using stream_append_delayed, section 4.4.4.6) to make a stream of all
the ways that the given pattern can be satisfied consistent with the original frame
(see exercise 4.68). The streams for the individual input frames are combined using
stream_flatmap (section 4.4.4.6) to form one large stream of all the ways that any
of the frames in the original input stream can be extended to produce a match with
the given pattern.

Compound queries
We handle and queries as illustrated in figure 4.6 with the conjoin function, which
takes as inputs the conjuncts and the frame stream and returns the stream of extended
frames. First, conjoin processes the stream of frames to find the stream of all possi-
ble frame extensions that satisfy the first query in the conjunction. Then, using this
as the new frame stream, it recursively applies conjoin to the rest of the queries.

function conjoin(conjuncts, frame_stream) {
return is_empty_conjunction(conjuncts)

? frame_stream
: conjoin(rest_conjuncts(conjuncts),

evaluate_query(first_conjunct(conjuncts),
frame_stream));

}

The statement

put("and", "evaluate_query", conjoin);

4.4.4.2 The Evaluator 429

sets up evaluate_query to dispatch to conjoin when an and is encountered.
We handle or queries similarly, as shown in figure 4.7. The output streams

for the various disjuncts of the or are computed separately and merged using the
interleave_delayed function from section 4.4.4.6. (See exercises 4.68 and 4.69.)

function disjoin(disjuncts, frame_stream) {
return is_empty_disjunction(disjuncts)

? null
: interleave_delayed(

evaluate_query(first_disjunct(disjuncts), frame_stream),
() => disjoin(rest_disjuncts(disjuncts), frame_stream));

}
put("or", "evaluate_query", disjoin);

The predicates and selectors for the representation of conjuncts and disjuncts are
given in section 4.4.4.7.

Filters
The not syntactic form is handled by the method outlined in section 4.4.2. We
attempt to extend each frame in the input stream to satisfy the query being negated,
and we include a given frame in the output stream only if it cannot be extended.

function negate(exps, frame_stream) {
return stream_flatmap(

frame =>
is_null(evaluate_query(negated_query(exps),

singleton_stream(frame)))
? singleton_stream(frame)
: null,

frame_stream);
}
put("not", "evaluate_query", negate);

The javascript_predicate syntactic form is a filter similar to not. Each
frame in the stream is used to instantiate the variables in the predicate, the instanti-
ated predicate is evaluated, and the frames for which the predicate evaluates to false
are filtered out of the input stream. The instantiated predicate is evaluated using
evaluate from section 4.1 with the_global_environment and thus can handle
any JavaScript expression, as long as all pattern variables are instantiated prior to
evaluation.

function javascript_predicate(exps, frame_stream) {
return stream_flatmap(

frame =>
evaluate(instantiate_expression(

javascript_predicate_expression(exps),
frame),

the_global_environment)
? singleton_stream(frame)
: null,

frame_stream);
}
put("javascript_predicate", "evaluate_query", javascript_predicate);

430 Chapter 4 Metalinguistic Abstraction

The always_true syntactic form provides for a query that is always satisfied.
It ignores its contents (normally empty) and simply passes through all the frames
in the input stream. The rule_body selector (section 4.4.4.7) uses always_true
to provide bodies for rules that were defined without bodies (that is, rules whose
bodies are always satisfied).

function always_true(ignore, frame_stream) {
return frame_stream;

}
put("always_true", "evaluate_query", always_true);

The selectors that define the syntax of not and javascript_predicate are given
in section 4.4.4.7.

4.4.4.3 Finding Assertions by Pattern Matching
The function find_assertions, called by simple_query (section 4.4.4.2), takes
as input a pattern and a frame. It returns a stream of frames, each extending the
given one by a data-base match of the given pattern. It uses fetch_assertions
(section 4.4.4.5) to get a stream of all the assertions in the data base that should
be checked for a match against the pattern and the frame. The reason for fetch_
assertions here is that we can often apply simple tests that will eliminate many of
the entries in the data base from the pool of candidates for a successful match. The
system would still work if we eliminated fetch_assertions and simply checked a
stream of all assertions in the data base, but the computation would be less efficient
because we would need to make many more calls to the matcher.

function find_assertions(pattern, frame) {
return stream_flatmap(

datum => check_an_assertion(datum, pattern, frame),
fetch_assertions(pattern, frame));

}

The function check_an_assertion takes as arguments a data object (an asser-
tion), a pattern, and a frame and returns either a one-element stream containing the
extended frame or null if the match fails.

function check_an_assertion(assertion, query_pat, query_frame) {
const match_result = pattern_match(query_pat, assertion,

query_frame);
return match_result === "failed"

? null
: singleton_stream(match_result);

}

The basic pattern matcher returns either the string "failed" or an extension of the
given frame. The basic idea of the matcher is to check the pattern against the data,
element by element, accumulating bindings for the pattern variables. If the pattern
and the data object are the same, the match succeeds and we return the frame of
bindings accumulated so far. Otherwise, if the pattern is a variable (checked by the
function is_variable declared in section 4.4.4.7) we extend the current frame by

4.4.4.3 Finding Assertions by Pattern Matching 431

binding the variable to the data, so long as this is consistent with the bindings already
in the frame. If the pattern and the data are both pairs, we (recursively) match the
head of the pattern against the head of the data to produce a frame; in this frame we
then match the tail of the pattern against the tail of the data. If none of these cases
are applicable, the match fails and we return the string "failed".

function pattern_match(pattern, data, frame) {
return frame === "failed"

? "failed"
: equal(pattern, data)
? frame
: is_variable(pattern)
? extend_if_consistent(pattern, data, frame)
: is_pair(pattern) && is_pair(data)
? pattern_match(tail(pattern),

tail(data),
pattern_match(head(pattern),

head(data),
frame))

: "failed";
}

Here is the function that extends a frame by adding a new binding, if this is
consistent with the bindings already in the frame:

function extend_if_consistent(variable, data, frame) {
const binding = binding_in_frame(variable, frame);
return is_undefined(binding)

? extend(variable, data, frame)
: pattern_match(binding_value(binding), data, frame);

}

If there is no binding for the variable in the frame, we simply add the binding of the
variable to the data. Otherwise we match, in the frame, the data against the value of
the variable in the frame. If the stored value contains only constants, as it must if
it was stored during pattern matching by extend_if_consistent, then the match
simply tests whether the stored and new values are the same. If so, it returns the un-
modified frame; if not, it returns a failure indication. The stored value may, however,
contain pattern variables if it was stored during unification (see section 4.4.4.4). The
recursive match of the stored pattern against the new data will add or check bindings
for the variables in this pattern. For example, suppose we have a frame in which $x
is bound to list("f", $y) and $y is unbound, and we wish to augment this frame
by a binding of $x to list("f", "b"). We look up $x and find that it is bound to
list("f", $y). This leads us to match list("f", $y) against the proposed new
value list("f", "b") in the same frame. Eventually this match extends the frame
by adding a binding of $y to "b". The variable $x remains bound to list("f", $y).
We never modify a stored binding and we never store more than one binding for a
given variable.

The functions used by extend_if_consistent to manipulate bindings are
defined in section 4.4.4.8.

432 Chapter 4 Metalinguistic Abstraction

4.4.4.4 Rules and Unification
The function apply_rules is the rule analog of find_assertions (section 4.4.4.3).
It takes as input a pattern and a frame, and it forms a stream of extension frames by
applying rules from the data base. The function stream_flatmap maps apply_a_
rule down the stream of possibly applicable rules (selected by fetch_rules,
section 4.4.4.5) and combines the resulting streams of frames.

function apply_rules(pattern, frame) {
return stream_flatmap(rule => apply_a_rule(rule, pattern, frame),

fetch_rules(pattern, frame));
}

The function apply_a_rule applies a rule using the method outlined in sec-
tion 4.4.2. It first augments its argument frame by unifying the rule conclusion with
the pattern in the given frame. If this succeeds, it evaluates the rule body in this new
frame.

Before any of this happens, however, the program renames all the variables in the
rule with unique new names. The reason for this is to prevent the variables for differ-
ent rule applications from becoming confused with each other. For instance, if two
rules both use a variable named $x, then each one may add a binding for $x to the
frame when it is applied. These two $x’s have nothing to do with each other, and we
should not be fooled into thinking that the two bindings must be consistent. Rather
than rename variables, we could devise a more clever environment structure; how-
ever, the renaming approach we have chosen here is the most straightforward, even
if not the most efficient. (See exercise 4.76.) Here is the apply_a_rule function:

function apply_a_rule(rule, query_pattern, query_frame) {
const clean_rule = rename_variables_in(rule);
const unify_result = unify_match(query_pattern,

conclusion(clean_rule),
query_frame);

return unify_result === "failed"
? null
: evaluate_query(rule_body(clean_rule),

singleton_stream(unify_result));
}

The selectors rule_body and conclusion that extract parts of a rule are defined in
section 4.4.4.7.

We generate unique variable names by associating a unique identifier (such as
a number) with each rule application and combining this identifier with the orig-
inal variable names. For example, if the rule-application identifier is 7, we might
change each $x in the rule to $x_7 and each $y in the rule to $y_7. (The func-
tions make_new_variable and new_rule_application_id are included with the
syntax functions in section 4.4.4.7.)

4.4.4.4 Rules and Unification 433

function rename_variables_in(rule) {
const rule_application_id = new_rule_application_id();
function tree_walk(exp) {

return is_variable(exp)
? make_new_variable(exp, rule_application_id)
: is_pair(exp)
? pair(tree_walk(head(exp)),

tree_walk(tail(exp)))
: exp;

}
return tree_walk(rule);

}

The unification algorithm is implemented as a function that takes as inputs two
patterns and a frame and returns either the extended frame or the string "failed".
The unifier is like the pattern matcher except that it is symmetrical—variables are
allowed on both sides of the match. The function unify_match is basically the
same as pattern_match, except that there is an extra clause (marked “***” below)
to handle the case where the object on the right side of the match is a variable.

function unify_match(p1, p2, frame) {
return frame === "failed"

? "failed"
: equal(p1, p2)
? frame
: is_variable(p1)
? extend_if_possible(p1, p2, frame)
: is_variable(p2) // ***
? extend_if_possible(p2, p1, frame) // ***
: is_pair(p1) && is_pair(p2)
? unify_match(tail(p1),

tail(p2),
unify_match(head(p1),

head(p2),
frame))

: "failed";
}

In unification, as in one-sided pattern matching, we want to accept a pro-
posed extension of the frame only if it is consistent with existing bindings. The
function extend_if_possible used in unification is the same as the function
extend_if_consistent used in pattern matching except for two special checks,
marked “***” in the program below. In the first case, if the variable we are trying to
match is not bound, but the value we are trying to match it with is itself a (different)
variable, it is necessary to check to see if the value is bound, and if so, to match its
value. If both parties to the match are unbound, we may bind either to the other.

434 Chapter 4 Metalinguistic Abstraction

The second check deals with attempts to bind a variable to a pattern that in-
cludes that variable. Such a situation can occur whenever a variable is repeated in
both patterns. Consider, for example, unifying the two patterns list($x, $x) and
list($y, 〈expression involving $y〉) in a frame where both $x and $y are unbound.
First $x is matched against $y, making a binding of $x to $y. Next, the same $x
is matched against the given expression involving $y. Since $x is already bound to
$y, this results in matching $y against the expression. If we think of the unifier as
finding a set of values for the pattern variables that make the patterns the same, then
these patterns imply instructions to find a $y such that $y is equal to the expression
involving $y. We reject such bindings; these cases are recognized by the predicate
depends_on.74 On the other hand, we do not want to reject attempts to bind a vari-
able to itself. For example, consider unifying list($x, $x) and list($y, $y).
The second attempt to bind $x to $y matches $y (the stored value of $x) against $y
(the new value of $x). This is taken care of by the equal clause of unify_match.

74. In general, unifying $y with an expression involving $y would require our being able
to find a fixed point of the equation $y = 〈expression involving $y〉. It is sometimes possi-
ble to syntactically form an expression that appears to be the solution. For example, $y =
list("f", $y) seems to have the fixed point list("f", list("f", list("f", . . .))),
which we can produce by beginning with the expression list("f", $y) and repeatedly substi-
tuting list("f", $y) for $y. Unfortunately, not every such equation has a meaningful fixed
point. The issues that arise here are similar to the issues of manipulating infinite series in
mathematics. For example, we know that 2 is the solution to the equation y = 1 + y/2. Beginning
with the expression 1 + y/2 and repeatedly substituting 1 + y/2 for y gives

2 = y = 1 + y/2 = 1 + (1 + y/2)/2 = 1 + 1/2 + y/4 = · · · ,

which leads to

2 = 1 + 1/2 + 1/4 + 1/8 + · · · .

However, if we try the same manipulation beginning with the observation that –1 is the solution
to the equation y = 1 + 2y, we obtain

–1 = y = 1 + 2y = 1 + 2(1 + 2y) = 1 + 2 + 4y = · · · ,

which leads to

–1 = 1 + 2 + 4 + 8 + · · · .

Although the formal manipulations used in deriving these two equations are identical, the first
result is a valid assertion about infinite series but the second is not. Similarly, for our unification
results, reasoning with an arbitrary syntactically constructed expression may lead to errors.

Nevertheless, most logic programming systems today allow cyclic references, by accepting
the cyclic data structure as the result of the match. This is justified theoretically using rational
trees (Jaffar and Stuckey 1986). Accepting a cyclic data structure allows self-referential data,
such as an employee data structure that refers to the employer, which in turn refers to the
employee.

4.4.4.4 Rules and Unification 435

function extend_if_possible(variable, value, frame) {
const binding = binding_in_frame(variable, frame);
if (! is_undefined(binding)) {

return unify_match(binding_value(binding),
value, frame);

} else if (is_variable(value)) { // ***
const binding = binding_in_frame(value, frame);
return ! is_undefined(binding)

? unify_match(variable,
binding_value(binding),
frame)

: extend(variable, value, frame);
} else if (depends_on(value, variable, frame)) { // ***

return "failed";
} else {

return extend(variable, value, frame);
}

}

The function depends_on is a predicate that tests whether an expression pro-
posed to be the value of a pattern variable depends on the variable. This must be
done relative to the current frame because the expression may contain occurrences
of a variable that already has a value that depends on our test variable. The structure
of depends_on is a simple recursive tree walk in which we substitute for the values
of variables whenever necessary.

function depends_on(expression, variable, frame) {
function tree_walk(e) {

if (is_variable(e)) {
if (equal(variable, e)) {

return true;
} else {

const b = binding_in_frame(e, frame);
return is_undefined(b)

? false
: tree_walk(binding_value(b));

}
} else {

return is_pair(e)
? tree_walk(head(e)) || tree_walk(tail(e))
: false;

}
}
return tree_walk(expression);

}

436 Chapter 4 Metalinguistic Abstraction

4.4.4.5 Maintaining the Data Base
One important problem in designing logic programming languages is that of arrang-
ing things so that as few irrelevant data-base entries as possible will be examined in
checking a given pattern. For this purpose, we will represent an assertion as a list
whose head is a string that represents the kind of information of the assertion. We
store the assertions in separate streams, one for each kind of information, in a table
indexed by the kind. To fetch an assertion that may match a pattern, we return (to be
tested using the matcher) all the stored assertions that have the same head (the same
kind of information). Cleverer methods could also take advantage of information in
the frame. We avoid building our criteria for indexing into the program; instead we
call on predicates and selectors that embody our criteria.

function fetch_assertions(pattern, frame) {
return get_indexed_assertions(pattern);

}
function get_indexed_assertions(pattern) {

return get_stream(index_key_of(pattern), "assertion-stream");
}

The function get_stream looks up a stream in the table and returns an empty stream
if nothing is stored there.

function get_stream(key1, key2) {
const s = get(key1, key2);
return is_undefined(s) ? null : s;

}

Rules are stored similarly, using the head of the rule conclusion. A pattern can
match rules whose conclusions have the same head. Thus, when fetching rules that
might match a pattern we fetch all rules whose conclusions have the same head as
the pattern.

function fetch_rules(pattern, frame) {
return get_indexed_rules(pattern);

}
function get_indexed_rules(pattern) {

return get_stream(index_key_of(pattern), "rule-stream");
}

The function add_rule_or_assertion is used by query_driver_loop to add
assertions and rules to the data base. Each item is stored in the index.

function add_rule_or_assertion(assertion) {
return is_rule(assertion)

? add_rule(assertion)
: add_assertion(assertion);

}
function add_assertion(assertion) {

store_assertion_in_index(assertion);
return "ok";

}
function add_rule(rule) {

store_rule_in_index(rule);
return "ok";

}

4.4.4.6 Stream Operations 437

To actually store an assertion or a rule, we store it in the appropriate stream.

function store_assertion_in_index(assertion) {
const key = index_key_of(assertion);
const current_assertion_stream =

get_stream(key, "assertion-stream");
put(key, "assertion-stream",

pair(assertion, () => current_assertion_stream));
}
function store_rule_in_index(rule) {

const pattern = conclusion(rule);
const key = index_key_of(pattern);
const current_rule_stream =

get_stream(key, "rule-stream");
put(key, "rule-stream",

pair(rule, () => current_rule_stream));
}

The key under which a pattern (an assertion or rule conclusion) is stored in the
table is the string it starts with.

function index_key_of(pattern) { return head(pattern); }

4.4.4.6 Stream Operations
The query system uses a few stream operations that were not presented in chapter 3.

The functions stream_append_delayed and interleave_delayed are just
like stream_append and interleave (section 3.5.3), except that they take a
delayed argument (like the integral function in section 3.5.4). This postpones
looping in some cases (see exercise 4.68).

function stream_append_delayed(s1, delayed_s2) {
return is_null(s1)

? delayed_s2()
: pair(head(s1),

() => stream_append_delayed(stream_tail(s1),
delayed_s2));

}
function interleave_delayed(s1, delayed_s2) {

return is_null(s1)
? delayed_s2()
: pair(head(s1),

() => interleave_delayed(delayed_s2(),
() => stream_tail(s1)));

}

The function stream_flatmap, which is used throughout the query evaluator
to map a function over a stream of frames and combine the resulting streams of
frames, is the stream analog of the flatmap function introduced for ordinary lists
in section 2.2.3. Unlike ordinary flatmap, however, we accumulate the streams
with an interleaving process, rather than simply appending them (see exercises 4.69
and 4.70).

438 Chapter 4 Metalinguistic Abstraction

function stream_flatmap(fun, s) {
return flatten_stream(stream_map(fun, s));

}
function flatten_stream(stream) {

return is_null(stream)
? null
: interleave_delayed(

head(stream),
() => flatten_stream(stream_tail(stream)));

}

The evaluator also uses the following simple function to generate a stream
consisting of a single element:

function singleton_stream(x) {
return pair(x, () => null);

}

4.4.4.7 Query Syntax Functions and Instantiation
We saw in section 4.4.4.1 that the driver loop first transforms an input string into
the JavaScript syntax representation. The input is designed to look like a JavaScript
expression so that we can use the parse function from section 4.1.2 and also to
support JavaScript notation in javascript_predicate. For example,

parse('job($x, list("computer", "wizard"));');

yields

list("application",
list("name", "job"),
list(list("name", "$x"),

list("application",
list("name", "list"),
list(list("literal", "computer"),

list("literal", "wizard")))))

The tag "application" indicates that syntactically, the query would be treated as a
function application in JavaScipt. The function unparse transforms the syntax back
into a string:

unparse(parse('job($x, list("computer", "wizard"));'));
'job($x, list("computer", "wizard"))'

In the query processor, we assumed a query-language-specific representation of as-
sertions, rules, and queries. The function convert_to_query_syntax transforms
the syntax representation into that representation. Using the same example,

convert_to_query_syntax(parse('job($x, list("computer", "wizard"));'));

yields

list("job", list("name", "$x"), list("computer", "wizard"))

4.4.4.7 Query Syntax Functions and Instantiation 439

Logic programming query system

Query-language-specific representation

JavaScript syntax representation

Assertions, rules, queries, as strings

type, contents, is_rule, first_conjunct, …

convert_to_query_syntax

parse unparse

Figure 4.8 Syntax abstraction in the query system.

Query-system functions such as add_rule_or_assertion in section 4.4.4.5 and
evaluate_query in section 4.4.4.2 operate on the query-language-specific repre-
sentation using selectors and predicates such as type, contents, is_rule, and
first_conjunct declared below. Figure 4.8 depicts the three abstraction barriers
used by the query system and how the transformation functions parse, unparse,
and convert_to_query_syntax bridge them.

Handling pattern variables
The predicate is_variable is used on the query-language-specific representation
during query processing and on the JavaScript syntax representation during instan-
tiation to identify names that start with a dollar sign. We assume there is a function
char_at that returns a string containing only the character of the given string at the
given position.75

function is_variable(exp) {
return is_name(exp) && char_at(symbol_of_name(exp), 0) === "$";

}

Unique variables are constructed during rule application (in section 4.4.4.4) by
means of the following functions. The unique identifier for a rule application is a
number, which is incremented each time a rule is applied.76

75. The actual way to get the string that contains the first character of a string s in JavaScript is
s.charAt(0).

76. Creating new variables with string concatenation and identifying variables by checking their
first character during query processing is somewhat wasteful. A more efficient solution would
mark pattern variables with a separate tag in the query-language-specific representation and use
pair construction rather than string concatenation to create new variables. We chose the less
efficient solution to simplify the presentation.

440 Chapter 4 Metalinguistic Abstraction

let rule_counter = 0;

function new_rule_application_id() {
rule_counter = rule_counter + 1;
return rule_counter;

}
function make_new_variable(variable, rule_application_id) {

return make_name(symbol_of_name(variable) + "_" +
stringify(rule_application_id));

}

The function convert_to_query_syntax
The function convert_to_query_syntax recursively transforms the JavaScript
syntax representation into the query-language-specific representation by simplify-
ing assertions, rules, and queries such that the symbol of a name in a function
expression of an application becomes a tag, except that if the symbol is "pair" or
"list", an (untagged) JavaScript pair or list is built. This means that convert_to_
query_syntax interprets applications of the constructors pair and list during the
transformation, and processing functions such as pattern_match of section 4.4.4.3
and unify_match of section 4.4.4.4 can operate directly on the intended pairs
and lists rather than on the syntax representation generated by the parser. The
(one-element) “argument” list of javascript_predicate remains unprocessed, as
explained below. A variable remains unchanged, and a literal is simplified to the
primitive value it contains.

function convert_to_query_syntax(exp) {
if (is_application(exp)) {

const function_symbol = symbol_of_name(function_expression(exp));
if (function_symbol === "javascript_predicate") {

return pair(function_symbol, arg_expressions(exp));
} else {

const processed_args = map(convert_to_query_syntax,
arg_expressions(exp));

return function_symbol === "pair"
? pair(head(processed_args), head(tail(processed_args)))
: function_symbol === "list"
? processed_args
: pair(function_symbol, processed_args);

}
} else if (is_variable(exp)) {

return exp;
} else { // exp is literal

return literal_value(exp);
}

}

An exception to this processing is javascript_predicate. Since the instan-
tiated JavaScript syntax representation of its predicate expression is passed to
evaluate of section 4.1.1, the original syntax representation coming from parse

4.4.4.7 Query Syntax Functions and Instantiation 441

needs to remain intact in the query-language-specific representation of the expres-
sion. In this example of section 4.4.1

and(salary($person, $amount), javascript_predicate($amount > 50000))

convert_to_query_syntax produces a data structure in which a JavaScript syntax
representation is embedded in a query-language-specific representation:

list("and",
list("salary", list("name", "$person"), list("name", "$amount")),
list("javascript_predicate",

list("binary_operator_combination",
">",
list("name", "$amount"),
list("literal", 50000))))

In order to evaluate the javascript_predicate subexpression of that processed
query, the function javascript_predicate in section 4.4.4.2 calls the function
instantiate_expression (below) on the embedded JavaScript syntax representa-
tion of $amount > 50000 to replace the variable list("name", "$amount") by a
literal, for example list("literal", 70000), that represents the primitive value
to which $amount is bound, here 70000. The JavaScript evaluator can evaluate the
instantiated predicate, which now represents 70000 > 50000.

Instantiating an expression
The function javascript_predicate of section 4.4.4.2 and the driver loop of
section 4.4.4.1 call instantiate_expression on an expression to obtain a copy
in which any variable in the expression is replaced by its value in a given frame. The
input and result expressions use the JavaScript syntax representation, so any value
that results from instantiating a variable needs to be converted from its form in the
binding to the JavaScript syntax representation.

function instantiate_expression(expression, frame) {
return is_variable(expression)

? convert(instantiate_term(expression, frame))
: is_pair(expression)
? pair(instantiate_expression(head(expression), frame),

instantiate_expression(tail(expression), frame))
: expression;

}

The function instantiate_term takes a variable, pair, or primitive value as first
argument and a frame as second argument and recursively replaces the variables in
the first argument by their values in the frame until a primitive value or an unbound
variable is reached. When the process encounters a pair, a new pair is constructed
whose parts are the instantiated versions of the original parts. For example, if $x is
bound to the pair [$y, 5] in a frame f as the result of unification, and $y is in turn
bound to 3, the result of applying instantiate_term to list("name", "$x")
and f is the pair [3, 5].

442 Chapter 4 Metalinguistic Abstraction

function instantiate_term(term, frame) {
if (is_variable(term)) {

const binding = binding_in_frame(term, frame);
return is_undefined(binding)

? term // leave unbound variable as is
: instantiate_term(binding_value(binding), frame);

} else if (is_pair(term)) {
return pair(instantiate_term(head(term), frame),

instantiate_term(tail(term), frame));
} else { // term is a primitive value

return term;
}

}

The function convert constructs a JavaScript syntax representation for a variable,
pair, or primitive value returned by instantiate_term. A pair in the original be-
comes an application of JavaScript’s pair constructor and a primitive value becomes
a literal.

function convert(term) {
return is_variable(term)

? term
: is_pair(term)
? make_application(make_name("pair"),

list(convert(head(term)),
convert(tail(term))))

: // term is a primitive value
make_literal(term);

}

To illustrate these three functions, consider what happens when the query

job($x, list("computer", "wizard"))

whose JavaScript syntax representation is given at the beginning of section 4.4.4.7,
is processed by the driver loop. Let’s say a frame g of the result stream binds the vari-
able $x to the pair ["Bitdiddle", $y] and the variable $y to the pair ["Ben", null].
Then

instantiate_term(list("name", "$x"), g)

returns the list

list("Bitdiddle", "Ben")

which convert transforms into

list("application",
list("name", "pair"),
list(list("literal", "Bitdiddle"),

list("application",
list("name", "pair"),
list(list("literal", "Ben"),

list("literal", null)))))

4.4.4.7 Query Syntax Functions and Instantiation 443

The result of instantiate_expression applied to the JavaScript syntax represen-
tation of the query and the frame g is:

list("application",
list("name", "job"),
list(list("application",

list("name", "pair"),
list(list("literal", "Bitdiddle"),

list("application",
list("name", "pair"),
list(list("literal", "Ben"),

list("literal", null))))),
list("application",

list("name", "list"),
list(list("literal", "computer"),

list("literal", "wizard")))))

The driver loop unparses this representation and displays it as:

'job(list("Bitdiddle", "Ben"), list("computer", "wizard"))'

The function unparse
The function unparse transforms a component given in the JavaScript syntax rep-
resentation into a string by applying the syntax rules of section 4.1.2. We describe
unparse only for those kinds of expressions that appear in the examples of sec-
tion 4.4.1, leaving statements and the remaining kinds of expressions as exercise 4.2.
A literal is transformed by stringifying its value, and a name is transformed
into its symbol. An application is formatted by unparsing the function expression,
which we can assume to be a name here, followed by the comma-separated argu-
ment expression strings enclosed in parentheses. Binary operator combinations are
formatted using infix notation.

function unparse(exp) {
return is_literal(exp)

? stringify(literal_value(exp))
: is_name(exp)
? symbol_of_name(exp)
: is_list_construction(exp)
? unparse(make_application(make_name("list"),

element_expressions(exp)))
: is_application(exp) && is_name(function_expression(exp))
? symbol_of_name(function_expression(exp)) +

"(" +
comma_separated(map(unparse, arg_expressions(exp))) +
")"

: is_binary_operator_combination(exp)
? "(" + unparse(first_operand(exp)) +
" " + operator_symbol(exp) +
" " + unparse(second_operand(exp)) +
")"

〈unparsing other kinds of JavaScript components〉
: error(exp, "unknown syntax -- unparse");

}

444 Chapter 4 Metalinguistic Abstraction

function comma_separated(strings) {
return accumulate((s, acc) => s + (acc === "" ? "" : ", " + acc),

"",
strings);

}

The function unparse would work fine without the clause

: is_list_construction(exp)
? unparse(make_application(make_name("list"),

element_expressions(exp)))

but the output string would be unnecessarily verbose in cases where pattern variables
are instantiated by lists. In the example above, where processing the query

job($x, list("computer", "wizard"))

yields a frame that binds $x to ["Bitdiddle", ["Ben", null]], unparse produces

'job(list("Bitdiddle", "Ben"), list("computer", "wizard"))'

However, without the clause it would produce

'job(pair("Bitdiddle", pair("Ben", null)), list("computer", "wizard"))'

which explicitly constructs the two pairs that make up the first list. To achieve the
more concise formatting used throughout section 4.4.1, we inserted the clause to
check if the expression constructs a list, in which case we format it as a single
application of list to the list of element expressions that we extract from the
expression. A list construction is the literal null or an application of pair whose
second argument is itself a list construction.

function is_list_construction(exp) {
return (is_literal(exp) && is_null(literal_value(exp))) ||

(is_application(exp) && is_name(function_expression(exp)) &&
symbol_of_name(function_expression(exp)) === "pair" &&
is_list_construction(head(tail(arg_expressions(exp)))));

}

Extracting the element expressions from a given list construction amounts to collect-
ing the first arguments of applications of pair until the literal null is reached.

function element_expressions(list_constr) {
return is_literal(list_constr)

? null // list_constr is literal null
: // list_constr is application of pair
pair(head(arg_expressions(list_constr)),

element_expressions(
head(tail(arg_expressions(list_constr)))));

}

4.4.4.7 Query Syntax Functions and Instantiation 445

Predicates and selectors for the query-language-specific representation
The functions type and contents, used by evaluate_query (section 4.4.4.2),
specify that a syntactic form of a query-language-specific representation is identified
by the string in its head. They are the same as the type_tag and contents functions
in section 2.4.2, except for the error message.

function type(exp) {
return is_pair(exp)

? head(exp)
: error(exp, "unknown expression type");

}
function contents(exp) {

return is_pair(exp)
? tail(exp)
: error(exp, "unknown expression contents");

}

The following functions, used by query_driver_loop (in section 4.4.4.1), spec-
ify that rules and assertions are added to the data base by an assert command,
which the function convert_to_query_syntax transforms into a pair of the form
["assert", rule-or-assertion]:

function is_assertion(exp) {
return type(exp) === "assert";

}
function assertion_body(exp) { return head(contents(exp)); }

Here are the declarations of the predicates and selectors for the and, or, not, and
javascript_predicate syntactic forms (section 4.4.4.2):

function is_empty_conjunction(exps) { return is_null(exps); }
function first_conjunct(exps) { return head(exps); }
function rest_conjuncts(exps) { return tail(exps); }

function is_empty_disjunction(exps) { return is_null(exps); }
function first_disjunct(exps) { return head(exps); }
function rest_disjuncts(exps) { return tail(exps); }

function negated_query(exps) { return head(exps); }

function javascript_predicate_expression(exps) { return head(exps); }

446 Chapter 4 Metalinguistic Abstraction

The following three functions define the query-language-specific representation
of rules:

function is_rule(assertion) {
return is_tagged_list(assertion, "rule");

}
function conclusion(rule) { return head(tail(rule)); }
function rule_body(rule) {

return is_null(tail(tail(rule)))
? list("always_true")
: head(tail(tail(rule)));

}

4.4.4.8 Frames and Bindings
Frames are represented as lists of bindings, which are variable-value pairs:

function make_binding(variable, value) {
return pair(variable, value);

}
function binding_variable(binding) {

return head(binding);
}
function binding_value(binding) {

return tail(binding);
}
function binding_in_frame(variable, frame) {

return assoc(variable, frame);
}
function extend(variable, value, frame) {

return pair(make_binding(variable, value), frame);
}

Exercise 4.68
Louis Reasoner wonders why the simple_query and disjoin functions (section 4.4.4.2)
are implemented using delayed expressions rather than being defined as follows:

function simple_query(query_pattern, frame_stream) {
return stream_flatmap(

frame =>
stream_append(find_assertions(query_pattern, frame),

apply_rules(query_pattern, frame)),
frame_stream);

}
function disjoin(disjuncts, frame_stream) {

return is_empty_disjunction(disjuncts)
? null
: interleave(

evaluate_query(first_disjunct(disjuncts), frame_stream),
disjoin(rest_disjuncts(disjuncts), frame_stream));

}

Can you give examples of queries where these simpler definitions would lead to undesir-
able behavior?

4.4.4.8 Frames and Bindings 447

Exercise 4.69
Why do disjoin and stream_flatmap interleave the streams rather than simply append
them? Give examples that illustrate why interleaving works better. (Hint: Why did we use
interleave in section 3.5.3?)

Exercise 4.70
Why does flatten_stream use a delayed expression in its body? What would be wrong
with defining it as follows:

function flatten_stream(stream) {
return is_null(stream)

? null
: interleave(head(stream),

flatten_stream(stream_tail(stream)));
}

Exercise 4.71
Alyssa P. Hacker proposes to use a simpler version of stream_flatmap in negate,
javascript_predicate, and find_assertions. She observes that the function that is
mapped over the frame stream in these cases always produces either the empty stream or a
singleton stream, so no interleaving is needed when combining these streams.

a. Fill in the missing expressions in Alyssa’s program.

function simple_stream_flatmap(fun, s) {
return simple_flatten(stream_map(fun, s));

}
function simple_flatten(stream) {

return stream_map(〈??〉,
stream_filter(〈??〉, stream));

}

b. Does the query system’s behavior change if we change it in this way?

Exercise 4.72
Implement for the query language a syntactic form called unique. Applictions of unique
should succeed if there is precisely one item in the data base satisfying a specified query.
For example,

unique(job($x, list("computer", "wizard")))

should print the one-item stream

unique(job(list("Bitdiddle", "Ben"), list("computer", "wizard")))

since Ben is the only computer wizard, and

unique(job($x, list("computer", "programmer")))

should print the empty stream, since there is more than one computer programmer. More-
over,

448 Chapter 4 Metalinguistic Abstraction

and(job($x, $j), unique(job($anyone, $j)))

should list all the jobs that are filled by only one person, and the people who fill them.
There are two parts to implementing unique. The first is to write a function that handles

this syntactic form, and the second is to make evaluate_query dispatch to that function.
The second part is trivial, since evaluate_query does its dispatching in a data-directed
way. If your function is called uniquely_asserted, all you need to do is

put("unique", "evaluate_query", uniquely_asserted);

and evaluate_query will dispatch to this function for every query whose type (head) is
the string "unique".

The real problem is to write the function uniquely_asserted. This should take as
input the contents (tail) of the unique query, together with a stream of frames. For each
frame in the stream, it should use evaluate_query to find the stream of all extensions to
the frame that satisfy the given query. Any stream that does not have exactly one item in it
should be eliminated. The remaining streams should be passed back to be accumulated into
one big stream that is the result of the unique query. This is similar to the implementation
of the not syntactic form.

Test your implementation by forming a query that lists all people who supervise
precisely one person.

Exercise 4.73
Our implementation of and as a series combination of queries (figure 4.6) is elegant, but it
is inefficient because in processing the second query of the and we must scan the data base
for each frame produced by the first query. If the data base has N elements, and a typical
query produces a number of output frames proportional to N (say N/k), then scanning the
data base for each frame produced by the first query will require N2/k calls to the pattern
matcher. Another approach would be to process the two clauses of the and separately, then
look for all pairs of output frames that are compatible. If each query produces N/k output
frames, then this means that we must perform N2/k2 compatibility checks—a factor of k
fewer than the number of matches required in our current method.

Devise an implementation of and that uses this strategy. You must implement a function
that takes two frames as inputs, checks whether the bindings in the frames are compatible,
and, if so, produces a frame that merges the two sets of bindings. This operation is similar
to unification.

Exercise 4.74
In section 4.4.3 we saw that not and javascript_predicate can cause the query lan-
guage to give “wrong” answers if these filtering operations are applied to frames in which
variables are unbound. Devise a way to fix this shortcoming. One idea is to perform the
filtering in a “delayed” manner by appending to the frame a “promise” to filter that is
fulfilled only when enough variables have been bound to make the operation possible. We
could wait to perform filtering until all other operations have been performed. However, for
efficiency’s sake, we would like to perform filtering as soon as possible so as to cut down
on the number of intermediate frames generated.

4.4.4.8 Frames and Bindings 449

Exercise 4.75
Redesign the query language as a nondeterministic program to be implemented using the
evaluator of section 4.3, rather than as a stream process. In this approach, each query will
produce a single answer (rather than the stream of all answers) and the user can type retry
to see more answers. You should find that much of the mechanism we built in this section
is subsumed by nondeterministic search and backtracking. You will probably also find,
however, that your new query language has subtle differences in behavior from the one
implemented here. Can you find examples that illustrate this difference?

Exercise 4.76
When we implemented the JavaScript evaluator in section 4.1, we saw how to use local
environments to avoid name conflicts between the parameters of functions. For example,
in evaluating

function square(x) {
return x * x;

}
function sum_of_squares(x, y) {

return square(x) + square(y);
}
sum_of_squares(3, 4);

there is no confusion between the x in square and the x in sum_of_squares, because
we evaluate the body of each function in an environment that is specially constructed to
contain bindings for the local names. In the query system, we used a different strategy to
avoid name conflicts in applying rules. Each time we apply a rule we rename the variables
with new names that are guaranteed to be unique. The analogous strategy for the JavaScript
evaluator would be to do away with local environments and simply rename the variables in
the body of a function each time we apply the function.

Implement for the query language a rule-application method that uses environments
rather than renaming. See if you can build on your environment structure to create con-
structs in the query language for dealing with large systems, such as the rule analog of
block-structured functions. Can you relate any of this to the problem of making deductions
in a context (e.g., “If I supposed that P were true, then I would be able to deduce A and B.”)
as a method of problem solving? (This problem is open-ended.)

5 Computing with Register Machines

My aim is to show that the heavenly machine is not a kind of divine, live
being, but a kind of clockwork (and he who believes that a clock has soul
attributes the maker’s glory to the work), insofar as nearly all the manifold
motions are caused by a most simple and material force, just as all motions of
the clock are caused by a single weight.

—Johannes Kepler (letter to Herwart von Hohenburg, 1605)

We began this book by studying processes and by describing processes in terms
of functions written in JavaScript. To explain the meanings of these functions, we
used a succession of models of evaluation: the substitution model of chapter 1,
the environment model of chapter 3, and the metacircular evaluator of chapter 4.
Our examination of the metacircular evaluator, in particular, dispelled much of the
mystery of how JavaScript-like languages are interpreted. But even the metacircular
evaluator leaves important questions unanswered, because it fails to elucidate the
mechanisms of control in a JavaScript system. For instance, the evaluator does not
explain how the evaluation of a subexpression manages to return a value to the
expression that uses this value. Also, the evaluator does not explain how some recur-
sive functions can generate iterative processes (that is, be evaluated using constant
space) whereas other recursive functions will generate recursive processes.1 This
chapter addresses both of these issues.

We will describe processes in terms of the step-by-step operation of a traditional
computer. Such a computer, or register machine, sequentially executes instructions
that manipulate the contents of a fixed set of storage elements called registers. A typi-
cal register-machine instruction applies a primitive operation to the contents of some
registers and assigns the result to another register. Our descriptions of processes exe-
cuted by register machines will look very much like “machine-language” programs
for traditional computers. However, instead of focusing on the machine language of
any particular computer, we will examine several JavaScript functions and design a
specific register machine to execute each function. Thus, we will approach our task
from the perspective of a hardware architect rather than that of a machine-language
computer programmer. In designing register machines, we will develop mechanisms
for implementing important programming constructs such as recursion. We will also
present a language for describing designs for register machines. In section 5.2 we
will implement a JavaScript program that uses these descriptions to simulate the
machines we design.

Most of the primitive operations of our register machines are very simple. For
example, an operation might add the numbers fetched from two registers, producing

1. With our metacircular evaluator, a recursive function always gives rise to a recursive process,
even when the process should be iterative according to the distinction of section 1.2.1. See
footnote 6 in section 4.1.1.

452 Chapter 5 Computing with Register Machines

a result to be stored into a third register. Such an operation can be performed by
easily described hardware. In order to deal with list structure, however, we will
also use the memory operations head, tail, and pair, which require an elaborate
storage-allocation mechanism. In section 5.3 we study their implementation in terms
of more elementary operations.

In section 5.4, after we have accumulated experience formulating simple func-
tions as register machines, we will design a machine that carries out the algorithm
described by the metacircular evaluator of section 4.1. This will fill in the gap in
our understanding of how JavaScript programs are interpreted, by providing an
explicit model for the mechanisms of control in the evaluator. In section 5.5 we
will study a simple compiler that translates JavaScript programs into sequences of
instructions that can be executed directly with the registers and operations of the
evaluator register machine.

5.1 Designing Register Machines
To design a register machine, we must design its data paths (registers and operations)
and the controller that sequences these operations. To illustrate the design of a sim-
ple register machine, let us examine Euclid’s Algorithm, which is used to compute
the greatest common divisor (GCD) of two integers. As we saw in section 1.2.5,
Euclid’s Algorithm can be carried out by an iterative process, as specified by the
following function:

function gcd(a, b) {
return b === 0 ? a : gcd(b, a % b);

}

A machine to carry out this algorithm must keep track of two numbers, a and b,
so let us assume that these numbers are stored in two registers with those names.
The basic operations required are testing whether the contents of register b is zero
and computing the remainder of the contents of register a divided by the contents of
register b. The remainder operation is a complex process, but assume for the moment
that we have a primitive device that computes remainders. On each cycle of the GCD
algorithm, the contents of register a must be replaced by the contents of register b,
and the contents of b must be replaced by the remainder of the old contents of
a divided by the old contents of b. It would be convenient if these replacements
could be done simultaneously, but in our model of register machines we will assume
that only one register can be assigned a new value at each step. To accomplish the
replacements, our machine will use a third “temporary” register, which we call t.
(First the remainder will be placed in t, then the contents of b will be placed in a,
and finally the remainder stored in t will be placed in b.)

We can illustrate the registers and operations required for this machine by using
the data-path diagram shown in figure 5.1. In this diagram, the registers (a, b, and t)
are represented by rectangles. Each way to assign a value to a register is indicated by
an arrow with a button—drawn as⊗— behind the head, pointing from the source of
data to the register. When pushed, the button allows the value at the source to “flow”
into the designated register. The label next to each button is the name we will use to
refer to the button. The names are arbitrary, and can be chosen to have mnemonic

5.1 Designing Register Machines 453

a b

t

rem

a<- b

t<- r

b<- t

0

=

Figure 5.1 Data paths for a GCD machine.

value (for example, a<-b denotes pushing the button that assigns the contents of
register b to register a). The source of data for a register can be another register
(as in the a<-b assignment), an operation result (as in the t<-r assignment), or a
constant (a built-in value that cannot be changed, represented in a data-path diagram
by a triangle containing the constant).

An operation that computes a value from constants and the contents of registers
is represented in a data-path diagram by a trapezoid containing a name for the op-
eration. For example, the box marked rem in figure 5.1 represents an operation that
computes the remainder of the contents of the registers a and b to which it is attached.
Arrows (without buttons) point from the input registers and constants to the box,
and arrows connect the operation’s output value to registers. A test is represented
by a circle containing a name for the test. For example, our GCD machine has an
operation that tests whether the contents of register b is zero. A test also has arrows
from its input registers and constants, but it has no output arrows; its value is used
by the controller rather than by the data paths. Overall, the data-path diagram shows
the registers and operations that are required for the machine and how they must be
connected. If we view the arrows as wires and the ⊗ buttons as switches, the data-
path diagram is very like the wiring diagram for a machine that could be constructed
from electrical components.

In order for the data paths to actually compute GCDs, the buttons must be pushed
in the correct sequence. We will describe this sequence in terms of a controller
diagram, as illustrated in figure 5.2. The elements of the controller diagram indicate
how the data-path components should be operated. The rectangular boxes in the
controller diagram identify data-path buttons to be pushed, and the arrows describe
the sequencing from one step to the next. The diamond in the diagram represents
a decision. One of the two sequencing arrows will be followed, depending on the
value of the data-path test identified in the diamond. We can interpret the controller
in terms of a physical analogy: Think of the diagram as a maze in which a marble
is rolling. When the marble rolls into a box, it pushes the data-path button that is
named by the box. When the marble rolls into a decision node (such as the test for
b= 0), it leaves the node on the path determined by the result of the indicated test.

454 Chapter 5 Computing with Register Machines

Taken together, the data paths and the controller completely describe a machine for
computing GCDs. We start the controller (the rolling marble) at the place marked
start, after placing numbers in registers a and b. When the controller reaches done,
we will find the value of the GCD in register a.

Exercise 5.1
Design a register machine to compute factorials using the iterative algorithm specified by
the following function. Draw data-path and controller diagrams for this machine.

function factorial(n) {
function iter(product, counter) {

return counter > n
? product
: iter(counter * product,

counter + 1);
}
return iter(1, 1);

}

5.1.1 A Language for Describing Register Machines
Data-path and controller diagrams are adequate for representing simple machines
such as GCD, but they are unwieldy for describing large machines such as a Java-
Script interpreter. To make it possible to deal with complex machines, we will create
a language that presents, in textual form, all the information given by the data-
path and controller diagrams. We will start with a notation that directly mirrors the
diagrams.

We define the data paths of a machine by describing the registers and the opera-
tions. To describe a register, we give it a name and specify the buttons that control
assignment to it. We give each of these buttons a name and specify the source of the
data that enters the register under the button’s control. (The source is a register, a
constant, or an operation.) To describe an operation, we give it a name and specify
its inputs (registers or constants).

We define the controller of a machine as a sequence of instructions together
with labels that identify entry points in the sequence. An instruction is one of the
following:

• The name of a data-path button to push to assign a value to a register. (This
corresponds to a box in the controller diagram.)

• A test instruction, which performs a specified test.
• A conditional branch (branch instruction) to a location indicated by a controller

label, based on the result of the previous test. (The test and branch together
correspond to a diamond in the controller diagram.) If the test is false, the con-
troller should continue with the next instruction in the sequence. Otherwise, the
controller should continue with the instruction after the label.

• An unconditional branch (go_to instruction) naming a controller label at which
to continue execution.

5.1.1 A Language for Describing Register Machines 455

start

yes
done

no

=

t<- r

a<- b

b<- t

Figure 5.2 Controller for a GCD machine.

The machine starts at the beginning of the controller instruction sequence and stops
when execution reaches the end of the sequence. Except when a branch changes the
flow of control, instructions are executed in the order in which they are listed.

Figure 5.3 shows the GCD machine described in this way. This example only
hints at the generality of these descriptions, since the GCD machine is a very simple
case: Each register has only one button, and each button and test is used only once
in the controller.

Unfortunately, it is difficult to read such a description. In order to understand the
controller instructions we must constantly refer back to the definitions of the button
names and the operation names, and to understand what the buttons do we may
have to refer to the definitions of the operation names. We will thus transform our
notation to combine the information from the data-path and controller descriptions
so that we see it all together.

To obtain this form of description, we will replace the arbitrary button and op-
eration names by the definitions of their behavior. That is, instead of saying (in the
controller) “Push button t<-r” and separately saying (in the data paths) “Button
t<-r assigns the value of the rem operation to register t” and “The rem operation’s
inputs are the contents of registers a and b,” we will say (in the controller) “Push
the button that assigns to register t the value of the rem operation on the contents
of registers a and b.” Similarly, instead of saying (in the controller) “Perform the =
test” and separately saying (in the data paths) “The = test operates on the contents
of register b and the constant 0,” we will say “Perform the = test on the contents of
register b and the constant 0.” We will omit the data-path description, leaving only
the controller sequence. Thus, the GCD machine is described as follows:

456 Chapter 5 Computing with Register Machines

controller(
list(
"test_b",
test(list(op("="), reg("b"), constant(0))),
branch(label("gcd_done")),
assign("t", list(op("rem"), reg("a"), reg("b"))),
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("test_b")),

"gcd_done"))

This form of description is easier to read than the kind illustrated in figure 5.3,
but it also has disadvantages:

• It is more verbose for large machines, because complete descriptions of the data-
path elements are repeated whenever the elements are mentioned in the controller
instruction sequence. (This is not a problem in the GCD example, because each
operation and button is used only once.) Moreover, repeating the data-path de-
scriptions obscures the actual data-path structure of the machine; it is not obvious
for a large machine how many registers, operations, and buttons there are and how
they are interconnected.

• Because the controller instructions in a machine definition look like JavaScript
expressions, it is easy to forget that they are not arbitrary JavaScript expressions.
They can notate only legal machine operations. For example, operations can op-
erate directly only on constants and the contents of registers, not on the results of
other operations.

In spite of these disadvantages, we will use this register-machine language through-
out this chapter, because we will be more concerned with understanding controllers
than with understanding the elements and connections in data paths. We should keep
in mind, however, that data-path design is crucial in designing real machines.

Exercise 5.2
Use the register-machine language to describe the iterative factorial machine of exer-
cise 5.1.

Actions
Let us modify the GCD machine so that we can type in the numbers whose GCD we
want and get the answer printed. We will not discuss how to make a machine that
can read and print, but will assume (as we do when we use prompt and display in
JavaScript) that they are available as primitive operations.2

The operation prompt is like the operations we have been using in that it pro-
duces a value that can be stored in a register. But prompt does not take inputs from
any registers; its value depends on something that happens outside the parts of the

2. This assumption glosses over a great deal of complexity. Implementation of reading and
printing requires significant effort, for example to handle character encodings for different
languages.

5.1.1 A Language for Describing Register Machines 457

data_paths(
registers(

list(
pair(name("a"),

buttons(name("a<-b"), source(register("b")))),
pair(name("b"),

buttons(name("b<-t"), source(register("t")))),
pair(name("t"),

buttons(name("t<-r"), source(operation("rem")))))),
operations(
list(
pair(name("rem"),

inputs(register("a"), register("b"))),
pair(name("="),

inputs(register("b"), constant(0))))));

controller(
list(

"test_b", // label
test("="), // test
branch(label("gcd_done")), // conditional branch
"t<-r", // button push
"a<-b", // button push
"b<-t", // button push
go_to(label("test_b")), // unconditional branch

"gcd_done")); // label

Figure 5.3 A specification of the GCD machine.

machine we are designing. We will allow our machine’s operations to have such
behavior, and thus will draw and notate the use of prompt just as we do any other
operation that computes a value.

The operation display, on the other hand, differs from the operations we have
been using in a fundamental way: It does not produce an output value to be stored
in a register. Though it has an effect, this effect is not on a part of the machine we
are designing. We will refer to this kind of operation as an action. We will represent
an action in a data-path diagram just as we represent an operation that computes
a value—as a trapezoid that contains the name of the action. Arrows point to the
action box from any inputs (registers or constants). We also associate a button with
the action. Pushing the button makes the action happen. To make a controller push
an action button we use a new kind of instruction called perform. Thus, the action
of printing the contents of register a is represented in a controller sequence by the
instruction

perform(list(op("display"), reg("a")))

Figure 5.4 shows the data paths and controller for the new GCD machine. Instead
of having the machine stop after printing the answer, we have made it start over, so
that it repeatedly reads a pair of numbers, computes their GCD, and prints the result.
This structure is like the driver loops we used in the interpreters of chapter 4.

458 Chapter 5 Computing with Register Machines

prompt

a b

t

rem

a<- b

t<- r

b<- t

0

=

display

a<- rd b<- rd

P

controller(
list(
"gcd_loop",
assign("a", list(op("prompt"))),
assign("b", list(op("prompt"))),

"test_b",
test(list(op("="), reg("b"), constant(0))),
branch(label("gcd_done")),
assign("t", list(op("rem"), reg("a"), reg("b"))),
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("test_b")),

"gcd_done",
perform(list(op("display"), reg("a"))),
go_to(label("gcd_loop"))))

Figure 5.4 A GCD machine that reads inputs and prints results.

5.1.2 Abstraction in Machine Design
We will often define a machine to include “primitive” operations that are actually
very complex. For example, in sections 5.4 and 5.5 we will treat JavaScript’s envi-
ronment manipulations as primitive. Such abstraction is valuable because it allows
us to ignore the details of parts of a machine so that we can concentrate on other
aspects of the design. The fact that we have swept a lot of complexity under the rug,
however, does not mean that a machine design is unrealistic. We can always replace
the complex “primitives” by simpler primitive operations.

5.1.3 Subroutines 459

Consider the GCD machine. The machine has an instruction that computes the
remainder of the contents of registers a and b and assigns the result to register t. If
we want to construct the GCD machine without using a primitive remainder oper-
ation, we must specify how to compute remainders in terms of simpler operations,
such as subtraction. Indeed, we can write a JavaScript function that finds remainders
in this way:

function remainder(n, d) {
return n < d

? n
: remainder(n - d, d);

}

We can thus replace the remainder operation in the GCD machine’s data paths with
a subtraction operation and a comparison test. Figure 5.5 shows the data paths and
controller for the elaborated machine. The instruction

assign("t", list(op("rem"), reg("a"), reg("b")))

in the GCD controller definition is replaced by a sequence of instructions that
contains a loop, as shown in figure 5.6.

Exercise 5.3
Design a machine to compute square roots using Newton’s method, as described in section
1.1.7 and implemented with the following code in section 1.1.8:

function sqrt(x) {
function is_good_enough(guess) {

return math_abs(square(guess) - x) < 0.001;
}
function improve(guess) {

return average(guess, x / guess);
}
function sqrt_iter(guess) {

return is_good_enough(guess)
? guess
: sqrt_iter(improve(guess));

}
return sqrt_iter(1);

}

Begin by assuming that is_good_enough and improve operations are available as prim-
itives. Then show how to expand these in terms of arithmetic operations. Describe each
version of the sqrt machine design by drawing a data-path diagram and writing a controller
definition in the register-machine language.

5.1.3 Subroutines
When designing a machine to perform a computation, we would often prefer to
arrange for components to be shared by different parts of the computation rather
than duplicate the components. Consider a machine that includes two GCD compu-
tations—one that finds the GCD of the contents of registers a and b and one that finds

460 Chapter 5 Computing with Register Machines

a<- b

t<- a b<- t

t<- d

a b

t

--

<
0

=

=

start

yes
done

no

<
no

yes

t<- a

a<- b

b<- t

t<- d

Figure 5.5 Data paths and controller for the elaborated GCD machine.

the GCD of the contents of registers c and d. We might start by assuming we have a
primitive gcd operation, then expand the two instances of gcd in terms of more prim-
itive operations. Figure 5.7 shows just the GCD portions of the resulting machine’s
data paths, without showing how they connect to the rest of the machine. The figure
also shows the corresponding portions of the machine’s controller sequence.

This machine has two remainder operation boxes and two boxes for testing
equality. If the duplicated components are complicated, as is the remainder box, this
will not be an economical way to build the machine. We can avoid duplicating the
data-path components by using the same components for both GCD computations,
provided that doing so will not affect the rest of the larger machine’s computation.
If the values in registers a and b are not needed by the time the controller gets to
gcd_2 (or if these values can be moved to other registers for safekeeping), we can

5.1.3 Subroutines 461

controller(
list(

"test_b",
test(list(op("="), reg("b"), constant(0))),
branch(label("gcd_done")),
assign("t", reg("a")),

"rem_loop",
test(list(op("<"), reg("t"), reg("b"))),
branch(label("rem_done")),
assign("t", list(op("-"), reg("t"), reg("b"))),
go_to(label("rem_loop")),

"rem_done",
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("test_b")),

"gcd_done"))

Figure 5.6 Controller instruction sequence for the GCD machine in figure 5.5.

change the machine so that it uses registers a and b, rather than registers c and d, in
computing the second GCD as well as the first. If we do this, we obtain the controller
sequence shown in figure 5.8.

We have removed the duplicate data-path components (so that the data paths are
again as in figure 5.1), but the controller now has two GCD sequences that differ
only in their entry-point labels. It would be better to replace these two sequences by
branches to a single sequence—a gcd subroutine—at the end of which we branch
back to the correct place in the main instruction sequence. We can accomplish this
as follows: Before branching to gcd, we place a distinguishing value (such as 0
or 1) into a special register, continue. At the end of the gcd subroutine we return
either to after_gcd_1 or to after_gcd_2, depending on the value of the continue
register. Figure 5.9 shows the relevant portion of the resulting controller sequence,
which includes only a single copy of the gcd instructions.

This is a reasonable approach for handling small problems, but it would be awk-
ward if there were many instances of GCD computations in the controller sequence.
To decide where to continue executing after the gcd subroutine, we would need
tests in the data paths and branch instructions in the controller for all the places
that use gcd. A more powerful method for implementing subroutines is to have the
continue register hold the label of the entry point in the controller sequence at
which execution should continue when the subroutine is finished. Implementing this
strategy requires a new kind of connection between the data paths and the controller
of a register machine: There must be a way to assign to a register a label in the
controller sequence in such a way that this value can be fetched from the register
and used to continue execution at the designated entry point.

To reflect this ability, we will extend the assign instruction of the register-
machine language to allow a register to be assigned as value a label from the
controller sequence (as a special kind of constant). We will also extend the go_to
instruction to allow execution to continue at the entry point described by the con-
tents of a register rather than only at an entry point described by a constant label.

462 Chapter 5 Computing with Register Machines

a b

t

rem

a<- b

t<- r

b<- t

0

=

c d

s

rem

c<- d

s<- r

d<- s

0

=

"gcd_1",
 test(list(op("="),
 reg("b"),
 constant(0))),
 branch(label("after_gcd_1")),
 assign("t", list(op("rem"),
 reg("a"),
 reg("b"))),
 assign("a", reg("b")),
 assign("b", reg("t")),
 go_to(label("gcd_1")),
"after_gcd_1",

..

.

"gcd_2",
 test(list(op("="),
 reg("d"),
 constant(0))),
 branch(label("after_gcd_2")),
 assign("s", list(op("rem"),
 reg("c"),
 reg("d"))),
 assign("c", reg("d")),
 assign("d", reg("s")),
 go_to(label("gcd_2")),
"after_gcd_2"

Figure 5.7 Portions of the data paths and controller sequence for a machine with two
GCD computations.

Using these new constructs we can terminate the gcd subroutine with a branch to
the location stored in the continue register. This leads to the controller sequence
shown in figure 5.10.

A machine with more than one subroutine could use multiple continuation regis-
ters (e.g., gcd_continue, factorial_continue) or we could have all subroutines
share a single continue register. Sharing is more economical, but we must be care-
ful if we have a subroutine (sub1) that calls another subroutine (sub2). Unless sub1
saves the contents of continue in some other register before setting up continue
for the call to sub2, sub1 will not know where to go when it is finished. The mecha-
nism developed in the next section to handle recursion also provides a better solution
to this problem of nested subroutine calls.

5.1.3 Subroutines 463

"gcd_1",
test(list(op("="), reg("b"), constant(0))),
branch(label("after_gcd_1")),
assign("t", list(op("rem"), reg("a"), reg("b"))),
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("gcd_1")),

"after_gcd_1",
...

"gcd_2",
test(list(op("="), reg("b"), constant(0))),
branch(label("after_gcd_2")),
assign("t", list(op("rem"), reg("a"), reg("b"))),
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("gcd_2")),

"after_gcd_2"

Figure 5.8 Portions of the controller sequence for a machine that uses the same data-
path components for two different GCD computations.

"gcd",
test(list(op("="), reg("b"), constant(0))),
branch(label("gcd_done")),
assign("t", list(op("rem"), reg("a"), reg("b"))),
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("gcd")),

"gcd_done",
test(list(op("="), reg("continue"), constant(0))),
branch(label("after_gcd_1")),
go_to(label("after_gcd_2")),
...
// Before branching to gcd from the first place where
// it is needed, we place 0 in the continue register
assign("continue", constant(0)),
go_to(label("gcd")),

"after_gcd_1",
...
// Before the second use of gcd, we place 1 in the continue register
assign("continue", constant(1)),
go_to(label("gcd")),

"after_gcd_2"

Figure 5.9 Using a continue register to avoid the duplicate controller sequence in
figure 5.8.

464 Chapter 5 Computing with Register Machines

"gcd",
test(list(op("="), reg("b"), constant(0))),
branch(label("gcd_done")),
assign("t", list(op("rem"), reg("a"), reg("b"))),
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("gcd")),

"gcd_done",
go_to(reg("continue")),
...
// Before calling gcd, we assign to continue
// the label to which gcd should return.
assign("continue", label("after_gcd_1"))),
go_to(label("gcd")),

"after_gcd_1",
...
// Here is the second call to gcd, with a different continuation.
assign("continue", label("after_gcd_2")),
go_to(label("gcd")),

"after_gcd_2"

Figure 5.10 Assigning labels to the continue register simplifies and generalizes the
strategy shown in figure 5.9.

5.1.4 Using a Stack to Implement Recursion
With the ideas illustrated so far, we can implement any iterative process by specify-
ing a register machine that has a register corresponding to each state variable of the
process. The machine repeatedly executes a controller loop, changing the contents
of the registers, until some termination condition is satisfied. At each point in the
controller sequence, the state of the machine (representing the state of the iterative
process) is completely determined by the contents of the registers (the values of the
state variables).

Implementing recursive processes, however, requires an additional mechanism.
Consider the following recursive method for computing factorials, which we first
examined in section 1.2.1:

function factorial(n) {
return n === 1

? 1
: n * factorial(n - 1);

}

As we see from the function, computing n! requires computing (n – 1)!. Our GCD
machine, modeled on the function

function gcd(a, b) {
return b === 0 ? a : gcd(b, a % b);

}

5.1.4 Using a Stack to Implement Recursion 465

similarly had to compute another GCD. But there is an important difference between
the gcd function, which reduces the original computation to a new GCD computa-
tion, and factorial, which requires computing another factorial as a subproblem.
In GCD, the answer to the new GCD computation is the answer to the original
problem. To compute the next GCD, we simply place the new arguments in the
input registers of the GCD machine and reuse the machine’s data paths by executing
the same controller sequence. When the machine is finished solving the final GCD
problem, it has completed the entire computation.

In the case of factorial (or any recursive process) the answer to the new factorial
subproblem is not the answer to the original problem. The value obtained for (n – 1)!
must be multiplied by n to get the final answer. If we try to imitate the GCD design,
and solve the factorial subproblem by decrementing the n register and rerunning the
factorial machine, we will no longer have available the old value of n by which
to multiply the result. We thus need a second factorial machine to work on the
subproblem. This second factorial computation itself has a factorial subproblem,
which requires a third factorial machine, and so on. Since each factorial machine
contains another factorial machine within it, the total machine contains an infinite
nest of similar machines and hence cannot be constructed from a fixed, finite number
of parts.

Nevertheless, we can implement the factorial process as a register machine if we
can arrange to use the same components for each nested instance of the machine.
Specifically, the machine that computes n! should use the same components to work
on the subproblem of computing (n – 1)!, on the subproblem for (n – 2)!, and so on.
This is plausible because, although the factorial process dictates that an unbounded
number of copies of the same machine are needed to perform a computation, only
one of these copies needs to be active at any given time. When the machine en-
counters a recursive subproblem, it can suspend work on the main problem, reuse
the same physical parts to work on the subproblem, then continue the suspended
computation.

In the subproblem, the contents of the registers will be different than they were
in the main problem. (In this case the n register is decremented.) In order to be
able to continue the suspended computation, the machine must save the contents of
any registers that will be needed after the subproblem is solved so that these can
be restored to continue the suspended computation. In the case of factorial, we will
save the old value of n, to be restored when we are finished computing the factorial
of the decremented n register.3

Since there is no a priori limit on the depth of nested recursive calls, we may
need to save an arbitrary number of register values. These values must be restored
in the reverse of the order in which they were saved, since in a nest of recursions

3. One might argue that we don’t need to save the old n; after we decrement it and solve
the subproblem, we could simply increment it to recover the old value. Although this strategy
works for factorial, it cannot work in general, since the old value of a register cannot always be
computed from the new one.

466 Chapter 5 Computing with Register Machines

the last subproblem to be entered is the first to be finished. This dictates the use of
a stack, or “last in, first out” data structure, to save register values. We can extend
the register-machine language to include a stack by adding two kinds of instructions:
Values are placed on the stack using a save instruction and restored from the stack
using a restore instruction. After a sequence of values has been saved on the stack,
a sequence of restores will retrieve these values in reverse order.4

With the aid of the stack, we can reuse a single copy of the factorial machine’s
data paths for each factorial subproblem. There is a similar design issue in reusing
the controller sequence that operates the data paths. To reexecute the factorial
computation, the controller cannot simply loop back to the beginning, as with an
iterative process, because after solving the (n – 1)! subproblem the machine must
still multiply the result by n. The controller must suspend its computation of n!,
solve the (n – 1)! subproblem, then continue its computation of n!. This view of the
factorial computation suggests the use of the subroutine mechanism described in
section 5.1.3, which has the controller use a continue register to transfer to the
part of the sequence that solves a subproblem and then continue where it left off
on the main problem. We can thus make a factorial subroutine that returns to the
entry point stored in the continue register. Around each subroutine call, we save
and restore continue just as we do the n register, since each “level” of the factorial
computation will use the same continue register. That is, the factorial subroutine
must put a new value in continue when it calls itself for a subproblem, but it will
need the old value in order to return to the place that called it to solve a subproblem.

Figure 5.11 shows the data paths and controller for a machine that implements
the recursive factorial function. The machine has a stack and three registers,
called n, val, and continue. To simplify the data-path diagram, we have not named
the register-assignment buttons, only the stack-operation buttons (sc and sn to save
registers, rc and rn to restore registers). To operate the machine, we put in register
n the number whose factorial we wish to compute and start the machine. When
the machine reaches fact_done, the computation is finished and the answer will
be found in the val register. In the controller sequence, n and continue are saved
before each recursive call and restored upon return from the call. Returning from a
call is accomplished by branching to the location stored in continue. The register
continue is initialized when the machine starts so that the last return will go to
fact_done. The val register, which holds the result of the factorial computation,
is not saved before the recursive call, because the old contents of val is not useful
after the subroutine returns. Only the new value, which is the value produced by the
subcomputation, is needed.

Although in principle the factorial computation requires an infinite machine, the
machine in figure 5.11 is actually finite except for the stack, which is potentially
unbounded. Any particular physical implementation of a stack, however, will be
of finite size, and this will limit the depth of recursive calls that can be handled
by the machine. This implementation of factorial illustrates the general strategy for
realizing recursive algorithms as ordinary register machines augmented by stacks.
When a recursive subproblem is encountered, we save on the stack the registers

4. In section 5.3 we will see how to implement a stack in terms of more primitive operations.

5.1.4 Using a Stack to Implement Recursion 467

after_fact fact_done
1

=

val n stack

continue* --

sn

rn
scrc

controller

controller(
list(

assign("continue", label("fact_done")), // set up final return address
"fact_loop",
test(list(op("="), reg("n"), constant(1))),
branch(label("base_case")),
// Set up for recursive call by saving n and continue.
// Set up continue so that the computation will continue
// at after_fact when the subroutine returns.
save("continue"),
save("n"),
assign("n", list(op("-"), reg("n"), constant(1))),
assign("continue", label("after_fact")),
go_to(label("fact_loop")),

"after_fact",
restore("n"),
restore("continue"),
assign("val", // val now contains n(n – 1)!

list(op("*"), reg("n"), reg("val"))),
go_to(reg("continue")), // return to caller

"base_case",
assign("val", constant(1)), // base case: 1! = 1
go_to(reg("continue")), // return to caller

"fact_done"))

Figure 5.11 A recursive factorial machine.

whose current values will be required after the subproblem is solved, solve the
recursive subproblem, then restore the saved registers and continue execution on
the main problem. The continue register must always be saved. Whether there are
other registers that need to be saved depends on the particular machine, since not all
recursive computations need the original values of registers that are modified during
solution of the subproblem (see exercise 5.4).

468 Chapter 5 Computing with Register Machines

A double recursion
Let us examine a more complex recursive process, the tree-recursive computation of
the Fibonacci numbers, which we introduced in section 1.2.2:

function fib(n) {
return n === 0

? 0
: n === 1
? 1
: fib(n - 1) + fib(n - 2);

}

Just as with factorial, we can implement the recursive Fibonacci computation as a
register machine with registers n, val, and continue. The machine is more complex
than the one for factorial, because there are two places in the controller sequence
where we need to perform recursive calls—once to compute Fib(n – 1) and once to
compute Fib(n – 2). To set up for each of these calls, we save the registers whose
values will be needed later, set the n register to the number whose Fib we need to
compute recursively (n – 1 or n – 2), and assign to continue the entry point in the
main sequence to which to return (afterfib_n_1 or afterfib_n_2, respectively).
We then go to fib_loop. When we return from the recursive call, the answer is in
val. Figure 5.12 shows the controller sequence for this machine.

Exercise 5.4
Specify register machines that implement each of the following functions. For each ma-
chine, write a controller instruction sequence and draw a diagram showing the data
paths.

a. Recursive exponentiation:

function expt(b, n) {
return n === 0

? 1
: b * expt(b, n - 1);

}

b. Iterative exponentiation:

function expt(b, n) {
function expt_iter(counter, product) {

return counter === 0
? product
: expt_iter(counter - 1, b * product);

}
return expt_iter(n, 1);

}

5.1.4 Using a Stack to Implement Recursion 469

controller(
list(

assign("continue", label("fib_done")),
"fib_loop",
test(list(op("<"), reg("n"), constant(2))),
branch(label("immediate_answer")),
// set up to compute Fib(n – 1)
save("continue"),
assign("continue", label("afterfib_n_1")),
save("n"), // save old value of n
assign("n", list(op("-"), reg("n"), constant(1))), // clobber n to n – 1
go_to(label("fib_loop")), // perform recursive call

"afterfib_n_1", // upon return, val contains Fib(n – 1)
restore("n"),
restore("continue"),
// set up to compute Fib(n – 2)
assign("n", list(op("-"), reg("n"), constant(2))),
save("continue"),
assign("continue", label("afterfib_n_2")),
save("val"), // save Fib(n – 1)
go_to(label("fib_loop")),

"afterfib_n_2", // upon return, val contains Fib(n – 2)
assign("n", reg("val")), // n now contains Fib(n – 2)
restore("val"), // val now contains Fib(n – 1)
restore("continue"),
assign("val", // Fib(n – 1) + Fib(n – 2)

list(op("+"), reg("val"), reg("n"))),
go_to(reg("continue")), // return to caller, answer in val

"immediate_answer",
assign("val", reg("n")), // base case: Fib(n) = n
go_to(reg("continue")),

"fib_done"))

Figure 5.12 Controller for a machine to compute Fibonacci numbers.

Exercise 5.5
Hand-simulate the factorial and Fibonacci machines, using some nontrivial input (requiring
execution of at least one recursive call). Show the contents of the stack at each significant
point in the execution.

Exercise 5.6
Ben Bitdiddle observes that the Fibonacci machine’s controller sequence has an extra save
and an extra restore, which can be removed to make a faster machine. Where are these
instructions?

470 Chapter 5 Computing with Register Machines

5.1.5 Instruction Summary
A controller instruction in our register-machine language has one of the following
forms, where each inputi is reg(register-name) or constant(constant-value).

These instructions were introduced in section 5.1.1:

assign(register-name, reg(register-name))

assign(register-name, constant(constant-value))

assign(register-name, list(op(operation-name), input1, . . ., inputn))

perform(list(op(operation-name), input1, . . ., inputn))

test(list(op(operation-name), input1, . . ., inputn))

branch(label(label-name))

go_to(label(label-name))

The use of registers to hold labels was introduced in section 5.1.3:

assign(register-name, label(label-name))

go_to(reg(register-name))

Instructions to use the stack were introduced in section 5.1.4:

save(register-name)

restore(register-name)

The only kind of constant-value we have seen so far is a number, but later we
will also use strings and lists. For example, constant("abc") is the string "abc",
constant(null) is the empty list, and constant(list("a", "b", "c")) is the
list list("a", "b", "c").

5.2 A Register-Machine Simulator
In order to gain a good understanding of the design of register machines, we must
test the machines we design to see if they perform as expected. One way to test a
design is to hand-simulate the operation of the controller, as in exercise 5.5. But this
is extremely tedious for all but the simplest machines. In this section we construct
a simulator for machines described in the register-machine language. The simulator
is a JavaScript program with four interface functions. The first uses a description of
a register machine to construct a model of the machine (a data structure whose parts
correspond to the parts of the machine to be simulated), and the other three allow us
to simulate the machine by manipulating the model:

• make_machine(register-names, operations, controller)
constructs and returns a model of the machine with the given registers, operations,
and controller.

• set_register_contents(machine-model, register-name, value)
stores a value in a simulated register in the given machine.

5.2 A Register-Machine Simulator 471

• get_register_contents(machine-model, register-name)
returns the contents of a simulated register in the given machine.

• start(machine-model)
simulates the execution of the given machine, starting from the beginning of the
controller sequence and stopping when it reaches the end of the sequence.

As an example of how these functions are used, we can define gcd_machine to
be a model of the GCD machine of section 5.1.1 as follows:

const gcd_machine =
make_machine(

list("a", "b", "t"),
list(list("rem", (a, b) => a % b),

list("=", (a, b) => a === b)),
list(
"test_b",
test(list(op("="), reg("b"), constant(0))),
branch(label("gcd_done")),
assign("t", list(op("rem"), reg("a"), reg("b"))),
assign("a", reg("b")),
assign("b", reg("t")),
go_to(label("test_b")),

"gcd_done"));

The first argument to make_machine is a list of register names. The next argument is
a table (a list of two-element lists) that pairs each operation name with a JavaScript
function that implements the operation (that is, produces the same output value given
the same input values). The last argument specifies the controller as a list of labels
and machine instructions, as in section 5.1.

To compute GCDs with this machine, we set the input registers, start the machine,
and examine the result when the simulation terminates:

set_register_contents(gcd_machine, "a", 206);
"done"

set_register_contents(gcd_machine, "b", 40);
"done"

start(gcd_machine);
"done"

get_register_contents(gcd_machine, "a");
2

This computation will run much more slowly than a gcd function written in Java-
Script, because we will simulate low-level machine instructions, such as assign, by
much more complex operations.

Exercise 5.7
Use the simulator to test the machines you designed in exercise 5.4.

472 Chapter 5 Computing with Register Machines

5.2.1 The Machine Model
The machine model generated by make_machine is represented as a function with
local state using the message-passing techniques developed in chapter 3. To build
this model, make_machine begins by calling the function make_new_machine to
construct the parts of the machine model that are common to all register machines.
This basic machine model constructed by make_new_machine is essentially a con-
tainer for some registers and a stack, together with an execution mechanism that
processes the controller instructions one by one.

The function make_machine then extends this basic model (by sending it mes-
sages) to include the registers, operations, and controller of the particular machine
being defined. First it allocates a register in the new machine for each of the supplied
register names and installs the designated operations in the machine. Then it uses an
assembler (described below in section 5.2.2) to transform the controller list into
instructions for the new machine and installs these as the machine’s instruction
sequence. The function make_machine returns as its value the modified machine
model.

function make_machine(register_names, ops, controller) {
const machine = make_new_machine();
for_each(register_name =>

machine("allocate_register")(register_name),
register_names);

machine("install_operations")(ops);
machine("install_instruction_sequence")

(assemble(controller, machine));
return machine;

}

Registers
We will represent a register as a function with local state, as in chapter 3. The
function make_register creates a register that holds a value that can be accessed
or changed:

function make_register(name) {
let contents = "*unassigned*";
function dispatch(message) {

return message === "get"
? contents
: message === "set"
? value => { contents = value; }
: error(message, "unknown request -- make_register");

}
return dispatch;

}

The following functions are used to access registers:

5.2.1 The Machine Model 473

function get_contents(register) {
return register("get");

}
function set_contents(register, value) {

return register("set")(value);
}

The stack
We can also represent a stack as a function with local state. The function make_
stack creates a stack whose local state consists of a list of the items on the stack.
A stack accepts requests to push an item onto the stack, to pop the top item off the
stack and return it, and to initialize the stack to empty.

function make_stack() {
let stack = null;
function push(x) {

stack = pair(x, stack);
return "done";

}
function pop() {

if (is_null(stack)) {
error("empty stack -- pop");

} else {
const top = head(stack);
stack = tail(stack);
return top;

}
}
function initialize() {

stack = null;
return "done";

}
function dispatch(message) {

return message === "push"
? push
: message === "pop"
? pop()
: message === "initialize"
? initialize()
: error(message, "unknown request -- stack");

}
return dispatch;

}

The following functions are used to access stacks:

function pop(stack) {
return stack("pop");

}
function push(stack, value) {

return stack("push")(value);
}

474 Chapter 5 Computing with Register Machines

The basic machine
The make_new_machine function, shown in figure 5.13, constructs an object whose
local state consists of a stack, an initially empty instruction sequence, a list of oper-
ations that initially contains an operation to initialize the stack, and a register table
that initially contains two registers, named flag and pc (for “program counter”).
The internal function allocate_register adds new entries to the register table,
and the internal function lookup_register looks up registers in the table.

The flag register is used to control branching in the simulated machine. Our
test instructions set the contents of flag to the result of the test (true or false). Our
branch instructions decide whether or not to branch by examining the contents of
flag.

The pc register determines the sequencing of instructions as the machine runs.
This sequencing is implemented by the internal function execute. In the simulation
model, each machine instruction is a data structure that includes a function of no
arguments, called the instruction execution function, such that calling this function
simulates executing the instruction. As the simulation runs, pc points to the place
in the instruction sequence beginning with the next instruction to be executed. The
function execute gets that instruction, executes it by calling the instruction execu-
tion function, and repeats this cycle until there are no more instructions to execute
(i.e., until pc points to the end of the instruction sequence).

As part of its operation, each instruction execution function modifies pc to indi-
cate the next instruction to be executed. The instructions branch and go_to change
pc to point to the new destination. All other instructions simply advance pc, making
it point to the next instruction in the sequence. Observe that each call to execute
calls execute again, but this does not produce an infinite loop because running the
instruction execution function changes the contents of pc.

The function make_new_machine returns a dispatch function that implements
message-passing access to the internal state. Notice that starting the machine is
accomplished by setting pc to the beginning of the instruction sequence and calling
execute.

For convenience, we provide an alternate interface to a machine’s start oper-
ation, as well as functions to set and examine register contents, as specified at the
beginning of section 5.2:

function start(machine) {
return machine("start");

}
function get_register_contents(machine, register_name) {

return get_contents(get_register(machine, register_name));
}
function set_register_contents(machine, register_name, value) {

set_contents(get_register(machine, register_name), value);
return "done";

}

These functions (and many functions in sections 5.2.2 and 5.2.3) use the following
to look up the register with a given name in a given machine:

function get_register(machine, reg_name) {
return machine("get_register")(reg_name);

}

5.2.1 The Machine Model 475

function make_new_machine() {
const pc = make_register("pc");
const flag = make_register("flag");
const stack = make_stack();
let the_instruction_sequence = null;
let the_ops = list(list("initialize_stack", () => stack("initialize")));
let register_table = list(list("pc", pc), list("flag", flag));
function allocate_register(name) {

if (is_undefined(assoc(name, register_table))) {
register_table = pair(list(name, make_register(name)),

register_table);
} else {

error(name, "multiply defined register");
}
return "register allocated";

}
function lookup_register(name) {

const val = assoc(name, register_table);
return is_undefined(val)

? error(name, "unknown register")
: head(tail(val));

}
function execute() {

const insts = get_contents(pc);
if (is_null(insts)) {

return "done";
} else {

inst_execution_fun(head(insts))();
return execute();

}
}
function dispatch(message) {

function start() {
set_contents(pc, the_instruction_sequence);
return execute();

}
return message === "start"

? start()
: message === "install_instruction_sequence"
? seq => { the_instruction_sequence = seq; }
: message === "allocate_register"
? allocate_register
: message === "get_register"
? lookup_register
: message === "install_operations"
? ops => { the_ops = append(the_ops, ops); }
: message === "stack"
? stack
: message === "operations"
? the_ops
: error(message, "unknown request -- machine");

}
return dispatch;

}

Figure 5.13 The make_new_machine function implements the basic machine model.

476 Chapter 5 Computing with Register Machines

5.2.2 The Assembler
The assembler transforms the sequence of controller instructions for a machine into
a corresponding list of machine instructions, each with its execution function. Over-
all, the assembler is much like the evaluators we studied in chapter 4—there is an
input language (in this case, the register-machine language) and we must perform
an appropriate action for each type of component in the language.

The technique of producing an execution function for each instruction is just
what we used in section 4.1.7 to speed up the evaluator by separating analysis
from runtime execution. As we saw in chapter 4, much useful analysis of JavaScript
expressions could be performed without knowing the actual values of names. Here,
analogously, much useful analysis of register-machine-language expressions can be
performed without knowing the actual contents of machine registers. For example,
we can replace references to registers by pointers to the register objects, and we can
replace references to labels by pointers to the place in the instruction sequence that
the label designates.

Before it can generate the instruction execution functions, the assembler must
know what all the labels refer to, so it begins by scanning the controller sequence
to separate the labels from the instructions. As it scans the controller, it constructs
both a list of instructions and a table that associates each label with a pointer into
that list. Then the assembler augments the instruction list by inserting the execution
function for each instruction.

The assemble function is the main entry to the assembler. It takes the controller
sequence and the machine model as arguments and returns the instruction sequence
to be stored in the model. The function assemble calls extract_labels to build
the initial instruction list and label table from the supplied controller. The second
argument to extract_labels is a function to be called to process these results:
This function uses update_insts to generate the instruction execution functions
and insert them into the instruction list, and returns the modified list.

function assemble(controller, machine) {
return extract_labels(controller,

(insts, labels) => {
update_insts(insts, labels, machine);
return insts;

});
}

The function extract_labels takes a list controller and a function receive
as arguments. The function receive will be called with two values: (1) a list insts
of instruction data structures, each containing an instruction from controller; and
(2) a table called labels, which associates each label from controller with the
position in the list insts that the label designates.

5.2.2 The Assembler 477

function extract_labels(controller, receive) {
return is_null(controller)

? receive(null, null)
: extract_labels(

tail(controller),
(insts, labels) => {

const next_element = head(controller);
return is_string(next_element)

? receive(insts,
pair(make_label_entry(next_element,

insts),
labels))

: receive(pair(make_inst(next_element),
insts),

labels);
});

}

The function extract_labels works by sequentially scanning the elements of the
controller and accumulating the insts and the labels. If an element is a string
(and thus a label) an appropriate entry is added to the labels table. Otherwise the
element is accumulated onto the insts list.5

5. Using the receive function here is a way to get extract_labels to effectively return two
values—labels and insts—without explicitly making a compound data structure to hold them.
An alternative implementation, which returns an explicit pair of values, is
function extract_labels(controller) {

if (is_null(controller)) {
return pair(null, null);

} else {
const result = extract_labels(tail(controller));
const insts = head(result);
const labels = tail(result);
const next_element = head(controller);
return is_string(next_element)

? pair(insts,
pair(make_label_entry(next_element, insts), labels))

: pair(pair(make_inst(next_element), insts),
labels);

}
}

which would be called by assemble as follows:
function assemble(controller, machine) {

const result = extract_labels(controller);
const insts = head(result);
const labels = tail(result);
update_insts(insts, labels, machine);
return insts;

}

You can consider our use of receive as demonstrating an elegant way to return multiple values,
or simply an excuse to show off a programming trick. An argument like receive that is the
next function to be invoked is called a “continuation.” Recall that we also used continuations to
implement the backtracking control structure in the amb evaluator in section 4.3.3.

478 Chapter 5 Computing with Register Machines

The function update_insts modifies the instruction list, which initially con-
tains only the controller instructions, to include the corresponding execution func-
tions:

function update_insts(insts, labels, machine) {
const pc = get_register(machine, "pc");
const flag = get_register(machine, "flag");
const stack = machine("stack");
const ops = machine("operations");
return for_each(inst => set_inst_execution_fun(

inst,
make_execution_function(

inst_controller_instruction(inst),
labels, machine, pc,
flag, stack, ops)),

insts);
}

The machine instruction data structure simply pairs the controller instruction
with the corresponding execution function. The execution function is not yet avail-
able when extract_labels constructs the instruction, and is inserted later by
update_insts.

function make_inst(inst_controller_instruction) {
return pair(inst_controller_instruction, null);

}
function inst_controller_instruction(inst) {

return head(inst);
}
function inst_execution_fun(inst) {

return tail(inst);
}
function set_inst_execution_fun(inst, fun) {

set_tail(inst, fun);
}

The controller instruction is not used by our simulator, but is handy to keep around
for debugging (see exercise 5.15).

Elements of the label table are pairs:

function make_label_entry(label_name, insts) {
return pair(label_name, insts);

}

Entries will be looked up in the table with

function lookup_label(labels, label_name) {
const val = assoc(label_name, labels);
return is_undefined(val)

? error(label_name, "undefined label -- assemble")
: tail(val);

}

5.2.3 Instructions and Their Execution Functions 479

Exercise 5.8
The following register-machine code is ambiguous, because the label here is defined more
than once:

"start",
go_to(label("here")),

"here",
assign("a", constant(3)),
go_to(label("there")),

"here",
assign("a", constant(4)),
go_to(label("there")),

"there",

With the simulator as written, what will the contents of register a be when control reaches
there? Modify the extract_labels function so that the assembler will signal an error if
the same label name is used to indicate two different locations.

5.2.3 Instructions and Their Execution Functions
The assembler calls make_execution_function to generate the execution func-
tion for a controller instruction. Like the analyze function in the evaluator of
section 4.1.7, this dispatches on the type of instruction to generate the appropriate
execution function. The details of these execution functions determine the meaning
of the individual instructions in the register-machine language.

function make_execution_function(inst, labels, machine,
pc, flag, stack, ops) {

const inst_type = type(inst);
return inst_type === "assign"

? make_assign_ef(inst, machine, labels, ops, pc)
: inst_type === "test"
? make_test_ef(inst, machine, labels, ops, flag, pc)
: inst_type === "branch"
? make_branch_ef(inst, machine, labels, flag, pc)
: inst_type === "go_to"
? make_go_to_ef(inst, machine, labels, pc)
: inst_type === "save"
? make_save_ef(inst, machine, stack, pc)
: inst_type === "restore"
? make_restore_ef(inst, machine, stack, pc)
: inst_type === "perform"
? make_perform_ef(inst, machine, labels, ops, pc)
: error(inst, "unknown instruction type -- assemble");

}

The elements of the controller sequence received by make_machine and passed
to assemble are strings (for labels) and tagged lists (for instructions). The tag in an
instruction is a string that identifies the instruction type, such as "go_to", and the
remaining elements of the list contains the arguments, such as the destination of the
go_to. The dispatch in make_execution_function uses

function type(instruction) { return head(instruction); }

480 Chapter 5 Computing with Register Machines

The tagged lists are constructed when the list expression that is the third argu-
ment to make_machine is evaluated. Each argument to that list is either a string
(which evaluates to itself) or a call to a constructor for an instruction tagged list. For
example, assign("b", reg("t")) calls the constructor assign with arguments
"b" and the result of calling the constructor reg with the argument "t". The con-
structors and their arguments determine the syntax of the individual instructions in
the register-machine language. The instruction constructors and selectors are shown
below, along with the execution-function generators that use the selectors.

The instruction assign
The make_assign_ef function makes execution functions for assign instructions:

function make_assign_ef(inst, machine, labels, operations, pc) {
const target = get_register(machine, assign_reg_name(inst));
const value_exp = assign_value_exp(inst);
const value_fun =

is_operation_exp(value_exp)
? make_operation_exp_ef(value_exp, machine, labels, operations)
: make_primitive_exp_ef(value_exp, machine, labels);

return () => {
set_contents(target, value_fun());
advance_pc(pc);

};
}

The function assign constructs assign instructions. The selectors assign_reg_
name and assign_value_exp extract the register name and value expression from
an assign instruction.

function assign(register_name, source) {
return list("assign", register_name, source);

}
function assign_reg_name(assign_instruction) {

return head(tail(assign_instruction));
}
function assign_value_exp(assign_instruction) {

return head(tail(tail(assign_instruction)));
}

The function make_assign_ef looks up the register name with get_register
to produce the target register object. The value expression is passed to make_
operation_exp_ef if the value is the result of an operation, and it is passed to
make_primitive_exp_ef otherwise. These functions (shown below) analyze the
value expression and produce an execution function for the value. This is a function
of no arguments, called value_fun, which will be evaluated during the simulation
to produce the actual value to be assigned to the register. Notice that the work of
looking up the register name and analyzing the value expression is performed just
once, at assembly time, not every time the instruction is simulated. This saving of
work is the reason we use execution functions, and corresponds directly to the saving

5.2.3 Instructions and Their Execution Functions 481

in work we obtained by separating program analysis from execution in the evaluator
of section 4.1.7.

The result returned by make_assign_ef is the execution function for the assign
instruction. When this function is called (by the machine model’s execute func-
tion), it sets the contents of the target register to the result obtained by executing
value_fun. Then it advances the pc to the next instruction by running the function

function advance_pc(pc) {
set_contents(pc, tail(get_contents(pc)));

}

The function advance_pc is the normal termination for all instructions except
branch and go_to.

The instructions test, branch, and go_to
The function make_test_ef handles test instructions in a similar way. It extracts
the expression that specifies the condition to be tested and generates an execution
function for it. At simulation time, the function for the condition is called, the result
is assigned to the flag register, and the pc is advanced:

function make_test_ef(inst, machine, labels, operations, flag, pc) {
const condition = test_condition(inst);
if (is_operation_exp(condition)) {

const condition_fun = make_operation_exp_ef(
condition, machine,
labels, operations);

return () => {
set_contents(flag, condition_fun());
advance_pc(pc);

};
} else {

error(inst, "bad test instruction -- assemble");
}

}

The function test constructs test instructions. The selector test_condition
extracts the condition from a test.

function test(condition) { return list("test", condition); }
function test_condition(test_instruction) {

return head(tail(test_instruction));
}

The execution function for a branch instruction checks the contents of the flag
register and either sets the contents of the pc to the branch destination (if the branch
is taken) or else just advances the pc (if the branch is not taken). Notice that the indi-
cated destination in a branch instruction must be a label, and the make_branch_ef
function enforces this. Notice also that the label is looked up at assembly time, not
each time the branch instruction is simulated.

482 Chapter 5 Computing with Register Machines

function make_branch_ef(inst, machine, labels, flag, pc) {
const dest = branch_dest(inst);
if (is_label_exp(dest)) {

const insts = lookup_label(labels, label_exp_label(dest));
return () => {

if (get_contents(flag)) {
set_contents(pc, insts);

} else {
advance_pc(pc);

}
};

} else {
error(inst, "bad branch instruction -- assemble");

}
}

The function branch constructs branch instructions. The selector branch_dest
extracts the destination from a branch.

function branch(label) { return list("branch", label); }
function branch_dest(branch_instruction) {

return head(tail(branch_instruction));
}

A go_to instruction is similar to a branch, except that the destination may be
specified either as a label or as a register, and there is no condition to check—the pc
is always set to the new destination.

function make_go_to_ef(inst, machine, labels, pc) {
const dest = go_to_dest(inst);
if (is_label_exp(dest)) {

const insts = lookup_label(labels, label_exp_label(dest));
return () => set_contents(pc, insts);

} else if (is_register_exp(dest)) {
const reg = get_register(machine, register_exp_reg(dest));
return () => set_contents(pc, get_contents(reg));

} else {
error(inst, "bad go_to instruction -- assemble");

}
}

The function go_to constructs go_to instructions. The selector go_to_dest ex-
tracts the destination from a go_to instruction.

function go_to(label) { return list("go_to", label); }
function go_to_dest(go_to_instruction) {

return head(tail(go_to_instruction));
}

5.2.3 Instructions and Their Execution Functions 483

Other instructions
The stack instructions save and restore simply use the stack with the designated
register and advance the pc:

function make_save_ef(inst, machine, stack, pc) {
const reg = get_register(machine, stack_inst_reg_name(inst));
return () => {

push(stack, get_contents(reg));
advance_pc(pc);

};
}
function make_restore_ef(inst, machine, stack, pc) {

const reg = get_register(machine, stack_inst_reg_name(inst));
return () => {

set_contents(reg, pop(stack));
advance_pc(pc);

};
}

The functions save and restore construct save and restore instructions. The
selector stack_inst_reg_name extracts the register name from such instructions.

function save(reg) { return list("save", reg); }
function restore(reg) { return list("restore", reg); }
function stack_inst_reg_name(stack_instruction) {

return head(tail(stack_instruction));
}

The final instruction type, handled by make_perform_ef, generates an execu-
tion function for the action to be performed. At simulation time, the action function
is executed and the pc advanced.

function make_perform_ef(inst, machine, labels, operations, pc) {
const action = perform_action(inst);
if (is_operation_exp(action)) {

const action_fun = make_operation_exp_ef(action, machine,
labels, operations);

return () => {
action_fun();
advance_pc(pc);

};
} else {

error(inst, "bad perform instruction -- assemble");
}

}

The function perform constructs perform instructions. The selector perform_
action extracts the action from a perform instruction.

function perform(action) { return list("perform", action); }
function perform_action(perform_instruction) {

return head(tail(perform_instruction));
}

484 Chapter 5 Computing with Register Machines

Execution functions for subexpressions
The value of a reg, label, or constant expression may be needed for assign-
ment to a register (make_assign_ef, above) or for input to an operation (make_
operation_exp_ef, below). The following function generates execution functions
to produce values for these expressions during the simulation:

function make_primitive_exp_ef(exp, machine, labels) {
if (is_constant_exp(exp)) {

const c = constant_exp_value(exp);
return () => c;

} else if (is_label_exp(exp)) {
const insts = lookup_label(labels, label_exp_label(exp));
return () => insts;

} else if (is_register_exp(exp)) {
const r = get_register(machine, register_exp_reg(exp));
return () => get_contents(r);

} else {
error(exp, "unknown expression type -- assemble");

}
}

The syntax of reg, label, and constant expressions is determined by the follow-
ing constructor functions, along with corresponding predicates and selectors.

function reg(name) { return list("reg", name); }
function is_register_exp(exp) { return is_tagged_list(exp, "reg"); }
function register_exp_reg(exp) { return head(tail(exp)); }

function constant(value) { return list("constant", value); }
function is_constant_exp(exp) {

return is_tagged_list(exp, "constant");
}
function constant_exp_value(exp) { return head(tail(exp)); }

function label(name) { return list("label", name); }
function is_label_exp(exp) { return is_tagged_list(exp, "label"); }
function label_exp_label(exp) { return head(tail(exp)); }

The instructions assign, perform, and test may include the application of
a machine operation (specified by an op expression) to some operands (specified
by reg and constant expressions). The following function produces an execution
function for an “operation expression”—a list containing the operation and operand
expressions from the instruction:

function make_operation_exp_ef(exp, machine, labels, operations) {
const op = lookup_prim(operation_exp_op(exp), operations);
const afuns = map(e => make_primitive_exp_ef(e, machine, labels),

operation_exp_operands(exp));
return () => apply_in_underlying_javascript(

op, map(f => f(), afuns));
}

5.2.3 Instructions and Their Execution Functions 485

The syntax of operation expressions is determined by

function op(name) { return list("op", name); }
function is_operation_exp(exp) {

return is_pair(exp) && is_tagged_list(head(exp), "op");
}
function operation_exp_op(op_exp) { return head(tail(head(op_exp))); }
function operation_exp_operands(op_exp) { return tail(op_exp); }

Observe that the treatment of operation expressions is very much like the treatment
of function applications by the analyze_application function in the evaluator
of section 4.1.7 in that we generate an execution function for each operand. At
simulation time, we call the operand functions and apply the JavaScript function
that simulates the operation to the resulting values. We make use of the function
apply_in_underlying_javascript, as we did in apply_primitive_function
in section 4.1.4. This is needed to apply op to all elements of the argument list afuns
produced by the first map, as if they were separate arguments to op. Without this, op
would have been restricted to be a unary function.

The simulation function is found by looking up the operation name in the
operation table for the machine:

function lookup_prim(symbol, operations) {
const val = assoc(symbol, operations);
return is_undefined(val)

? error(symbol, "unknown operation -- assemble")
: head(tail(val));

}

Exercise 5.9
The treatment of machine operations above permits them to operate on labels as well as
on constants and the contents of registers. Modify the expression-processing functions to
enforce the condition that operations can be used only with registers and constants.

Exercise 5.10
When we introduced save and restore in section 5.1.4, we didn’t specify what would
happen if you tried to restore a register that was not the last one saved, as in the sequence

save(y);
save(x);
restore(y);

There are several reasonable possibilities for the meaning of restore:

a. restore(y) puts into y the last value saved on the stack, regardless of what register that
value came from. This is the way our simulator behaves. Show how to take advantage of
this behavior to eliminate one instruction from the Fibonacci machine of section 5.1.4
(figure 5.12).

486 Chapter 5 Computing with Register Machines

b. restore(y) puts into y the last value saved on the stack, but only if that value was
saved from y; otherwise, it signals an error. Modify the simulator to behave this way.
You will have to change save to put the register name on the stack along with the value.

c. restore(y) puts into y the last value saved from y regardless of what other regis-
ters were saved after y and not restored. Modify the simulator to behave this way.
You will have to associate a separate stack with each register. You should make the
initialize_stack operation initialize all the register stacks.

Exercise 5.11
The simulator can be used to help determine the data paths required for implementing a
machine with a given controller. Extend the assembler to store the following information
in the machine model:

• a list of all instructions, with duplicates removed, sorted by instruction type (assign,
go_to, and so on);

• a list (without duplicates) of the registers used to hold entry points (these are the registers
referenced by go_to instructions);

• a list (without duplicates) of the registers that are saved or restored;

• for each register, a list (without duplicates) of the sources from which it is assigned
(for example, the sources for register val in the factorial machine of figure 5.11 are
constant(1) and list(op("*"), reg("n"), reg("val"))).

Extend the message-passing interface to the machine to provide access to this new infor-
mation. To test your analyzer, define the Fibonacci machine from figure 5.12 and examine
the lists you constructed.

Exercise 5.12
Modify the simulator so that it uses the controller sequence to determine what registers
the machine has rather than requiring a list of registers as an argument to make_machine.
Instead of preallocating the registers in make_machine, you can allocate them one at a time
when they are first seen during assembly of the instructions.

5.2.4 Monitoring Machine Performance
Simulation is useful not only for verifying the correctness of a proposed machine de-
sign but also for measuring the machine’s performance. For example, we can install
in our simulation program a “meter” that measures the number of stack operations
used in a computation. To do this, we modify our simulated stack to keep track of
the number of times registers are saved on the stack and the maximum depth reached
by the stack, and add a message to the stack’s interface that prints the statistics, as
shown below. We also add an operation to the basic machine model to print the stack
statistics, by initializing the_ops in make_new_machine to

list(list("initialize_stack",
() => stack("initialize")),

list("print_stack_statistics",
() => stack("print_statistics")));

5.2.4 Monitoring Machine Performance 487

Here is the new version of make_stack:

function make_stack() {
let stack = null;
let number_pushes = 0;
let max_depth = 0;
let current_depth = 0;
function push(x) {

stack = pair(x, stack);
number_pushes = number_pushes + 1;
current_depth = current_depth + 1;
max_depth = math_max(current_depth, max_depth);
return "done";

}
function pop() {

if (is_null(stack)) {
error("empty stack -- pop");

} else {
const top = head(stack);
stack = tail(stack);
current_depth = current_depth - 1;
return top;

}
}
function initialize() {

stack = null;
number_pushes = 0;
max_depth = 0;
current_depth = 0;
return "done";

}
function print_statistics() {

display("total pushes = " + stringify(number_pushes));
display("maximum depth = " + stringify(max_depth));

}
function dispatch(message) {

return message === "push"
? push
: message === "pop"
? pop()
: message === "initialize"
? initialize()
: message === "print_statistics"
? print_statistics()
: error(message, "unknown request -- stack");

}
return dispatch;

}

488 Chapter 5 Computing with Register Machines

Exercises 5.14 through 5.18 describe other useful monitoring and debugging
features that can be added to the register-machine simulator.

Exercise 5.13
Measure the number of pushes and the maximum stack depth required to compute n! for
various small values of n using the factorial machine shown in Figure 5.11. From your data
determine formulas in terms of n for the total number of push operations and the maximum
stack depth used in computing n! for any n > 1. Note that each of these is a linear function
of n and is thus determined by two constants. In order to get the statistics printed, you
will have to augment the factorial machine with instructions to initialize the stack and
print the statistics. You may want to also modify the machine so that it repeatedly reads a
value for n, computes the factorial, and prints the result (as we did for the GCD machine
in figure 5.4), so that you will not have to repeatedly invoke get_register_contents,
set_register_contents, and start.

Exercise 5.14
Add instruction counting to the register machine simulation. That is, have the machine
model keep track of the number of instructions executed. Extend the machine model’s
interface to accept a new message that prints the value of the instruction count and resets
the count to zero.

Exercise 5.15
Augment the simulator to provide for instruction tracing. That is, before each instruction
is executed, the simulator should print the instruction. Make the machine model accept
trace_on and trace_off messages to turn tracing on and off.

Exercise 5.16
Extend the instruction tracing of exercise 5.15 so that before printing an instruction, the
simulator prints any labels that immediately precede that instruction in the controller se-
quence. Be careful to do this in a way that does not interfere with instruction counting
(exercise 5.14). You will have to make the simulator retain the necessary label information.

Exercise 5.17
Modify the make_register function of section 5.2.1 so that registers can be traced. Regis-
ters should accept messages that turn tracing on and off. When a register is traced, assigning
a value to the register should print the name of the register, the old contents of the register,
and the new contents being assigned. Extend the interface to the machine model to permit
you to turn tracing on and off for designated machine registers.

Exercise 5.18
Alyssa P. Hacker wants a breakpoint feature in the simulator to help her debug her machine
designs. You have been hired to install this feature for her. She wants to be able to specify
a place in the controller sequence where the simulator will stop and allow her to examine
the state of the machine. You are to implement a function

set_breakpoint(machine, label, n)

5.3 Storage Allocation and Garbage Collection 489

that sets a breakpoint just before the nth instruction after the given label. For example,

set_breakpoint(gcd_machine, "test_b", 4)

installs a breakpoint in gcd_machine just before the assignment to register a. When the
simulator reaches the breakpoint it should print the label and the offset of the break-
point and stop executing instructions. Alyssa can then use get_register_contents and
set_register_contents to manipulate the state of the simulated machine. She should
then be able to continue execution by saying

proceed_machine(machine)

She should also be able to remove a specific breakpoint by means of

cancel_breakpoint(machine, label, n)

or to remove all breakpoints by means of

cancel_all_breakpoints(machine)

5.3 Storage Allocation and Garbage Collection
In section 5.4, we will show how to implement a JavaScript evaluator as a register
machine. In order to simplify the discussion, we will assume that our register ma-
chines can be equipped with a list-structured memory, in which the basic operations
for manipulating list-structured data are primitive. Postulating the existence of such
a memory is a useful abstraction when one is focusing on the mechanisms of control
in an interpreter, but this does not reflect a realistic view of the actual primitive data
operations of contemporary computers. To obtain a more complete picture of how
systems can support list-structured memory efficiently, we must investigate how list
structure can be represented in a way that is compatible with conventional computer
memories.

There are two considerations in implementing list structure. The first is purely
an issue of representation: how to represent the “box-and-pointer” structure of pairs,
using only the storage and addressing capabilities of typical computer memories.
The second issue concerns the management of memory as a computation proceeds.
The operation of a JavaScript system depends crucially on the ability to continually
create new data objects. These include objects that are explicitly created by the
JavaScript functions being interpreted as well as structures created by the interpreter
itself, such as environments and argument lists. Although the constant creation of
new data objects would pose no problem on a computer with an infinite amount of
rapidly addressable memory, computer memories are available only in finite sizes
(more’s the pity). JavaScript thus provide an automatic storage allocation facility
to support the illusion of an infinite memory. When a data object is no longer
needed, the memory allocated to it is automatically recycled and used to construct
new data objects. There are various techniques for providing such automatic storage
allocation. The method we shall discuss in this section is called garbage collection.

490 Chapter 5 Computing with Register Machines

5.3.1 Memory as Vectors
A conventional computer memory can be thought of as an array of cubbyholes, each
of which can contain a piece of information. Each cubbyhole has a unique name,
called its address or location. Typical memory systems provide two primitive opera-
tions: one that fetches the data stored in a specified location and one that assigns new
data to a specified location. Memory addresses can be incremented to support se-
quential access to some set of the cubbyholes. More generally, many important data
operations require that memory addresses be treated as data, which can be stored in
memory locations and manipulated in machine registers. The representation of list
structure is one application of such address arithmetic.

To model computer memory, we use a new kind of data structure called a vector.
Abstractly, a vector is a compound data object whose individual elements can be
accessed by means of an integer index in an amount of time that is independent
of the index.6 In order to describe memory operations, we use two functions for
manipulating vectors:7

• vector_ref(vector, n) returns the nth element of the vector.
• vector_set(vector, n, value) sets the nth element of the vector to the desig-

nated value.

For example, if v is a vector, then vector_ref(v, 5) gets the fifth entry in the
vector v and vector_set(v, 5, 7) changes the value of the fifth entry of the
vector v to 7.8 For computer memory, this access can be implemented through the
use of address arithmetic to combine a base address that specifies the beginning
location of a vector in memory with an index that specifies the offset of a particular
element of the vector.

Representing data
We can use vectors to implement the basic pair structures required for a list-
structured memory. Let us imagine that computer memory is divided into two
vectors: the_heads and the_tails. We will represent list structure as follows:
A pointer to a pair is an index into the two vectors. The head of the pair is the
entry in the_heads with the designated index, and the tail of the pair is the entry
in the_tails with the designated index. We also need a representation for objects
other than pairs (such as numbers and strings) and a way to distinguish one kind
of data from another. There are many methods of accomplishing this, but they all

6. We could represent memory as lists of items. However, the access time would then not be
independent of the index, since accessing the nth element of a list requires n – 1 tail operations.

7. As mentioned in section 4.1.4 (footnote 18), JavaScript supports vectors as data structures
and calls them “arrays.” We use the term vector in this book, as it is the more common termi-
nology. The vector functions above are easily implemented using JavaScript’s primitive array
support.

8. For completeness, we should specify a make_vector operation that constructs vectors. How-
ever, in the present application we will use vectors only to model fixed divisions of the computer
memory.

5.3.1 Memory as Vectors 491

0 1 2 3 4 5 6 7 8 ...Index

the_heads

the_tails

p5 n3 n4 n1 n2 ...

p2 p4 e0 p7 e0 ...

list(list(1, 2), 3, 4)

1 2 4

5 7

4

1 2

3

Figure 5.14 Box-and-pointer and memory-vector representations of the list
list(list(1, 2), 3, 4).

reduce to using typed pointers, that is, to extending the notion of “pointer” to include
information on data type.9 The data type enables the system to distinguish a pointer
to a pair (which consists of the “pair” data type and an index into the memory
vectors) from pointers to other kinds of data (which consist of some other data type
and whatever is being used to represent data of that type). Two data objects are con-
sidered to be the same (===) if their pointers are identical. Figure 5.14 illustrates the
use of this method to represent list(list(1, 2), 3, 4), whose box-and-pointer
diagram is also shown. We use letter prefixes to denote the data-type information.
Thus, a pointer to the pair with index 5 is denoted p5, the empty list is denoted by
the pointer e0, and a pointer to the number 4 is denoted n4. In the box-and-pointer di-
agram, we have indicated at the lower left of each pair the vector index that specifies
where the head and tail of the pair are stored. The blank locations in the_heads
and the_tails may contain parts of other list structures (not of interest here).

9. This is precisely the same “tagged data” idea we introduced in chapter 2 for dealing with
generic operations. Here, however, the data types are included at the primitive machine level
rather than constructed through the use of lists.

Type information may be encoded in a variety of ways, depending on the details of the
machine on which the JavaScript system is to be implemented. The execution efficiency of
JavaScript programs will be strongly dependent on how cleverly this choice is made, but it is
difficult to formulate general design rules for good choices. The most straightforward way to
implement typed pointers is to allocate a fixed set of bits in each pointer to be a type field that
encodes the data type. Important questions to be addressed in designing such a representation
include the following: How many type bits are required? How large must the vector indices be?
How efficiently can the primitive machine instructions be used to manipulate the type fields of
pointers? Machines that include special hardware for the efficient handling of type fields are
said to have tagged architectures.

492 Chapter 5 Computing with Register Machines

A pointer to a number, such as n4, might consist of a type indicating numeric data
together with the actual representation of the number 4.10 To deal with numbers that
are too large to be represented in the fixed amount of space allocated for a single
pointer, we could use a distinct bignum data type, for which the pointer designates
a list in which the parts of the number are stored.11

A string might be represented as a typed pointer that designates a sequence of
the characters that form the string’s printed representation. The parser constructs
such a sequence when it encounters a string literal, and the string-concatenation
operator + and string-producing primitive functions such as stringify construct
such a sequence. Since we want two instances of a string to be recognized as the
“same” string by === and we want === to be a simple test for equality of pointers, we
must ensure that if the system sees the same string twice, it will use the same pointer
(to the same sequence of characters) to represent both occurrences. To accomplish
this, the system maintains a table, called the string pool, of all the strings it has ever
encountered. When the system is about to construct a string, it checks the string
pool to see if it has ever before seen the same string. If it has not, it constructs a
new string (a typed pointer to a new character sequence) and enters this pointer in
the string pool. If the system has seen the string before, it returns the string pointer
stored in the string pool. This process of replacing strings by unique pointers is
called string interning.

Implementing the primitive list operations
Given the above representation scheme, we can replace each “primitive” list oper-
ation of a register machine with one or more primitive vector operations. We will
use two registers, the_heads and the_tails, to identify the memory vectors, and
will assume that vector_ref and vector_set are available as primitive operations.
We also assume that numeric operations on pointers (such as incrementing a pointer,
using a pair pointer to index a vector, or adding two numbers) use only the index
portion of the typed pointer.

For example, we can make a register machine support the instructions

assign(reg1, list(op("head"), reg(reg2)))

assign(reg1, list(op("tail"), reg(reg2)))

if we implement these, respectively, as

assign(reg1, list(op("vector_ref"), reg("the_heads"), reg(reg2)))

assign(reg1, list(op("vector_ref"), reg("the_tails"), reg(reg2)))

10. This decision on the representation of numbers determines whether ===, which tests equal-
ity of pointers, can be used to test for equality of numbers. If the pointer contains the number
itself, then equal numbers will have the same pointer. But if the pointer contains the index of a
location where the number is stored, equal numbers will be guaranteed to have equal pointers
only if we are careful never to store the same number in more than one location.

11. This is just like writing a number as a sequence of digits, except that each “digit” is a
number between 0 and the largest number that can be stored in a single pointer.

5.3.1 Memory as Vectors 493

The instructions

perform(list(op("set_head"), reg(reg1), reg(reg2)))

perform(list(op("set_tail"), reg(reg1), reg(reg2)))

are implemented as

perform(list(op("vector_set"), reg("the_heads"), reg(reg1), reg(reg2)))

perform(list(op("vector_set"), reg("the_tails"), reg(reg1), reg(reg2)))

The operation pair is performed by allocating an unused index and storing the
arguments to pair in the_heads and the_tails at that indexed vector position.
We presume that there is a special register, free, that always holds a pair pointer
containing the next available index, and that we can increment the index part of that
pointer to find the next free location.12 For example, the instruction

assign(reg1, list(op("pair"), reg(reg2), reg(reg3)))

is implemented as the following sequence of vector operations:13

perform(list(op("vector_set"),
reg("the_heads"), reg("free"), reg(reg2))),

perform(list(op("vector_set"),
reg("the_tails"), reg("free"), reg(reg3))),

assign(reg1, reg("free")),
assign("free", list(op("+"), reg("free"), constant(1)))

The === operation

list(op("==="), reg(reg1), reg(reg2))

simply tests the equality of all fields in the registers, and predicates such as is_pair,
is_null, is_string, and is_number need only check the type field.

Implementing stacks
Although our register machines use stacks, we need do nothing special here, since
stacks can be modeled in terms of lists. The stack can be a list of the saved values,
pointed to by a special register the_stack. Thus, save(reg) can be implemented as

assign("the_stack", list(op("pair"), reg(reg), reg("the_stack")))

Similarly, restore(reg) can be implemented as

assign(reg, list(op("head"), reg("the_stack")))
assign("the_stack", list(op("tail"), reg("the_stack")))

12. There are other ways of finding free storage. For example, we could link together all the
unused pairs into a free list. Our free locations are consecutive (and hence can be accessed by
incrementing a pointer) because we are using a compacting garbage collector, as we will see in
section 5.3.2.

13. This is essentially the implementation of pair in terms of set_head and set_tail, as
described in section 3.3.1. The operation get_new_pair used in that implementation is realized
here by the free pointer.

494 Chapter 5 Computing with Register Machines

and perform(list(op("initialize_stack"))) can be implemented as

assign("the_stack", constant(null))

These operations can be further expanded in terms of the vector operations given
above. In conventional computer architectures, however, it is usually advantageous
to allocate the stack as a separate vector. Then pushing and popping the stack can
be accomplished by incrementing or decrementing an index into that vector.

Exercise 5.19
Draw the box-and-pointer representation and the memory-vector representation (as in
figure 5.14) of the list structure produced by

const x = pair(1, 2);
const y = list(x, x);

with the free pointer initially p1. What is the final value of free ? What pointers represent
the values of x and y?

Exercise 5.20
Implement register machines for the following functions. Assume that the list-structure
memory operations are available as machine primitives.

a. Recursive count_leaves:

function count_leaves(tree) {
return is_null(tree)

? 0
: ! is_pair(tree)
? 1
: count_leaves(head(tree)) +

count_leaves(tail(tree));
}

b. Recursive count_leaves with explicit counter:

function count_leaves(tree) {
function count_iter(tree, n) {

return is_null(tree)
? n
: ! is_pair(tree)
? n + 1
: count_iter(tail(tree),

count_iter(head(tree), n));
}
return count_iter(tree, 0);

}

Exercise 5.21
Exercise 3.12 of section 3.3.1 presented an append function that appends two lists to
form a new list and an append_mutator function that splices two lists together. Design
a register machine to implement each of these functions. Assume that the list-structure
memory operations are available as primitive operations.

5.3.2 Maintaining the Illusion of Infinite Memory 495

5.3.2 Maintaining the Illusion of Infinite Memory
The representation method outlined in section 5.3.1 solves the problem of imple-
menting list structure, provided that we have an infinite amount of memory. With
a real computer we will eventually run out of free space in which to construct new
pairs.14 However, most of the pairs generated in a typical computation are used only
to hold intermediate results. After these results are accessed, the pairs are no longer
needed—they are garbage. For instance, the computation

accumulate((x, y) => x + y,
0,
filter(is_odd, enumerate_interval(0, n)))

constructs two lists: the enumeration and the result of filtering the enumeration.
When the accumulation is complete, these lists are no longer needed, and the al-
located memory can be reclaimed. If we can arrange to collect all the garbage
periodically, and if this turns out to recycle memory at about the same rate at which
we construct new pairs, we will have preserved the illusion that there is an infinite
amount of memory.

In order to recycle pairs, we must have a way to determine which allocated pairs
are not needed (in the sense that their contents can no longer influence the future
of the computation). The method we shall examine for accomplishing this is known
as garbage collection. Garbage collection is based on the observation that, at any
moment in an interpretation based on list-structured memory, the only objects that
can affect the future of the computation are those that can be reached by some suc-
cession of head and tail operations starting from the pointers that are currently in
the machine registers.15 Any memory cell that is not so accessible may be recycled.

There are many ways to perform garbage collection. The method we shall ex-
amine here is called stop-and-copy. The basic idea is to divide memory into two
halves: “working memory” and “free memory.” When pair constructs pairs, it allo-
cates these in working memory. When working memory is full, we perform garbage
collection by locating all the useful pairs in working memory and copying these into
consecutive locations in free memory. (The useful pairs are located by tracing all the
head and tail pointers, starting with the machine registers.) Since we do not copy
the garbage, there will presumably be additional free memory that we can use to
allocate new pairs. In addition, nothing in the working memory is needed, since all
the useful pairs in it have been copied. Thus, if we interchange the roles of working

14. This may not be true eventually, because memories may get large enough so that it would
be impossible to run out of free memory in the lifetime of the computer. For example, there are
about 3× 1016 nanoseconds in a year, so if we were to pair once per nanosecond we would
need about 1018 cells of memory to build a machine that could operate for 30 years without run-
ning out of memory. That much memory seems absurdly large by today’s standards, but it is not
physically impossible. On the other hand, processors are getting faster and modern computers
have increasingly large numbers of processors operating in parallel on a single memory, so it
may be possible to use up memory much faster than we have postulated.

15. We assume here that the stack is represented as a list as described in section 5.3.1, so that
items on the stack are accessible via the pointer in the stack register.

496 Chapter 5 Computing with Register Machines

memory and free memory, we can continue processing; new pairs will be allocated
in the new working memory (which was the old free memory). When this is full,
we can copy the useful pairs into the new free memory (which was the old working
memory).16

Implementation of a stop-and-copy garbage collector
We now use our register-machine language to describe the stop-and-copy algorithm
in more detail. We will assume that there is a register called root that contains
a pointer to a structure that eventually points at all accessible data. This can be
arranged by storing the contents of all the machine registers in a preallocated list
pointed at by root just before starting garbage collection.17 We also assume that,
in addition to the current working memory, there is free memory available into
which we can copy the useful data. The current working memory consists of vectors
whose base addresses are in registers called the_heads and the_tails, and the
free memory is in registers called new_heads and new_tails.

Garbage collection is triggered when we exhaust the free cells in the current
working memory, that is, when a pair operation attempts to increment the free
pointer beyond the end of the memory vector. When the garbage-collection process
is complete, the root pointer will point into the new memory, all objects accessible
from the root will have been moved to the new memory, and the free pointer
will indicate the next place in the new memory where a new pair can be allocated.

16. This idea was invented and first implemented by Minsky, as part of the implementation of
Lisp for the PDP-1 at the MIT Research Laboratory of Electronics. It was further developed
by Fenichel and Yochelson (1969) for use in the Lisp implementation for the Multics time-
sharing system. Later, Baker (1978) developed a “real-time” version of the method, which does
not require the computation to stop during garbage collection. Baker’s idea was extended by
Hewitt, Lieberman, and Moon (see Lieberman and Hewitt 1983) to take advantage of the fact
that some structure is more volatile and other structure is more permanent.

An alternative commonly used garbage-collection technique is the mark-sweep method. This
consists of tracing all the structure accessible from the machine registers and marking each
pair we reach. We then scan all of memory, and any location that is unmarked is “swept up”
as garbage and made available for reuse. A full discussion of the mark-sweep method can be
found in Allen 1978.

The Minsky-Fenichel-Yochelson algorithm is the dominant algorithm in use for large-
memory systems because it examines only the useful part of memory. This is in contrast to
mark-sweep, in which the sweep phase must check all of memory. A second advantage of
stop-and-copy is that it is a compacting garbage collector. That is, at the end of the garbage-
collection phase the useful data will have been moved to consecutive memory locations, with all
garbage pairs compressed out. This can be an extremely important performance consideration
in machines with virtual memory, in which accesses to widely separated memory addresses may
require extra paging operations.

17. This list of registers does not include the registers used by the storage-allocation system:
root, the_heads, the_tails, and the other registers that will be introduced in this section.

5.3.2 Maintaining the Illusion of Infinite Memory 497

free

free

Just before garbage collection

mixture of useful data and garbage

free memory

Just after garbage collection

discarded memory

useful data free area

working
memory

free
memory

new
free
memory

new
working
memory

the_heads
the_tails

the_heads
the_tails

new_heads
new_tails

new_heads
new_tails

Figure 5.15 Reconfiguration of memory by the garbage-collection process.

In addition, the roles of working memory and new memory will have been inter-
changed—new pairs will be constructed in the new memory, beginning at the place
indicated by free, and the (previous) working memory will be available as the
new memory for the next garbage collection. Figure 5.15 shows the arrangement
of memory just before and just after garbage collection.

The state of the garbage-collection process is controlled by maintaining two
pointers: free and scan. These are initialized to point to the beginning of the new
memory. The algorithm begins by relocating the pair pointed at by root to the begin-
ning of the new memory. The pair is copied, the root pointer is adjusted to point to
the new location, and the free pointer is incremented. In addition, the old location
of the pair is marked to show that its contents have been moved. This marking is
done as follows: In the head position, we place a special tag that signals that this is
an already-moved object. (Such an object is traditionally called a broken heart.)18 In
the tail position we place a forwarding address that points at the location to which
the object has been moved.

18. The term broken heart was coined by David Cressey, who wrote a garbage collector for
MDL, a dialect of Lisp developed at MIT during the early 1970s.

498 Chapter 5 Computing with Register Machines

After relocating the root, the garbage collector enters its basic cycle. At each step
in the algorithm, the scan pointer (initially pointing at the relocated root) points at a
pair that has been moved to the new memory but whose head and tail pointers still
refer to objects in the old memory. These objects are each relocated, and the scan
pointer is incremented. To relocate an object (for example, the object indicated by
the head pointer of the pair we are scanning) we check to see if the object has already
been moved (as indicated by the presence of a broken-heart tag in the head position
of the object). If the object has not already been moved, we copy it to the place
indicated by free, update free, set up a broken heart at the object’s old location,
and update the pointer to the object (in this example, the head pointer of the pair we
are scanning) to point to the new location. If the object has already been moved, its
forwarding address (found in the tail position of the broken heart) is substituted
for the pointer in the pair being scanned. Eventually, all accessible objects will have
been moved and scanned, at which point the scan pointer will overtake the free
pointer and the process will terminate.

We can specify the stop-and-copy algorithm as a sequence of instructions for a
register machine. The basic step of relocating an object is accomplished by a sub-
routine called relocate_old_result_in_new. This subroutine gets its argument,
a pointer to the object to be relocated, from a register named old. It relocates the
designated object (incrementing free in the process), puts a pointer to the relocated
object into a register called new, and returns by branching to the entry point stored
in the register relocate_continue. To begin garbage collection, we invoke this
subroutine to relocate the root pointer, after initializing free and scan. When the
relocation of root has been accomplished, we install the new pointer as the new
root and enter the main loop of the garbage collector.

"begin_garbage_collection",
assign("free", constant(0)),
assign("scan", constant(0)),
assign("old", reg("root")),
assign("relocate_continue", label("reassign_root")),
go_to(label("relocate_old_result_in_new")),

"reassign_root",
assign("root", reg("new")),
go_to(label("gc_loop")),

In the main loop of the garbage collector we must determine whether there are
any more objects to be scanned. We do this by testing whether the scan pointer is
coincident with the free pointer. If the pointers are equal, then all accessible objects
have been relocated, and we branch to gc_flip, which cleans things up so that we
can continue the interrupted computation. If there are still pairs to be scanned, we
call the relocate subroutine to relocate the head of the next pair (by placing the head
pointer in old). The relocate_continue register is set up so that the subroutine
will return to update the head pointer.

5.3.2 Maintaining the Illusion of Infinite Memory 499

"gc_loop",
test(list(op("==="), reg("scan"), reg("free"))),
branch(label("gc_flip")),
assign("old", list(op("vector_ref"), reg("new_heads"), reg("scan"))),
assign("relocate_continue", label("update_head")),
go_to(label("relocate_old_result_in_new")),

At update_head, we modify the head pointer of the pair being scanned, then
proceed to relocate the tail of the pair. We return to update_tail when that
relocation has been accomplished. After relocating and updating the tail, we are
finished scanning that pair, so we continue with the main loop.

"update_head",
perform(list(op("vector_set"),

reg("new_heads"), reg("scan"), reg("new"))),
assign("old", list(op("vector_ref"),

reg("new_tails"), reg("scan"))),
assign("relocate_continue", label("update_tail")),
go_to(label("relocate_old_result_in_new")),

"update_tail",
perform(list(op("vector_set"),

reg("new_tails"), reg("scan"), reg("new"))),
assign("scan", list(op("+"), reg("scan"), constant(1))),
go_to(label("gc_loop")),

The subroutine relocate_old_result_in_new relocates objects as follows: If
the object to be relocated (pointed at by old) is not a pair, then we return the same
pointer to the object unchanged (in new). (For example, we may be scanning a pair
whose head is the number 4. If we represent the head by n4, as described in sec-
tion 5.3.1, then we want the “relocated” head pointer to still be n4.) Otherwise, we
must perform the relocation. If the head position of the pair to be relocated contains
a broken-heart tag, then the pair has in fact already been moved, so we retrieve the
forwarding address (from the tail position of the broken heart) and return this in
new. If the pointer in old points at a yet-unmoved pair, then we move the pair to the
first free cell in new memory (pointed at by free) and set up the broken heart by
storing a broken-heart tag and forwarding address at the old location. The subroutine
relocate_old_result_in_new uses a register oldht to hold the head or the tail
of the object pointed at by old.19

19. The garbage collector uses the low-level predicate is_pointer_to_pair instead of the list-
structure is_pair operation because in a real system there might be various things that are
treated as pairs for garbage-collection purposes. For example, a function object may be imple-
mented as a special kind of “pair” that doesn’t satisfy the is_pair predicate. For simulation
purposes, is_pointer_to_pair can be implemented as is_pair.

500 Chapter 5 Computing with Register Machines

"relocate_old_result_in_new",
test(list(op("is_pointer_to_pair"), reg("old"))),
branch(label("pair")),
assign("new", reg("old")),
go_to(reg("relocate_continue")),

"pair",
assign("oldht", list(op("vector_ref"),

reg("the_heads"), reg("old"))),
test(list(op("is_broken_heart"), reg("oldht"))),
branch(label("already_moved")),
assign("new", reg("free")), // new location for pair
// Update free pointer
assign("free", list(op("+"), reg("free"), constant(1))),
// Copy the head and tail to new memory
perform(list(op("vector_set"),

reg("new_heads"), reg("new"),
reg("oldht"))),

assign("oldht", list(op("vector_ref"),
reg("the_tails"), reg("old"))),

perform(list(op("vector_set"),
reg("new_tails"), reg("new"),
reg("oldht"))),

// Construct the broken heart
perform(list(op("vector_set"),

reg("the_heads"), reg("old"),
constant("broken_heart"))),

perform(list(op("vector_set"),
reg("the_tails"), reg("old"),
reg("new"))),

go_to(reg("relocate_continue")),
"already_moved",
assign("new", list(op("vector_ref"),

reg("the_tails"), reg("old"))),
go_to(reg("relocate_continue")),

At the very end of the garbage collection process, we interchange the role of
old and new memories by interchanging pointers: interchanging the_heads with
new_heads, and the_tails with new_tails. We will then be ready to perform
another garbage collection the next time memory runs out.

"gc_flip",
assign("temp", reg("the_tails")),
assign("the_tails", reg("new_tails")),
assign("new_tails", reg("temp")),
assign("temp", reg("the_heads")),
assign("the_heads", reg("new_heads")),
assign("new_heads", reg("temp"))

5.4 The Explicit-Control Evaluator 501

Figure 5.16 A silicon-chip implementation of an evaluator for Scheme.

5.4 The Explicit-Control Evaluator
In section 5.1 we saw how to transform simple JavaScript programs into descriptions
of register machines. We will now perform this transformation on a more complex
program, the metacircular evaluator of sections 4.1.1–4.1.4, which shows how the
behavior of a JavaScript interpreter can be described in terms of the functions
evaluate and apply. The explicit-control evaluator that we develop in this section
shows how the underlying function-calling and argument-passing mechanisms used
in the evaluation process can be described in terms of operations on registers and
stacks. In addition, the explicit-control evaluator can serve as an implementation
of a JavaScript interpreter, written in a language that is very similar to the native
machine language of conventional computers. The evaluator can be executed by the
register-machine simulator of section 5.2. Alternatively, it can be used as a starting
point for building a machine-language implementation of a JavaScript evaluator, or
even a special-purpose machine for evaluating JavaScript programs. Figure 5.16
shows such a hardware implementation: a silicon chip that acts as an evaluator
for Scheme, the language used in place of JavaScript in the original edition of this
book. The chip designers started with the data-path and controller specifications for
a register machine similar to the evaluator described in this section and used design
automation programs to construct the integrated-circuit layout.20

20. See Batali et al. 1982 for more information on the chip and the method by which it was
designed.

502 Chapter 5 Computing with Register Machines

Registers and operations
In designing the explicit-control evaluator, we must specify the operations to be
used in our register machine. We described the metacircular evaluator in terms
of abstract syntax, using functions such as is_literal and make_function. In
implementing the register machine, we could expand these functions into sequences
of elementary list-structure memory operations, and implement these operations on
our register machine. However, this would make our evaluator very long, obscur-
ing the basic structure with details. To clarify the presentation, we will include
as primitive operations of the register machine the syntax functions given in sec-
tion 4.1.2 and the functions for representing environments and other runtime data
given in sections 4.1.3 and 4.1.4. In order to completely specify an evaluator that
could be programmed in a low-level machine language or implemented in hard-
ware, we would replace these operations by more elementary operations, using the
list-structure implementation we described in section 5.3.

Our JavaScript evaluator register machine includes a stack and seven registers:
comp, env, val, continue, fun, argl, and unev. The comp register is used to
hold the component to be evaluated, and env contains the environment in which the
evaluation is to be performed. At the end of an evaluation, val contains the value ob-
tained by evaluating the component in the designated environment. The continue
register is used to implement recursion, as explained in section 5.1.4. (The evaluator
needs to call itself recursively, since evaluating a component requires evaluating its
subcomponents.) The registers fun, argl, and unev are used in evaluating function
applications.

We will not provide a data-path diagram to show how the registers and opera-
tions of the evaluator are connected, nor will we give the complete list of machine
operations. These are implicit in the evaluator’s controller, which will be presented
in detail.

5.4.1 The Dispatcher and Basic Evaluation
The central element in the evaluator is the sequence of instructions beginning at
eval_dispatch. This corresponds to the evaluate function of the metacircular
evaluator described in section 4.1.1. When the controller starts at eval_dispatch,
it evaluates the component specified by comp in the environment specified by env.
When evaluation is complete, the controller will go to the entry point stored in
continue, and the val register will hold the value of the component. As with the
metacircular evaluate, the structure of eval_dispatch is a case analysis on the
syntactic type of the component to be evaluated.21

21. In our controller, the dispatch is written as a sequence of test and branch instructions.
Alternatively, it could have been written in a data-directed style, which avoids the need to
perform sequential tests and facilitates the definition of new component types.

5.4.1 The Dispatcher and Basic Evaluation 503

"eval_dispatch",
test(list(op("is_literal"), reg("comp"))),
branch(label("ev_literal")),
test(list(op("is_name"), reg("comp"))),
branch(label("ev_name")),
test(list(op("is_application"), reg("comp"))),
branch(label("ev_application")),
test(list(op("is_operator_combination"), reg("comp"))),
branch(label("ev_operator_combination")),
test(list(op("is_conditional"), reg("comp"))),
branch(label("ev_conditional")),
test(list(op("is_lambda_expression"), reg("comp"))),
branch(label("ev_lambda")),
test(list(op("is_sequence"), reg("comp"))),
branch(label("ev_sequence")),
test(list(op("is_block"), reg("comp"))),
branch(label("ev_block")),
test(list(op("is_return_statement"), reg("comp"))),
branch(label("ev_return")),
test(list(op("is_function_declaration"), reg("comp"))),
branch(label("ev_function_declaration")),
test(list(op("is_declaration"), reg("comp"))),
branch(label("ev_declaration")),
test(list(op("is_assignment"), reg("comp"))),
branch(label("ev_assignment")),
go_to(label("unknown_component_type")),

Evaluating simple expressions
Numbers and strings, names, and lambda expressions have no subexpressions to be
evaluated. For these, the evaluator simply places the correct value in the val register
and continues execution at the entry point specified by continue. Evaluation of
simple expressions is performed by the following controller code:

"ev_literal",
assign("val", list(op("literal_value"), reg("comp"))),
go_to(reg("continue")),

"ev_name",
assign("val", list(op("symbol_of_name"), reg("comp"), reg("env"))),
assign("val", list(op("lookup_symbol_value"),

reg("val"), reg("env"))),
go_to(reg("continue")),

"ev_lambda",
assign("unev", list(op("lambda_parameter_symbols"), reg("comp"))),
assign("comp", list(op("lambda_body"), reg("comp"))),
assign("val", list(op("make_function"),

reg("unev"), reg("comp"), reg("env"))),
go_to(reg("continue")),

Observe how ev_lambda uses the unev and comp registers to hold the parameters
and body of the lambda expression so that they can be passed to the make_function
operation, along with the environment in env.

504 Chapter 5 Computing with Register Machines

Conditionals
As with the metacircular evaluator, syntactic forms are handled by selectively evalu-
ating fragments of the component. For a conditional, we must evaluate the predicate
and decide, based on the value of predicate, whether to evaluate the consequent or
the alternative.

Before evaluating the predicate, we save the conditional itself, which is in comp,
so that we can later extract the consequent or alternative. To evaluate the predi-
cate expression, we move it to the comp register and go to eval_dispatch. The
environment in the env register is already the correct one in which to evaluate
the predicate. However, we save env because we will need it later to evaluate the
consequent or the alternative. We set up continue so that evaluation will resume
at ev_conditional_decide after the predicate has been evaluated. First, however,
we save the old value of continue, which we will need later in order to return to
the evaluation of the statement that is waiting for the value of the conditional.

"ev_conditional",
save("comp"), // save conditional for later
save("env"),
save("continue"),
assign("continue", label("ev_conditional_decide")),
assign("comp", list(op("conditional_predicate"), reg("comp"))),
go_to(label("eval_dispatch")), // evaluate the predicate

When we resume at ev_conditional_decide after evaluating the predicate,
we test whether it was true or false and, depending on the result, place either the
consequent or the alternative in comp before going to eval_dispatch.22 Notice
that restoring env and continue here sets up eval_dispatch to have the correct
environment and to continue at the right place to receive the value of the conditional.

"ev_conditional_decide",
restore("continue"),
restore("env"),
restore("comp"),
test(list(op("is_falsy"), reg("val"))),
branch(label("ev_conditional_alternative")),

"ev_conditional_consequent",
assign("comp", list(op("conditional_consequent"), reg("comp"))),
go_to(label("eval_dispatch")),

"ev_conditional_alternative",
assign("comp", list(op("conditional_alternative"), reg("comp"))),
go_to(label("eval_dispatch")),

Sequence Evaluation
The portion of the explicit-control evaluator beginning at ev_sequence, which
handles sequences of statements, is analogous to the metacircular evaluator’s eval_
sequence function.

22. In this chapter, we will use the function is_falsy to test the value of the predicate. This
allows us to write the consequent and alternative branches in the same order as in a conditional,
and simply fall through to the consequent branch when the predicate holds. The function
is_falsy is declared as the opposite of the is_truthy function used to test predicates of
conditionals in section 4.1.1.

5.4.1 The Dispatcher and Basic Evaluation 505

The entries at ev_sequence_next and ev_sequence_continue form a loop
that successively evaluates each statement in a sequence. The list of unevaluated
statements is kept in unev. At ev_sequence we place the sequence of statements to
be evaluated in unev. If the sequence is empty, we set val to undefined and jump
to continue via ev_sequence_empty. Otherwise we start the sequence-evaluation
loop, first saving the value of continue on the stack, because the continue register
will be used for local flow of control in the loop, and the original value is needed
for continuing after the statement sequence. Before evaluating each statement, we
check to see if there are additional statements to be evaluated in the sequence. If so,
we save the rest of the unevaluated statements (held in unev) and the environment
in which these must be evaluated (held in env) and call eval_dispatch to evaluate
the statement, which has been placed in comp. The two saved registers are restored
after this evaluation, at ev_sequence_continue.

The final statement in the sequence is handled differently, at the entry point
ev_sequence_last_statement. Since there are no more statements to be evalu-
ated after this one, we need not save unev or env before going to eval_dispatch.
The value of the whole sequence is the value of the last statement, so after the
evaluation of the last statement there is nothing left to do except continue at the
entry point that was saved at ev_sequence. Rather than setting up continue to
arrange for eval_dispatch to return here and then restoring continue from the
stack and continuing at that entry point, we restore continue from the stack before
going to eval_dispatch, so that eval_dispatch will continue at that entry point
after evaluating the statement.

"ev_sequence",
assign("unev", list(op("sequence_statements"), reg("comp"))),
test(list(op("is_empty_sequence"), reg("unev"))),
branch(label("ev_sequence_empty")),
save("continue"),

"ev_sequence_next",
assign("comp", list(op("first_statement"), reg("unev"))),
test(list(op("is_last_statement"), reg("unev"))),
branch(label("ev_sequence_last_statement")),
save("unev"),
save("env"),
assign("continue", label("ev_sequence_continue")),
go_to(label("eval_dispatch")),

"ev_sequence_continue",
restore("env"),
restore("unev"),
assign("unev", list(op("rest_statements"), reg("unev"))),
go_to(label("ev_sequence_next")),

"ev_sequence_last_statement",
restore("continue"),
go_to(label("eval_dispatch")),

"ev_sequence_empty",
assign("val", constant(undefined)),
go_to(reg("continue")),

Unlike eval_sequence in the metacircular evaluator, ev_sequence does not
need to check whether a return statement was evaluated so as to terminate the

506 Chapter 5 Computing with Register Machines

sequence evaluation. The “explicit control” in this evaluator allows a return state-
ment to jump directly to the continuation of the current function application without
resuming the sequence evaluation. Thus sequence evaluation does not need to be
concerned with returns, or even be aware of the existence of return statements in the
language. Because a return statement jumps out of the sequence-evaluation code,
the restores of saved registers at ev_sequence_continue won’t be executed. We
will see later how the return statement removes these values from the stack.

5.4.2 Evaluating Function Applications
A function application is specified by a combination containing a function expres-
sion and argument expressions. The function expression is a subexpression whose
value is a function, and the argument expressions are subexpressions whose val-
ues are the arguments to which the function should be applied. The metacircular
evaluate handles applications by calling itself recursively to evaluate each element
of the combination, and then passing the results to apply, which performs the actual
function application. The explicit-control evaluator does the same thing; these recur-
sive calls are implemented by go_to instructions, together with use of the stack to
save registers that will be restored after the recursive call returns. Before each call
we will be careful to identify which registers must be saved (because their values
will be needed later).23

As in the metacircular evaluator, operator combinations are transformed into ap-
plications of primitive functions corresponding to the operators. This takes place at
ev_operator_combination, which performs this transformation in place in comp
and falls through to ev_application.24

We begin the evaluation of an application by evaluating the function expression
to produce a function, which will later be applied to the evaluated argument ex-
pressions. To evaluate the function expression, we move it to the comp register and
go to eval_dispatch. The environment in the env register is already the correct
one in which to evaluate the function expression. However, we save env because
we will need it later to evaluate the argument expressions. We also extract the ar-
gument expressions into unev and save this on the stack. We set up continue so
that eval_dispatch will resume at ev_appl_did_function_expression after
the function expression has been evaluated. First, however, we save the old value of
continue, which tells the controller where to continue after the application.

23. This is an important but subtle point in translating algorithms from a procedural language,
such as JavaScript, to a register-machine language. As an alternative to saving only what is
needed, we could save all the registers (except val) before each recursive call. This is called
a framed-stack discipline. This would work but might save more registers than necessary; this
could be an important consideration in a system where stack operations are expensive. Saving
registers whose contents will not be needed later may also hold on to useless data that could
otherwise be garbage-collected, freeing space to be reused.

24. We assume that the syntax transformer operator_combination_to_application is avail-
able as a machine operation. In an actual implementation built from scratch, we would use
our explicit-control evaluator to interpret a JavaScript program that performs source-level trans-
formations like this one and function_decl_to_constant_decl in a syntax phase that runs
before execution.

5.4.2 Evaluating Function Applications 507

"ev_operator_combination",
assign("comp", list(op("operator_combination_to_application"),

reg("comp"), reg("env"))),
"ev_application",
save("continue"),
save("env"),
assign("unev", list(op("arg_expressions"), reg("comp"))),
save("unev"),
assign("comp", list(op("function_expression"), reg("comp"))),
assign("continue", label("ev_appl_did_function_expression")),
go_to(label("eval_dispatch")),

Upon returning from evaluating the function expression, we proceed to evaluate
the argument expressions of the application and to accumulate the resulting argu-
ments in a list, held in argl. (This is like the evaluation of a sequence of statements,
except that we collect the values.) First we restore the unevaluated argument expres-
sions and the environment. We initialize argl to an empty list. Then we assign to the
fun register the function that was produced by evaluating the function expression. If
there are no argument expressions, we go directly to apply_dispatch. Otherwise
we save fun on the stack and start the argument-evaluation loop:25

"ev_appl_did_function_expression",
restore("unev"), // the argument expressions
restore("env"),
assign("argl", list(op("empty_arglist"))),
assign("fun", reg("val")), // the function
test(list(op("is_null"), reg("unev"))),
branch(label("apply_dispatch")),
save("fun"),

Each cycle of the argument-evaluation loop evaluates an argument expression
from the list in unev and accumulates the result into argl. To evaluate an argument
expression, we place it in the comp register and go to eval_dispatch, after setting
continue so that execution will resume with the argument-accumulation phase. But
first we save the arguments accumulated so far (held in argl), the environment (held
in env), and the remaining argument expressions to be evaluated (held in unev). A
special case is made for the evaluation of the last argument expression, which is
handled at ev_appl_last_arg.

25. We add to the evaluator data-structure functions in section 4.1.3 the following two functions
for manipulating argument lists:
function empty_arglist() { return null; }
function adjoin_arg(arg, arglist) {

return append(arglist, list(arg));
}

We also make use of an additional syntax function to test for the last argument expression in an
application:
function is_last_argument_expression(arg_expression) {

return is_null(tail(arg_expression));
}

508 Chapter 5 Computing with Register Machines

"ev_appl_argument_expression_loop",
save("argl"),
assign("comp", list(op("head"), reg("unev"))),
test(list(op("is_last_argument_expression"), reg("unev"))),
branch(label("ev_appl_last_arg")),
save("env"),
save("unev"),
assign("continue", label("ev_appl_accumulate_arg")),
go_to(label("eval_dispatch")),

When an argument expression has been evaluated, the value is accumulated
into the list held in argl. The argument expression is then removed from the list
of unevaluated argument expressions in unev, and the argument-evaluation loop
continues.

"ev_appl_accumulate_arg",
restore("unev"),
restore("env"),
restore("argl"),
assign("argl", list(op("adjoin_arg"), reg("val"), reg("argl"))),
assign("unev", list(op("tail"), reg("unev"))),
go_to(label("ev_appl_argument_expression_loop")),

Evaluation of the last argument expression is handled differently, as is the last
statement in a sequence. There is no need to save the environment or the list of
unevaluated argument expressions before going to eval_dispatch, since they will
not be required after the last argument expression is evaluated. Thus, we return from
the evaluation to a special entry point ev_appl_accum_last_arg, which restores
the argument list, accumulates the new argument, restores the saved function, and
goes off to perform the application.26

"ev_appl_last_arg",
assign("continue", label("ev_appl_accum_last_arg")),
go_to(label("eval_dispatch")),

"ev_appl_accum_last_arg",
restore("argl"),
assign("argl", list(op("adjoin_arg"), reg("val"), reg("argl"))),
restore("fun"),
go_to(label("apply_dispatch")),

The details of the argument-evaluation loop determine the order in which the
interpreter evaluates the argument expressions of a combination (e.g., left to right or
right to left—see exercise 3.8). This order is not determined by the metacircular eval-
uator, which inherits its control structure from the underlying JavaScript in which it

26. The optimization of treating the last argument expression specially is known as evlis tail
recursion (see Wand 1980). We could be somewhat more efficient in the argument evaluation
loop if we made evaluation of the first argument expression a special case too. This would
permit us to postpone initializing argl until after evaluating the first argument expression, so
as to avoid saving argl in this case. The compiler in section 5.5 performs this optimization.
(Compare the construct_arglist function of section 5.5.3.)

5.4.2 Evaluating Function Applications 509

is implemented.27 Because we use head in ev_appl_argument_expression_loop
to extract successive argument expressions from unev and tail at ev_appl_
accumulate_arg to extract the rest of the argument expressions, the explicit-
control evaluator will evaluate the argument expressions of a combination in left-
to-right order, as required by the ECMAScript specification.

Function Application
The entry point apply_dispatch corresponds to the apply function of the metacir-
cular evaluator. By the time we get to apply_dispatch, the fun register con-
tains the function to apply and argl contains the list of evaluated arguments to
which it must be applied. The saved value of continue (originally passed to
eval_dispatch and saved at ev_application), which tells where to return with
the result of the function application, is on the stack. When the application is com-
plete, the controller transfers to the entry point specified by the saved continue,
with the result of the application in val. As with the metacircular apply, there
are two cases to consider. Either the function to be applied is a primitive or it is a
compound function.

"apply_dispatch",
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_apply")),
test(list(op("is_compound_function"), reg("fun"))),
branch(label("compound_apply")),
go_to(label("unknown_function_type")),

We assume that each primitive is implemented so as to obtain its arguments from
argl and place its result in val. To specify how the machine handles primitives,
we would have to provide a sequence of controller instructions to implement each
primitive and arrange for primitive_apply to dispatch to the instructions for the
primitive identified by the contents of fun. Since we are interested in the structure
of the evaluation process rather than the details of the primitives, we will instead just
use an apply_primitive_function operation that applies the function in fun to
the arguments in argl. For the purpose of simulating the evaluator with the simula-
tor of section 5.2 we use the function apply_primitive_function, which calls on
the underlying JavaScript system to perform the application, just as we did for the
metacircular evaluator in section 4.1.1. After computing the value of the primitive
application, we restore continue and go to the designated entry point.

"primitive_apply",
assign("val", list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),
restore("continue"),
go_to(reg("continue")),

27. The order of argument-expression evaluation by the function list_of_values in the
metacircular evaluator is determined by the order of evaluation of the arguments to pair,
which is used to construct the argument list. The version of list_of_values in footnote 7
of section 4.1 calls pair directly; the version in the text uses map, which calls pair. (See
exercise 4.1.)

510 Chapter 5 Computing with Register Machines

The sequence of instructions labeled compound_apply specifies the application
of compound functions. To apply a compound function, we proceed in a way similar
to what we did in the metacircular evaluator. We construct a frame that binds the
function’s parameters to the arguments, use this frame to extend the environment
carried by the function, and evaluate in this extended environment the body of the
function.

At this point the compound function is in register fun and its arguments are
in argl. We extract the function’s parameters into unev and its environment into
env. We then replace the environment in env with the environment constructed by
extending it with bindings of the parameters to the given arguments. We then extract
the body of the function into comp. The natural next step would be to restore the
saved continue and proceed to eval_dispatch to evaluate the body and go to the
restored continuation with the result in val, as is done for the last statement of a
sequence. But there is a complication!

The complication has two aspects. One is that at any point in the evaluation
of the body, a return statement may require the function to return the value of the
return expression as the value of the body. But a return statement may be nested
arbitrarily deeply in the body; so the stack at the moment the return statement
is encountered is not necessarily the stack that is needed for a return from the
function. One way to make it possible to adjust the stack for the return is to put
a marker on the stack that can be found by the return code. This is implemented
by the push_marker_to_stack instruction. The return code can then use the
revert_stack_to_marker instruction to restore the stack to the place indicated
by the marker before evaluating the return expression.28

The other aspect of the complication is that if the evaluation of the body
terminates without executing a return statement, the value of the body must be
undefined. To handle this, we set up the continue register to point to the entry
point return_undefined before going off to eval_dispatch to evaluate the body.
If a return statement is not encountered during evaluation of the body, evaluation of
the body will continue at return_undefined.

"compound_apply",
assign("unev", list(op("function_parameters"), reg("fun"))),
assign("env", list(op("function_environment"), reg("fun"))),
assign("env", list(op("extend_environment"),

reg("unev"), reg("argl"), reg("env"))),
assign("comp", list(op("function_body"), reg("fun"))),
push_marker_to_stack(),
assign("continue", label("return_undefined")),
go_to(label("eval_dispatch")),

The only places in the interpreter where the env register is assigned a new value
are compound_apply and ev_block (section 5.4.3). Just as in the metacircular eval-
uator, the new environment for evaluation of a function body is constructed from

28. The special instructions push_marker_to_stack and revert_stack_to_marker are not
strictly necessary and could be implemented by explicitly pushing and popping a marker value
onto and off the stack. Anything that could not be confused with a value in the program can be
used as a marker. See exercise 5.23.

5.4.2 Evaluating Function Applications 511

the environment carried by the function, together with the argument list and the
corresponding list of names to be bound.

When a return statement is evaluated at ev_return, we use the revert_stack_
to_marker instruction to restore the stack to its state at the beginning of the function
call by removing all values from the stack down to and including the marker. As a
consequence, restore("continue") will restore the continuation of the function
call, which was saved at ev_application. We then proceed to evaluate the return
expression, whose result will be placed in val and thus be the value returned from
the function when we continue after the evaluation of the return expression.

"ev_return",
revert_stack_to_marker(),
restore("continue"),
assign("comp", list(op("return_expression"), reg("comp"))),
go_to(label("eval_dispatch")),

If no return statement is encountered during evaluation of the function body,
evaluation continues at return_undefined, the continuation that was set up at
compound_apply. To return undefined from the function, we put undefined into
val and go to the entry point that was put onto the stack at ev_application. Be-
fore we can restore that continuation from the stack, however, we must remove the
marker that was saved at compound_apply.

"return_undefined",
revert_stack_to_marker(),
restore("continue"),
assign("val", constant(undefined)),
go_to(reg("continue")),

Return Statements and Tail Recursion
In chapter 1 we said that the process described by a function such as

function sqrt_iter(guess, x) {
return is_good_enough(guess, x)

? guess
: sqrt_iter(improve(guess, x), x);

}

is an iterative process. Even though the function is syntactically recursive (defined
in terms of itself), it is not logically necessary for an evaluator to save information
in passing from one call to sqrt_iter to the next.29 An evaluator that can execute
a function such as sqrt_iter without requiring increasing storage as the function
continues to call itself is called a tail-recursive evaluator.

The metacircular implementation of the evaluator in chapter 4 isn’t tail-recursive.
It implements a return statement as a constructor of a return value object containing
the value to be returned and inspects the result of a function call to see whether
it is such an object. If the evaluation of a function body produces a return value

29. We saw in section 5.1 how to implement such a process with a register machine that had no
stack; the state of the process was stored in a fixed set of registers.

512 Chapter 5 Computing with Register Machines

object, the return value of the function is the contents of that object; otherwise, the
return value is undefined. Both the construction of the return value object and the
eventual inspection of the result of the function call are deferred operations, which
lead to an accumulation of information on the stack.

Our explicit-control evaluator is tail-recursive, because it does not need to wrap
up return values for inspection and thus avoids the buildup of stack from deferred
operations. At ev_return, in order to evaluate the expression that computes the
return value of a function, we transfer directly to eval_dispatch with nothing
more on the stack than right before the function call. We accomplish this by undoing
any saves to the stack by the function (which are useless because we are returning)
using revert_stack_to_marker. Then, rather than arranging for eval_dispatch
to come back here and then restoring continue from the stack and continuing at that
entry point, we restore continue from the stack before going to eval_dispatch so
that eval_dispatch will continue at that entry point after evaluating the expression.
Finally, we transfer to eval_dispatch without saving any information on the stack.
Thus, when we proceed to evaluate a return expression, the stack is the same as
just before the call to the function whose return value we are about to compute.
Hence, evaluating a return expression—even if it is a function call (as in sqrt_iter,
where the conditional expression reduces to a call to sqrt_iter)—will not cause
any information to accumulate on the stack.30

If we did not think to take advantage of the fact that it is unnecessary to hold
on to the useless information on the stack while evaluating a return expression, we
might have taken the straightforward approach of evaluating the return expression,
coming back to restore the stack, and finally continuing at the entry point that is
waiting for the result of the function call:

"ev_return", // alternative implementation: not tail-recursive
assign("comp", list(op("return_expression"), reg("comp"))),
assign("continue", label("ev_restore_stack")),
go_to(label("eval_dispatch")),

"ev_restore_stack",
revert_stack_to_marker(), // undo saves in current function
restore("continue"), // undo save at ev_application
go_to(reg("continue")),

This may seem like a minor change to our previous code for evaluation of return
statements: The only difference is that we delay undoing any register saves to the
stack until after the evaluation of the return expression. The interpreter will still give
the same value for any expression. But this change is fatal to the tail-recursive imple-
mentation, because we must now come back after evaluating the return expression in
order to undo the (useless) register saves. These extra saves will accumulate during

30. This implementation of tail recursion is one variety of a well-known optimization technique
used by many compilers. In compiling a function that ends with a function call, one can replace
the call by a jump to the called function’s entry point. Building this strategy into the interpreter,
as we have done in this section, provides the optimization uniformly throughout the language.

5.4.2 Evaluating Function Applications 513

a nest of function calls. Consequently, processes such as sqrt_iter will require
space proportional to the number of iterations rather than requiring constant space.
This difference can be significant. For example, with tail recursion, an infinite loop
can be expressed using only the function-call and return mechanisms:

function count(n) {
display(n);
return count(n + 1);

}

Without tail recursion, such a function would eventually run out of stack space,
and expressing a true iteration would require some control mechanism other than
function call.

Note that our JavaScript implementation requires the use of return in or-
der to be tail-recursive. Because the undoing of the register saves takes place at
ev_return, removing return from the count function above will cause it to even-
tually run out of stack space. This explains the use of return in the infinite driver
loops in chapter 4.

Exercise 5.22
Explain how the stack builds up if return is removed from count:

function count(n) {
display(n);
count(n + 1);

}

Exercise 5.23
Implement the equivalent of push_marker_to_stack by using save at compound_apply
to store a special marker value on the stack. Implement the equivalent of revert_stack_
to_marker at ev_return and return_undefined as a loop that repeatedly performs a
restore until it hits the marker. Note that this will require restoring a value to a reg-
ister other than the one it was saved from. (Although we are careful to avoid that in
our evaluator, our stack implementation actually allows it. See exercise 5.10.) This is
necessary because the only way to pop from the stack is by restoring to a register. Hint:
You will need to create a unique constant to serve as the marker, for example with
const marker = list("marker"). Because list creates a new pair, it cannot be ===
to anything else on the stack.

Exercise 5.24
Implement push_marker_to_stack and revert_stack_to_marker as register-machine
instructions, following the implementation of save and restore in section 5.2.3. Add
functions push_marker and pop_marker to access stacks, mirroring the implementation
of push and pop in section 5.2.1. Note that you do not need to actually insert a marker into
the stack. Instead, you can add a local state variable to the stack model to keep track of
the position of the last save before each push_marker_to_stack. If you choose to put a
marker on the stack, see the hint in exercise 5.23.

514 Chapter 5 Computing with Register Machines

5.4.3 Blocks, Assignments, and Declarations
Blocks
The body of a block is evaluated with respect to the current environment extended
by a frame that binds all local names to the value "*unassigned*". We temporarily
make use of the val register to hold the list of all variables declared in the block,
which is obtained by scan_out_declarations from section 4.1.1. The functions
scan_out_declarations and list_of_unassigned are assumed to be available
as machine operations.31

"ev_block",
assign("comp", list(op("block_body"), reg("comp"))),
assign("val", list(op("scan_out_declarations"), reg("comp"))),

save("comp"), // so we can use it to temporarily hold *unassigned* values
assign("comp", list(op("list_of_unassigned"), reg("val"))),
assign("env", list(op("extend_environment"),

reg("val"), reg("comp"), reg("env"))),
restore("comp"), // the block body
go_to(label("eval_dispatch")),

Assignments and declarations
Assignments are handled by ev_assignment, reached from eval_dispatch with
the assignment expression in comp. The code at ev_assignment first evaluates the
value part of the expression and then installs the new value in the environment. The
function assign_symbol_value is assumed to be available as a machine operation.

"ev_assignment",
assign("unev", list(op("assignment_symbol"), reg("comp"))),
save("unev"), // save variable for later
assign("comp", list(op("assignment_value_expression"), reg("comp"))),
save("env"),
save("continue"),
assign("continue", label("ev_assignment_install")),
go_to(label("eval_dispatch")), // evaluate assignment value

"ev_assignment_install",
restore("continue"),
restore("env"),
restore("unev"),
perform(list(op("assign_symbol_value"),

reg("unev"), reg("val"), reg("env"))),
go_to(reg("continue")),

Declarations of variables and constants are handled in a similar way. Note that
whereas the value of an assignment is the value that was assigned, the value of
a declaration is undefined. This is handled by setting val to undefined before
continuing. As in the metacircular evaluator, we transform a function declaration

31. Footnote 24 suggests that an actual implementation would perform syntax transformations
before program execution. In the same vein, names declared in blocks should be scanned out in
a preprocessing step rather than each time a block is evaluated.

5.4.4 Running the Evaluator 515

into a constant declaration whose value expression is a lambda expression. This
happens at ev_function_declaration, which makes the transformation in place
in comp and falls through to ev_declaration.

"ev_function_declaration",
assign("comp",

list(op("function_decl_to_constant_decl"), reg("comp"))),
"ev_declaration",
assign("unev", list(op("declaration_symbol"), reg("comp"))),
save("unev"), // save declared name
assign("comp",

list(op("declaration_value_expression"), reg("comp"))),
save("env"),
save("continue"),
assign("continue", label("ev_declaration_assign")),
go_to(label("eval_dispatch")), // evaluate declaration value

"ev_declaration_assign",
restore("continue"),
restore("env"),
restore("unev"),
perform(list(op("assign_symbol_value"),

reg("unev"), reg("val"), reg("env"))),
assign("val", constant(undefined)),
go_to(reg("continue")),

Exercise 5.25
Extend the evaluator to handle while loops, by translating them to applications of a func-
tion while_loop, as shown in exercise 4.7. You can paste the declaration of the function
while_loop in front of user programs. You may “cheat” by assuming that the syntax
transformer while_to_application is available as a machine operation. Refer to exer-
cise 4.7 to discuss whether this approach works if return, break, and continue statements
are allowed inside the while loop. If not, how can you modify the explicit-control evaluator
to run programs with while loops that include these statements?

Exercise 5.26
Modify the evaluator so that it uses normal-order evaluation, based on the lazy evaluator
of section 4.2.

5.4.4 Running the Evaluator
With the implementation of the explicit-control evaluator we come to the end of a de-
velopment, begun in chapter 1, in which we have explored successively more precise
models of the evaluation process. We started with the relatively informal substitution
model, then extended this in chapter 3 to the environment model, which enabled us
to deal with state and change. In the metacircular evaluator of chapter 4, we used
JavaScript itself as a language for making more explicit the environment structure
constructed during evaluation of an component. Now, with register machines, we
have taken a close look at the evaluator’s mechanisms for storage management,
argument passing, and control. At each new level of description, we have had to
raise issues and resolve ambiguities that were not apparent at the previous, less

516 Chapter 5 Computing with Register Machines

precise treatment of evaluation. To understand the behavior of the explicit-control
evaluator, we can simulate it and monitor its performance.

We will install a driver loop in our evaluator machine. This plays the role of the
driver_loop function of section 4.1.4. The evaluator will repeatedly print a prompt,
read a program, evaluate the program by going to eval_dispatch, and print the
result. If nothing is entered at the prompt, we jump to the label evaluator_done,
which is the last entry point in the controller. The following instructions form the
beginning of the explicit-control evaluator’s controller sequence:32

"read_evaluate_print_loop",
perform(list(op("initialize_stack"))),
assign("comp", list(op("user_read"),

constant("EC-evaluate input:"))),
assign("comp", list(op("parse"), reg("comp"))),
test(list(op("is_null"), reg("comp"))),
branch(label("evaluator_done")),
assign("env", list(op("get_current_environment"))),
assign("val", list(op("scan_out_declarations"), reg("comp"))),
save("comp"), // so we can use it to temporarily hold *unassigned* values
assign("comp", list(op("list_of_unassigned"), reg("val"))),
assign("env", list(op("extend_environment"),

reg("val"), reg("comp"), reg("env"))),
perform(list(op("set_current_environment"), reg("env"))),
restore("comp"), // the program
assign("continue", label("print_result")),
go_to(label("eval_dispatch")),

"print_result",
perform(list(op("user_print"),

constant("EC-evaluate value:"), reg("val"))),
go_to(label("read_evaluate_print_loop")),

We store the current environment, initially the global environment, in the variable
current_environment and update it each time around the loop to remember
past declarations. The operations get_current_environment and set_current_
environment simply get and set this variable.

let current_environment = the_global_environment;
function get_current_environment() {

return current_environment;
}
function set_current_environment(env) {

current_environment = env;
}

32. We assume here that user_read, parse, and the various printing operations are available
as primitive machine operations, which is useful for our simulation, but completely unrealistic
in practice. These are actually extremely complex operations. In practice, reading and print-
ing would be implemented using low-level input-output operations such as transferring single
characters to and from a device.

5.4.4 Running the Evaluator 517

When we encounter an error in a function (such as the “unknown function type”
error indicated at apply_dispatch), we print an error message and return to the
driver loop.33

"unknown_component_type",
assign("val", constant("unknown syntax")),
go_to(label("signal_error")),

"unknown_function_type",
restore("continue"), // clean up stack (from apply_dispatch)
assign("val", constant("unknown function type")),
go_to(label("signal_error")),

"signal_error",
perform(list(op("user_print"),

constant("EC-evaluator error:"), reg("val"))),
go_to(label("read_evaluate_print_loop")),

For the purposes of the simulation, we initialize the stack each time through the
driver loop, since it might not be empty after an error (such as an undeclared name)
interrupts an evaluation.34

If we combine all the code fragments presented in sections 5.4.1–5.4.4, we
can create an evaluator machine model that we can run using the register-machine
simulator of section 5.2.

const eceval = make_machine(list("comp", "env", "val", "fun",
"argl", "continue", "unev"),

eceval_operations,
list("read_evaluate_print_loop",

〈entire machine controller as given above〉
"evaluator_done"));

We must define JavaScript functions to simulate the operations used as primitives by
the evaluator. These are the same functions we used for the metacircular evaluator
in section 4.1, together with the few additional ones defined in footnotes throughout
section 5.4.

const eceval_operations = list(list("is_literal", is_literal),
〈complete list of operations for eceval machine〉);

Finally, we can initialize the global environment and run the evaluator:

const the_global_environment = setup_environment();
start(eceval);

33. There are other errors that we would like the interpreter to handle, but these are not so
simple. See exercise 5.31.

34. We could perform the stack initialization only after errors, but doing it in the driver loop
will be convenient for monitoring the evaluator’s performance, as described below.

518 Chapter 5 Computing with Register Machines

EC-evaluate input:
function append(x, y) {

return is_null(x)
? y
: pair(head(x), append(tail(x), y));

}

EC-evaluate value:
undefined

EC-evaluate input:
append(list("a", "b", "c"), list("d", "e", "f"));

EC-evaluate value:
["a", ["b", ["c", ["d", ["e", ["f", null]]]]]]

Of course, evaluating programs in this way will take much longer than if we had
directly typed them into JavaScript, because of the multiple levels of simulation
involved. Our programs are evaluated by the explicit-control-evaluator machine,
which is being simulated by a JavaScript program, which is itself being evaluated
by the JavaScript interpreter.

Monitoring the performance of the evaluator
Simulation can be a powerful tool to guide the implementation of evaluators. Sim-
ulations make it easy not only to explore variations of the register-machine design
but also to monitor the performance of the simulated evaluator. For example, one
important factor in performance is how efficiently the evaluator uses the stack. We
can observe the number of stack operations required to evaluate various programs by
defining the evaluator register machine with the version of the simulator that collects
statistics on stack use (section 5.2.4), and adding an instruction at the evaluator’s
print_result entry point to print the statistics:

"print_result",
perform(list(op("print_stack_statistics"))), // added instruction
// rest is same as before
perform(list(op("user_print"),

constant("EC-evaluate value:"), reg("val"))),
go_to(label("read_evaluate_print_loop")),

Interactions with the evaluator now look like this:

EC-evaluate input:
function factorial (n) {

return n === 1
? 1
: factorial(n - 1) * n;

}

5.4.4 Running the Evaluator 519

total pushes = 4
maximum depth = 3
EC-evaluate value:
undefined

EC-evaluate input:
factorial(5);

total pushes = 151
maximum depth = 28
EC-evaluate value:
120

Note that the driver loop of the evaluator reinitializes the stack at the start of each
interaction, so that the statistics printed will refer only to stack operations used to
evaluate the previous program.

Exercise 5.27
Use the monitored stack to explore the tail-recursive property of the evaluator (sec-
tion 5.4.2). Start the evaluator and define the iterative factorial function from sec-
tion 1.2.1:

function factorial(n) {
function iter(product, counter) {

return counter > n
? product
: iter(counter * product,

counter + 1);
}
return iter(1, 1);

}

Run the function with some small values of n. Record the maximum stack depth and the
number of pushes required to compute n! for each of these values.

a. You will find that the maximum depth required to evaluate n! is independent of n. What
is that depth?

b. Determine from your data a formula in terms of n for the total number of push opera-
tions used in evaluating n! for any n≥ 1. Note that the number of operations used is a
linear function of n and is thus determined by two constants.

Exercise 5.28
For comparison with exercise 5.27, explore the behavior of the following function for
computing factorials recursively:

function factorial(n) {
return n === 1

? 1
: factorial(n - 1) * n;

}

520 Chapter 5 Computing with Register Machines

By running this function with the monitored stack, determine, as a function of n, the
maximum depth of the stack and the total number of pushes used in evaluating n! for
n≥ 1. (Again, these functions will be linear.) Summarize your experiments by filling in the
following table with the appropriate expressions in terms of n:

Maximum depth Number of pushes

Recursive factorial

Iterative factorial

The maximum depth is a measure of the amount of space used by the evaluator in carrying
out the computation, and the number of pushes correlates well with the time required.

Exercise 5.29
Modify the definition of the evaluator by changing ev_return as described in section 5.4.2
so that the evaluator is no longer tail-recursive. Rerun your experiments from exercises 5.27
and 5.28 to demonstrate that both versions of the factorial function now require space
that grows linearly with their input.

Exercise 5.30
Monitor the stack operations in the tree-recursive Fibonacci computation:

function fib(n) {
return n < 2 ? n : fib(n - 1) + fib(n - 2);

}

a. Give a formula in terms of n for the maximum depth of the stack required to compute
Fib(n) for n≥ 2. Hint: In section 1.2.2 we argued that the space used by this process
grows linearly with n.

b. Give a formula for the total number of pushes used to compute Fib(n) for n≥ 2. You
should find that the number of pushes (which correlates well with the time used) grows
exponentially with n. Hint: Let S(n) be the number of pushes used in computing Fib(n).
You should be able to argue that there is a formula that expresses S(n) in terms of
S(n – 1), S(n – 2), and some fixed “overhead” constant k that is independent of n. Give
the formula, and say what k is. Then show that S(n) can be expressed as aFib(n + 1) + b
and give the values of a and b.

Exercise 5.31
Our evaluator currently catches and signals only two kinds of errors—unknown component
types and unknown function types. Other errors will take us out of the evaluator read-
evaluate-print loop. When we run the evaluator using the register-machine simulator, these
errors are caught by the underlying JavaScript system. This is analogous to the computer

5.5 Compilation 521

crashing when a user program makes an error.35 It is a large project to make a real error
system work, but it is well worth the effort to understand what is involved here.

a. Errors that occur in the evaluation process, such as an attempt to access an unbound
name, could be caught by changing the lookup operation to make it return a distin-
guished condition code, which cannot be a possible value of any user name. The
evaluator can test for this condition code and then do what is necessary to go to
signal_error. Find all of the places in the evaluator where such a change is necessary
and fix them. This is lots of work.

b. Much worse is the problem of handling errors that are signaled by applying primitive
functions such as an attempt to divide by zero or an attempt to extract the head of
a string. In a professionally written high-quality system, each primitive application is
checked for safety as part of the primitive. For example, every call to head could first
check that the argument is a pair. If the argument is not a pair, the application would
return a distinguished condition code to the evaluator, which would then report the
failure. We could arrange for this in our register-machine simulator by making each
primitive function check for applicability and returning an appropriate distinguished
condition code on failure. Then the primitive_apply code in the evaluator can check
for the condition code and go to signal_error if necessary. Build this structure and
make it work. This is a major project.

5.5 Compilation
The explicit-control evaluator of section 5.4 is a register machine whose controller
interprets JavaScript programs. In this section we will see how to run JavaScript
programs on a register machine whose controller is not a JavaScript interpreter.

The explicit-control evaluator machine is universal—it can carry out any com-
putational process that can be described in JavaScript. The evaluator’s controller
orchestrates the use of its data paths to perform the desired computation. Thus, the
evaluator’s data paths are universal: They are sufficient to perform any computation
we desire, given an appropriate controller.36

Commercial general-purpose computers are register machines organized around
a collection of registers and operations that constitute an efficient and convenient

35. This manifests itself as, for example, a “kernel panic” or a “blue screen of death” or even a
reboot. Automatic rebooting is an approach typically used on phones and tablets. Most modern
operating systems do a decent job of preventing user programs from causing an entire machine
to crash.

36. This is a theoretical statement. We are not claiming that the evaluator’s data paths are a
particularly convenient or efficient set of data paths for a general-purpose computer. For exam-
ple, they are not very good for implementing high-performance floating-point calculations or
calculations that intensively manipulate bit vectors.

522 Chapter 5 Computing with Register Machines

universal set of data paths. The controller for a general-purpose machine is an
interpreter for a register-machine language like the one we have been using. This
language is called the native language of the machine, or simply machine language.
Programs written in machine language are sequences of instructions that use the ma-
chine’s data paths. For example, the explicit-control evaluator’s instruction sequence
can be thought of as a machine-language program for a general-purpose computer
rather than as the controller for a specialized interpreter machine.

There are two common strategies for bridging the gap between higher-level lan-
guages and register-machine languages. The explicit-control evaluator illustrates the
strategy of interpretation. An interpreter written in the native language of a machine
configures the machine to execute programs written in a language (called the source
language) that may differ from the native language of the machine performing the
evaluation. The primitive functions of the source language are implemented as a li-
brary of subroutines written in the native language of the given machine. A program
to be interpreted (called the source program) is represented as a data structure. The
interpreter traverses this data structure, analyzing the source program. As it does
so, it simulates the intended behavior of the source program by calling appropriate
primitive subroutines from the library.

In this section, we explore the alternative strategy of compilation. A compiler for
a given source language and machine translates a source program into an equivalent
program (called the object program) written in the machine’s native language. The
compiler that we implement in this section translates programs written in JavaScript
into sequences of instructions to be executed using the explicit-control evaluator
machine’s data paths.37

Compared with interpretation, compilation can provide a great increase in the
efficiency of program execution, as we will explain below in the overview of the
compiler. On the other hand, an interpreter provides a more powerful environment
for interactive program development and debugging, because the source program
being executed is available at run time to be examined and modified. In addition,
because the entire library of primitives is present, new programs can be constructed
and added to the system during debugging.

In view of the complementary advantages of compilation and interpretation,
modern program-development environments pursue a mixed strategy. These systems
are generally organized so that interpreted functions and compiled functions can call
each other. This enables a programmer to compile those parts of a program that are
assumed to be debugged, thus gaining the efficiency advantage of compilation, while
retaining the interpretive mode of execution for those parts of the program that are in

37. Actually, the machine that runs compiled code can be simpler than the interpreter machine,
because we won’t use the comp and unev registers. The interpreter used these to hold pieces
of unevaluated components. With the compiler, however, these components get built into the
compiled code that the register machine will run. For the same reason, we don’t need the
machine operations that deal with component syntax. But compiled code will use a few ad-
ditional machine operations (to represent compiled function objects) that didn’t appear in the
explicit-control evaluator machine.

5.5 Compilation 523

the flux of interactive development and debugging.38 In section 5.5.7, after we have
implemented the compiler, we will show how to interface it with our interpreter to
produce an integrated interpreter-compiler system.

An overview of the compiler
Our compiler is much like our interpreter, both in its structure and in the function
it performs. Accordingly, the mechanisms used by the compiler for analyzing com-
ponents will be similar to those used by the interpreter. Moreover, to make it easy
to interface compiled and interpreted code, we will design the compiler to generate
code that obeys the same conventions of register usage as the interpreter: The envi-
ronment will be kept in the env register, argument lists will be accumulated in argl,
a function to be applied will be in fun, functions will return their answers in val,
and the location to which a function should return will be kept in continue. In gen-
eral, the compiler translates a source program into an object program that performs
essentially the same register operations as would the interpreter in evaluating the
same source program.

This description suggests a strategy for implementing a rudimentary compiler:
We traverse the component in the same way the interpreter does. When we encounter
a register instruction that the interpreter would perform in evaluating the component,
we do not execute the instruction but instead accumulate it into a sequence. The
resulting sequence of instructions will be the object code. Observe the efficiency
advantage of compilation over interpretation. Each time the interpreter evaluates
a component—for example, f(96, 22)—it performs the work of classifying the
component (discovering that this is a function application) and testing for the end
of the list of argument expressions (discovering that there are two argument expres-
sions). With a compiler, the component is analyzed only once, when the instruction
sequence is generated at compile time. The object code produced by the compiler
contains only the instructions that evaluate the function expression and the two ar-
gument expressions, assemble the argument list, and apply the function (in fun) to
the arguments (in argl).

This is the same kind of optimization we implemented in the analyzing evaluator
of section 4.1.7. But there are further opportunities to gain efficiency in compiled
code. As the interpreter runs, it follows a process that must be applicable to any
component in the language. In contrast, a given segment of compiled code is meant
to execute some particular component. This can make a big difference, for example
in the use of the stack to save registers. When the interpreter evaluates a component,
it must be prepared for any contingency. Before evaluating a subcomponent, the
interpreter saves all registers that will be needed later, because the subcomponent
might require an arbitrary evaluation. A compiler, on the other hand, can exploit the
structure of the particular component it is processing to generate code that avoids
unnecessary stack operations.

38. Language implementations often delay the compilation of program parts even when they are
assumed to be debugged, until there is enough evidence that compiling them would lead to an
overall efficiency advantage. The evidence is obtained at run time by monitoring the number of
times the program parts are being interpreted. This technique is called just-in-time compilation.

524 Chapter 5 Computing with Register Machines

As a case in point, consider the application f(96, 22). Before the interpreter
evaluates the function expression of the application, it prepares for this evaluation
by saving the registers containing the argument expressions and the environment,
whose values will be needed later. The interpreter then evaluates the function ex-
pression to obtain the result in val, restores the saved registers, and finally moves
the result from val to fun. However, in the particular expression we are dealing
with, the function expression is the name f, whose evaluation is accomplished by
the machine operation lookup_symbol_value, which does not alter any registers.
The compiler that we implement in this section will take advantage of this fact and
generate code that evaluates the function expression using the instruction

assign("fun",
list(op("lookup_symbol_value"), constant("f"), reg("env")))

where the argument to lookup_symbol_value is extracted at compile time from
the parser’s representation of f(96, 22). This code not only avoids the unnecessary
saves and restores but also assigns the value of the lookup directly to fun, whereas
the interpreter would obtain the result in val and then move this to fun.

A compiler can also optimize access to the environment. Having analyzed the
code, the compiler can know in which frame the value of a particular name will
be located and access that frame directly, rather than performing the lookup_
symbol_value search. We will discuss how to implement such lexical addressing
in section 5.5.6. Until then, however, we will focus on the kind of register and
stack optimizations described above. There are many other optimizations that can
be performed by a compiler, such as coding primitive operations “in line” instead
of using a general apply mechanism (see exercise 5.41); but we will not emphasize
these here. Our main goal in this section is to illustrate the compilation process in a
simplified (but still interesting) context.

5.5.1 Structure of the Compiler
In section 4.1.7 we modified our original metacircular interpreter to separate analy-
sis from execution. We analyzed each component to produce an execution function
that took an environment as argument and performed the required operations. In our
compiler, we will do essentially the same analysis. Instead of producing execution
functions, however, we will generate sequences of instructions to be run by our
register machine.

The function compile is the top-level dispatch in the compiler. It corresponds to
the evaluate function of section 4.1.1, the analyze function of section 4.1.7, and
the eval_dispatch entry point of the explicit-control-evaluator in section 5.4.1.
The compiler, like the interpreters, uses the component-syntax functions defined in
section 4.1.2.39 The function compile performs a case analysis on the syntactic

39. Notice, however, that our compiler is a JavaScript program, and the syntax functions that
it uses to manipulate expressions are the actual JavaScript functions used with the metacircular
evaluator. For the explicit-control evaluator, in contrast, we assumed that equivalent syntax oper-
ations were available as operations for the register machine. (Of course, when we simulated the
register machine in JavaScript, we used the actual JavaScript functions in our register machine
simulation.)

5.5.1 Structure of the Compiler 525

type of the component to be compiled. For each type of component, it dispatches to
a specialized code generator:

function compile(component, target, linkage) {
return is_literal(component)

? compile_literal(component, target, linkage)
: is_name(component)
? compile_name(component, target, linkage)
: is_application(component)
? compile_application(component, target, linkage)
: is_operator_combination(component)
? compile(operator_combination_to_application(component),

target, linkage)
: is_conditional(component)
? compile_conditional(component, target, linkage)
: is_lambda_expression(component)
? compile_lambda_expression(component, target, linkage)
: is_sequence(component)
? compile_sequence(sequence_statements(component),

target, linkage)
: is_block(component)
? compile_block(component, target, linkage)
: is_return_statement(component)
? compile_return_statement(component, target, linkage)
: is_function_declaration(component)
? compile(function_decl_to_constant_decl(component),

target, linkage)
: is_declaration(component)
? compile_declaration(component, target, linkage)
: is_assignment(component)
? compile_assignment(component, target, linkage)
: error(component, "unknown component type -- compile");

}

Targets and linkages
The function compile and the code generators that it calls take two arguments in
addition to the component to compile. There is a target, which specifies the register
in which the compiled code is to return the value of the component. There is also
a linkage descriptor, which describes how the code resulting from the compilation
of the component should proceed when it has finished its execution. The linkage
descriptor can require the code to do one of the following three things:

• proceed to the next instruction in sequence (this is specified by the linkage
descriptor "next"),

• jump to the current value of the continue register as part of returning from a
function call (this is specified by the linkage descriptor "return"), or

• jump to a named entry point (this is specified by using the designated label as the
linkage descriptor).

For example, compiling the literal 5 with a target of the val register and a linkage
of "next" should produce the instruction

526 Chapter 5 Computing with Register Machines

assign("val", constant(5))

Compiling the same expression with a linkage of "return" should produce the
instructions

assign("val", constant(5)),
go_to(reg("continue"))

In the first case, execution will continue with the next instruction in the sequence.
In the second case, we will jump to whatever entry point is stored in the continue
register. In both cases, the value of the expression will be placed into the target
val register. Our compiler uses the "return" linkage when compiling the return
expression of a return statement. Just as in the explicit-control evaluator, returning
from a function call happens in three steps:

1. reverting the stack to the marker and restoring continue (which holds a contin-
uation set up at the beginning of the function call)

2. computing the return value and placing it in val
3. jumping to the entry point in continue

Compilation of a return statement explicitly generates code for reverting the stack
and restoring continue. The return expression is compiled with target val and
linkage "return" so that the generated code for computing the return value places
the return value in val and ends by jumping to continue.

Instruction sequences and stack usage
Each code generator returns an instruction sequence containing the object code it
has generated for the component. Code generation for a compound component is
accomplished by combining the output from simpler code generators for subcompo-
nents, just as evaluation of a compound component is accomplished by evaluating
the subcomponents.

The simplest method for combining instruction sequences is a function called
append_instruction_sequences, which takes as arguments two instruction se-
quences that are to be executed sequentially. It appends them and returns the
combined sequence. That is, if seq1 and seq2 are sequences of instructions, then
evaluating

append_instruction_sequences(seq1, seq2)

produces the sequence

seq1
seq2

Whenever registers might need to be saved, the compiler’s code generators use
preserving, which is a more subtle method for combining instruction sequences.
The function preserving takes three arguments: a set of registers and two instruc-
tion sequences that are to be executed sequentially. It appends the sequences in such
a way that the contents of each register in the set is preserved over the execution of
the first sequence, if this is needed for the execution of the second sequence. That
is, if the first sequence modifies the register and the second sequence actually needs

5.5.1 Structure of the Compiler 527

the register’s original contents, then preserving wraps a save and a restore of
the register around the first sequence before appending the sequences. Otherwise,
preserving simply returns the appended instruction sequences. Thus, for example,

preserving(list(reg1, reg2), seq1, seq2)

produces one of the following four sequences of instructions, depending on how
seq1 and seq2 use reg1 and reg2:

seq1 save(reg1), save(reg2), save(reg2),
seq2 seq1 seq1 save(reg1),

restore(reg1), restore(reg2), seq1
seq2 seq2 restore(reg1),

restore(reg2),
seq2

By using preserving to combine instruction sequences the compiler avoids
unnecessary stack operations. This also isolates the details of whether or not to gen-
erate save and restore instructions within the preserving function, separating
them from the concerns that arise in writing each of the individual code generators.
In fact no save or restore instructions are explicitly produced by the code gen-
erators, except that the code for calling a function saves continue and the code
for returning from a function restores it: These corresponding save and restore
instructions are explicitly generated by different calls to compile, not as a matched
pair by preserving (as we will see in section 5.5.3).

In principle, we could represent an instruction sequence simply as a list of in-
structions. The function append_instruction_sequences could then combine in-
struction sequences by performing an ordinary list append. However, preserving
would then be a complex operation, because it would have to analyze each in-
struction sequence to determine how the sequence uses its registers. The function
preserving would be inefficient as well as complex, because it would have to
analyze each of its instruction sequence arguments, even though these sequences
might themselves have been constructed by calls to preserving, in which case their
parts would have already been analyzed. To avoid such repetitious analysis we will
associate with each instruction sequence some information about its register use.
When we construct a basic instruction sequence we will provide this information
explicitly, and the functions that combine instruction sequences will derive register-
use information for the combined sequence from the information associated with
the sequences being combined.

An instruction sequence will contain three pieces of information:

• the set of registers that must be initialized before the instructions in the sequence
are executed (these registers are said to be needed by the sequence),

• the set of registers whose values are modified by the instructions in the sequence,
and

• the actual instructions in the sequence.

528 Chapter 5 Computing with Register Machines

We will represent an instruction sequence as a list of its three parts. The constructor
for instruction sequences is thus

function make_instruction_sequence(needs, modifies, instructions) {
return list(needs, modifies, instructions);

}

For example, the two-instruction sequence that looks up the value of the symbol
"x" in the current environment, assigns the result to val, and then proceeds to
the continuation, requires registers env and continue to have been initialized, and
modifies register val. This sequence would therefore be constructed as

make_instruction_sequence(list("env", "continue"), list("val"),
list(assign("val",

list(op("lookup_symbol_value"), constant("x"),
reg("env"))),

go_to(reg("continue"))));

The functions for combining instruction sequences are shown in section 5.5.4.

Exercise 5.32
In evaluating a function application, the explicit-control evaluator always saves and re-
stores the env register around the evaluation of the function expression, saves and restores
env around the evaluation of each argument expression (except the final one), saves and
restores argl around the evaluation of each argument expression, and saves and restores
fun around the evaluation of the argument-expression sequence. For each of the following
applications, say which of these save and restore operations are superfluous and thus
could be eliminated by the compiler’s preserving mechanism:

f("x", "y")

f()("x", "y")

f(g("x"), y)

f(g("x"), "y")

Exercise 5.33
Using the preserving mechanism, the compiler will avoid saving and restoring env
around the evaluation of the function expression of an application in the case where the
function expression is a name. We could also build such optimizations into the evaluator.
Indeed, the explicit-control evaluator of section 5.4 already performs a similar optimization,
by treating applications with no arguments as a special case.

5.5.2 Compiling Components 529

a. Extend the explicit-control evaluator to recognize as a separate class of components
applications whose function expression is a name, and to take advantage of this fact in
evaluating such components.

b. Alyssa P. Hacker suggests that by extending the evaluator to recognize more and more
special cases we could incorporate all the compiler’s optimizations, and that this would
eliminate the advantage of compilation altogether. What do you think of this idea?

5.5.2 Compiling Components
In this section and the next we implement the code generators to which the compile
function dispatches.

Compiling linkage code
In general, the output of each code generator will end with instructions—generated
by the function compile_linkage—that implement the required linkage. If the link-
age is "return" then we must generate the instruction go_to(reg("continue")).
This needs the continue register and does not modify any registers. If the linkage is
"next", then we needn’t include any additional instructions. Otherwise, the linkage
is a label, and we generate a go_to to that label, an instruction that does not need or
modify any registers.

function compile_linkage(linkage) {
return linkage === "return"

? make_instruction_sequence(list("continue"), null,
list(go_to(reg("continue"))))

: linkage === "next"
? make_instruction_sequence(null, null, null)
: make_instruction_sequence(null, null,

list(go_to(label(linkage))));
}

The linkage code is appended to an instruction sequence by preserving the
continue register, since a "return" linkage will require the continue register:
If the given instruction sequence modifies continue and the linkage code needs it,
continue will be saved and restored.

function end_with_linkage(linkage, instruction_sequence) {
return preserving(list("continue"),

instruction_sequence,
compile_linkage(linkage));

}

530 Chapter 5 Computing with Register Machines

Compiling simple components
The code generators for literal expressions and names construct instruction se-
quences that assign the required value to the target register and then proceed as
specified by the linkage descriptor.

The literal value is extracted at compile time from the component being compiled
and put into the constant part of the assign instruction. For a name, an instruction is
generated to use the lookup_symbol_value operation when the compiled program
is run, to look up the value associated with a symbol in the current environment.
Like a literal value, the symbol is extracted at compile time from the component
being compiled. Thus symbol_of_name(component) is executed only once, when
the program is being compiled, and the symbol appears as a constant in the assign
instruction.

function compile_literal(component, target, linkage) {
const literal = literal_value(component);
return end_with_linkage(linkage,

make_instruction_sequence(null, list(target),
list(assign(target, constant(literal)))));

}
function compile_name(component, target, linkage) {

const symbol = symbol_of_name(component);
return end_with_linkage(linkage,

make_instruction_sequence(list("env"), list(target),
list(assign(target,

list(op("lookup_symbol_value"),
constant(symbol),
reg("env"))))));

}

These assignment instructions modify the target register, and the one that looks up a
symbol needs the env register.

Assignments and declarations are handled much as they are in the interpreter.
The function compile_assignment_declaration recursively generates code that
computes the value to be associated with the symbol and appends to it a two-
instruction sequence that updates the value associated with the symbol in the
environment and assigns the value of the whole component (the assigned value for
an assignment or undefined for a declaration) to the target register. The recursive
compilation has target val and linkage "next" so that the code will put its result
into val and continue with the code that is appended after it. The appending is done
preserving env, since the environment is needed for updating the symbol–value
association and the code for computing the value could be the compilation of a
complex expression that might modify the registers in arbitrary ways.

5.5.2 Compiling Components 531

function compile_assignment(component, target, linkage) {
return compile_assignment_declaration(

assignment_symbol(component),
assignment_value_expression(component),
reg("val"),
target, linkage);

}
function compile_declaration(component, target, linkage) {

return compile_assignment_declaration(
declaration_symbol(component),
declaration_value_expression(component),
constant(undefined),
target, linkage);

}
function compile_assignment_declaration(

symbol, value_expression, final_value,
target, linkage) {

const get_value_code = compile(value_expression, "val", "next");
return end_with_linkage(linkage,

preserving(list("env"),
get_value_code,
make_instruction_sequence(list("env", "val"),

list(target),
list(perform(list(op("assign_symbol_value"),

constant(symbol),
reg("val"),
reg("env"))),

assign(target, final_value)))));
}

The appended two-instruction sequence requires env and val and modifies the
target. Note that although we preserve env for this sequence, we do not preserve
val, because the get_value_code is designed to explicitly place its result in val
for use by this sequence. (In fact, if we did preserve val, we would have a bug,
because this would cause the previous contents of val to be restored right after the
get_value_code is run.)

Compiling conditionals
The code for a conditional compiled with a given target and linkage has the form

〈compilation of predicate, target val, linkage "next"〉
test(list(op("is_falsy"), reg("val"))),
branch(label("false_branch")),

"true_branch",
〈compilation of consequent with given target and given linkage or after_cond〉

"false_branch",
〈compilation of alternative with given target and linkage〉

"after_cond"

532 Chapter 5 Computing with Register Machines

To generate this code, we compile the predicate, consequent, and alternative,
and combine the resulting code with instructions to test the predicate result and
with newly generated labels to mark the true and false branches and the end of the
conditional.40 In this arrangement of code, we must branch around the true branch
if the test is false. The only slight complication is in how the linkage for the true
branch should be handled. If the linkage for the conditional is "return" or a label,
then the true and false branches will both use this same linkage. If the linkage is
"next", the true branch ends with a jump around the code for the false branch to
the label at the end of the conditional.

function compile_conditional(component, target, linkage) {
const t_branch = make_label("true_branch");
const f_branch = make_label("false_branch");
const after_cond = make_label("after_cond");
const consequent_linkage =

linkage === "next" ? after_cond : linkage;
const p_code = compile(conditional_predicate(component),

"val", "next");
const c_code = compile(conditional_consequent(component),

target, consequent_linkage);
const a_code = compile(conditional_alternative(component),

target, linkage);
return preserving(list("env", "continue"),

p_code,
append_instruction_sequences(
make_instruction_sequence(list("val"), null,
list(test(list(op("is_falsy"), reg("val"))),

branch(label(f_branch)))),
append_instruction_sequences(
parallel_instruction_sequences(
append_instruction_sequences(t_branch, c_code),
append_instruction_sequences(f_branch, a_code)),

after_cond)));
}

40. We can’t just use the labels true_branch, false_branch, and after_cond as shown
above, because there might be more than one conditional in the program. The compiler uses
the function make_label to generate labels. The function make_label takes a string as argu-
ment and returns a new string that begins with the given string. For example, successive calls
to make_label("a") would return "a1", "a2", and so on. The function make_label can be
implemented similarly to the generation of unique variable names in the query language, as
follows:
let label_counter = 0;
function new_label_number() {

label_counter = label_counter + 1;
return label_counter;

}
function make_label(string) {

return string + stringify(new_label_number());
}

5.5.2 Compiling Components 533

The env register is preserved around the predicate code because it could be needed
by the true and false branches, and continue is preserved because it could be
needed by the linkage code in those branches. The code for the true and false
branches (which are not executed sequentially) is appended using a special combiner
parallel_instruction_sequences described in section 5.5.4.

Compiling sequences
The compilation of statement sequences parallels their evaluation in the explicit-
control evaluator with one exception: If a return statement appears anywhere in a
sequence, we treat it as if it were the last statement. Each statement of the sequence
is compiled—the last statement (or a return statement) with the linkage specified
for the sequence, and the other statements with linkage "next" (to execute the
rest of the sequence). The instruction sequences for the individual statements are
appended to form a single instruction sequence, such that env (needed for the rest
of the sequence) and continue (possibly needed for the linkage at the end of the
sequence) are preserved.41

function compile_sequence(seq, target, linkage) {
return is_empty_sequence(seq)

? compile_literal(make_literal(undefined), target, linkage)
: is_last_statement(seq) ||

is_return_statement(first_statement(seq))
? compile(first_statement(seq), target, linkage)
: preserving(list("env", "continue"),

compile(first_statement(seq), target, "next"),
compile_sequence(rest_statements(seq),

target, linkage));
}

Treating a return statement as if it were the last statement in a sequence avoids
compiling any “dead code” after the return statement that can never be executed.
Removing the is_return_statement check does not change the behavior of the
object program; however, there are many reasons not to compile dead code, which
are beyond the scope of this book (security, compilation time, size of the object code,
etc.), and many compilers give warnings for dead code.42

Compiling blocks
A block is compiled by prepending an assign instruction to the compiled body of
the block. The assignment extends the current environment by a frame that binds
the names declared in the block to the value "*unassigned*". This operation both
needs and modifies the env register.

41. The continue register would be needed for a "return" linkage, which can result from a
compilation by compile_and_go (section 5.5.7).

42. Our compiler does not detect all dead code. For example, a conditional statement whose
consequent and alternative branches both end in a return statement will not stop subsequent
statements from being compiled. See exercises 5.34 and 5.35.

534 Chapter 5 Computing with Register Machines

function compile_block(stmt, target, linkage) {
const body = block_body(stmt);
const locals = scan_out_declarations(body);
const unassigneds = list_of_unassigned(locals);
return append_instruction_sequences(

make_instruction_sequence(list("env"), list("env"),
list(assign("env", list(op("extend_environment"),

constant(locals),
constant(unassigneds),
reg("env"))))),

compile(body, target, linkage));
}

Compiling lambda expressions
Lambda expressions construct functions. The object code for a lambda expression
must have the form

〈construct function object and assign it to target register〉
〈linkage〉

When we compile the lambda expression, we also generate the code for the function
body. Although the body won’t be executed at the time of function construction, it
is convenient to insert it into the object code right after the code for the lambda
expression. If the linkage for the lambda expression is a label or "return", this
is fine. But if the linkage is "next", we will need to skip around the code for the
function body by using a linkage that jumps to a label that is inserted after the body.
The object code thus has the form

〈construct function object and assign it to target register〉
〈code for given linkage〉 or go_to(label("after_lambda"))
〈compilation of function body〉
"after_lambda"

The function compile_lambda_expression generates the code for construct-
ing the function object followed by the code for the function body. The function
object will be constructed at run time by combining the current environment (the
environment at the point of declaration) with the entry point to the compiled function
body (a newly generated label).43

43. We need machine operations to implement a data structure for representing compiled
functions, analogous to the structure for compound functions described in section 4.1.3:
function make_compiled_function(entry, env) {

return list("compiled_function", entry, env);
}
function is_compiled_function(fun) {

return is_tagged_list(fun, "compiled_function");
}
function compiled_function_entry(c_fun) {

return head(tail(c_fun));
}
function compiled_function_env(c_fun) {

return head(tail(tail(c_fun)));
}

5.5.2 Compiling Components 535

function compile_lambda_expression(exp, target, linkage) {
const fun_entry = make_label("entry");
const after_lambda = make_label("after_lambda");
const lambda_linkage =

linkage === "next" ? after_lambda : linkage;
return append_instruction_sequences(

tack_on_instruction_sequence(
end_with_linkage(lambda_linkage,

make_instruction_sequence(list("env"),
list(target),

list(assign(target,
list(op("make_compiled_function"),

label(fun_entry),
reg("env")))))),

compile_lambda_body(exp, fun_entry)),
after_lambda);

}

The function compile_lambda_expression uses the special combiner tack_on_
instruction_sequence (from section 5.5.4) rather than append_instruction_
sequences to append the function body to the lambda expression code, because
the body is not part of the sequence of instructions that will be executed when the
combined sequence is entered; rather, it is in the sequence only because that was a
convenient place to put it.

The function compile_lambda_body constructs the code for the body of the
function. This code begins with a label for the entry point. Next come instructions
that will cause the runtime evaluation environment to switch to the correct environ-
ment for evaluating the function body—namely, the environment of the function,
extended to include the bindings of the parameters to the arguments with which the
function is called. After this comes the code for the function body, augmented to
ensure that it ends with a return statement. The augmented body is compiled with
target val so that its return value will be placed in val. The linkage descriptor
passed to this compilation is irrelevant, as it will be ignored.44 Since a linkage
argument is required, we arbitrarily pick "next".

44. The augmented function body is a sequence ending with a return statement. Compilation of
a sequence of statements uses the linkage "next" for all its component statements except the
last, for which it uses the given linkage. In this case, the last statement is a return statement, and
as we will see in section 5.5.3, a return statement always uses the "return" linkage descriptor
for its return expression. Thus all function bodies will end with a "return" linkage, not the
"next" we pass as the linkage argument to compile in compile_lambda_body.

536 Chapter 5 Computing with Register Machines

function compile_lambda_body(exp, fun_entry) {
const params = lambda_parameter_symbols(exp);
return append_instruction_sequences(

make_instruction_sequence(list("env", "fun", "argl"),
list("env"),

list(fun_entry,
assign("env",

list(op("compiled_function_env"),
reg("fun"))),

assign("env",
list(op("extend_environment"),

constant(params),
reg("argl"),
reg("env"))))),

compile(append_return_undefined(lambda_body(exp)),
"val", "next"));

}

To ensure that all functions end by executing a return statement, compile_
lambda_body appends to the lambda body a return statement whose return ex-
pression is the literal undefined. To do so, it uses the function append_return_
undefined, which constructs the parser’s tagged-list representation (from sec-
tion 4.1.2) of a sequence consisting of the body and a return undefined; state-
ment.

function append_return_undefined(body) {
return list("sequence", list(body,

list("return_statement",
list("literal", undefined))));

}

This simple transformation of lambda bodies is a third way to ensure that a function
that does not return explicitly has the return value undefined. In the metacircu-
lar evaluator, we used a return-value object, which also played a role in stopping
a sequence evaluation. In the explicit-control evaluator, functions that did not re-
turn explicitly continued to an entry point that stored undefined in val. See
exercise 5.35 for a more elegant way to handle insertion of return statements.

Exercise 5.34
Footnote 42 pointed out that the compiler does not identify all instances of dead code. What
would be required of a compiler to detect all instances of dead code?

Hint: The answer depends on how we define dead code. One possible (and useful)
definition is “code following a return statement in a sequence”—but what about code in
the consequent branch of if (false) . . . or code following a call to run_forever() in
exercise 4.15?

5.5.3 Compiling Applications and Return Statements 537

Exercise 5.35
The current design of append_return_undefined is a bit crude: It always appends a
return undefined; to a lambda body, even if there is already a return statement in
every execution path of the body. Rewrite append_return_undefined so that it inserts
return undefined; at the end of only those paths that do not contain a return statement.
Test your solution on the functions below, substituting any expressions for e1 and e2 and
any (non-return) statements for s1 and s2. In t, a return statement should be added either
at both (*)’s or just at (**). In w and h, a return statement should be added at one of the
(*)’s. In m, no return statement should be added.

function t(b) { function w(b) { function m(b) { function h(b1, b2) {
if (b) { if (b) { if (b) { if (b1) {

s1 return e1; return e1; return e1;
(*) } else {

} else { } else { } else { if (b2) {
s2 s1 return e2; s1
(*) (*) (*)

} } } } else {
(**) (*) return e2;

} } } }
(*)

}
(*)

}

5.5.3 Compiling Applications and Return Statements
The essence of the compilation process is the compilation of function applications.
The code for an application compiled with a given target and linkage has the form

〈compilation of function expression, target fun, linkage "next"〉
〈evaluate argument expressions and construct argument list in argl〉
〈compilation of function call with given target and linkage〉

The registers env, fun, and argl may have to be saved and restored during evalua-
tion of the function and argument expressions. Note that this is the only place in the
compiler where a target other than val is specified.

The required code is generated by compile_application. This recursively
compiles the function expression, to produce code that puts the function to be
applied into fun, and compiles the argument expressions, to produce code that
evaluates the individual argument expressions of the application. The instruction
sequences for the argument expressions are combined (by construct_arglist)
with code that constructs the list of arguments in argl, and the resulting argument-
list code is combined with the function code and the code that performs the function
call (produced by compile_function_call). In appending the code sequences,

538 Chapter 5 Computing with Register Machines

the env register must be preserved around the evaluation of the function expression
(since evaluating the function expression might modify env, which will be needed to
evaluate the argument expressions), and the fun register must be preserved around
the construction of the argument list (since evaluating the argument expressions
might modify fun, which will be needed for the actual function application). The
continue register must also be preserved throughout, since it is needed for the
linkage in the function call.

function compile_application(exp, target, linkage) {
const fun_code = compile(function_expression(exp), "fun", "next");
const argument_codes = map(arg => compile(arg, "val", "next"),

arg_expressions(exp));
return preserving(list("env", "continue"),

fun_code,
preserving(list("fun", "continue"),

construct_arglist(argument_codes),
compile_function_call(target, linkage)));

}

The code to construct the argument list will evaluate each argument expression
into val and then combine that value with the argument list being accumulated in
argl using pair. Since we adjoin the arguments to the front of argl in sequence,
we must start with the last argument and end with the first, so that the arguments will
appear in order from first to last in the resulting list. Rather than waste an instruction
by initializing argl to the empty list to set up for this sequence of evaluations, we
make the first code sequence construct the initial argl. The general form of the
argument-list construction is thus as follows:

〈compilation of last argument, targeted to val〉
assign("argl", list(op("list"), reg("val"))),
〈compilation of next argument, targeted to val〉
assign("argl", list(op("pair"), reg("val"), reg("argl"))),
. . .
〈compilation of first argument, targeted to val〉
assign("argl", list(op("pair"), reg("val"), reg("argl"))),

The argl register must be preserved around each argument evaluation except the
first (so that arguments accumulated so far won’t be lost), and env must be preserved
around each argument evaluation except the last (for use by subsequent argument
evaluations).

Compiling this argument code is a bit tricky, because of the special treatment
of the first argument expression to be evaluated and the need to preserve argl and
env in different places. The construct_arglist function takes as arguments the
code that evaluates the individual argument expressions. If there are no argument
expressions at all, it simply emits the instruction

assign(argl, constant(null))

5.5.3 Compiling Applications and Return Statements 539

Otherwise, construct_arglist creates code that initializes argl with the last
argument, and appends code that evaluates the rest of the arguments and adjoins
them to argl in succession. In order to process the arguments from last to first,
we must reverse the list of argument code sequences from the order supplied by
compile_application.

function construct_arglist(arg_codes) {
if (is_null(arg_codes)) {

return make_instruction_sequence(null, list("argl"),
list(assign("argl", constant(null))));

} else {
const rev_arg_codes = reverse(arg_codes);
const code_to_get_last_arg =

append_instruction_sequences(
head(rev_arg_codes),
make_instruction_sequence(list("val"), list("argl"),

list(assign("argl",
list(op("list"), reg("val"))))));

return is_null(tail(rev_arg_codes))
? code_to_get_last_arg
: preserving(list("env"),

code_to_get_last_arg,
code_to_get_rest_args(tail(rev_arg_codes)));

}
}
function code_to_get_rest_args(arg_codes) {

const code_for_next_arg =
preserving(list("argl"),

head(arg_codes),
make_instruction_sequence(list("val", "argl"), list("argl"),

list(assign("argl", list(op("pair"),
reg("val"), reg("argl"))))));

return is_null(tail(arg_codes))
? code_for_next_arg
: preserving(list("env"),

code_for_next_arg,
code_to_get_rest_args(tail(arg_codes)));

}

Applying functions
After evaluating the elements of a function application, the compiled code must
apply the function in fun to the arguments in argl. The code performs essentially
the same dispatch as the apply function in the metacircular evaluator of section 4.1.1
or the apply_dispatch entry point in the explicit-control evaluator of section 5.4.2.
It checks whether the function to be applied is a primitive function or a compiled
function. For a primitive function, it uses apply_primitive_function; we will

540 Chapter 5 Computing with Register Machines

see shortly how it handles compiled functions. The function-application code has
the following form:

test(list(op("primitive_function"), reg("fun"))),
branch(label("primitive_branch")),

"compiled_branch",
〈code to apply compiled function with given target and appropriate linkage〉

"primitive_branch",
assign(target,

list(op("apply_primitive_function"), reg("fun"), reg("argl"))),
〈linkage〉

"after_call"

Observe that the compiled branch must skip around the primitive branch. Therefore,
if the linkage for the original function call was "next", the compound branch must
use a linkage that jumps to a label that is inserted after the primitive branch. (This is
similar to the linkage used for the true branch in compile_conditional.)

function compile_function_call(target, linkage) {
const primitive_branch = make_label("primitive_branch");
const compiled_branch = make_label("compiled_branch");
const after_call = make_label("after_call");
const compiled_linkage = linkage === "next" ? after_call : linkage;
return append_instruction_sequences(

make_instruction_sequence(list("fun"), null,
list(test(list(op("is_primitive_function"), reg("fun"))),

branch(label(primitive_branch)))),
append_instruction_sequences(

parallel_instruction_sequences(
append_instruction_sequences(

compiled_branch,
compile_fun_appl(target, compiled_linkage)),

append_instruction_sequences(
primitive_branch,
end_with_linkage(linkage,

make_instruction_sequence(list("fun", "argl"),
list(target),

list(assign(
target,
list(op("apply_primitive_function"),

reg("fun"), reg("argl")))))))),
after_call));

}

The primitive and compound branches, like the true and false branches in compile_
conditional, are appended using parallel_instruction_sequences rather
than the ordinary append_instruction_sequences, because they will not be
executed sequentially.

5.5.3 Compiling Applications and Return Statements 541

Applying compiled functions
The handling of function application and return is the most subtle part of the com-
piler. A compiled function (as constructed by compile_lambda_expression) has
an entry point, which is a label that designates where the code for the function starts.
The code at this entry point computes a result in val and ends by executing the
instructions from a compiled return statement.

The code for a compiled-function application uses the stack in the same way
as the explicit-control evaluator (section 5.4.2): before jumping to the compiled
function’s entry point, it saves the continuation of the function call to the stack,
followed by a mark that allows reverting the stack to the state right before the call
with the continuation on top.

// set up for return from function
save("continue"),
push_marker_to_stack(),
// jump to the function's entry point
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

Compiling a return statement (with compile_return_statement) generates corre-
sponding code for reverting the stack and restoring and jumping to continue.

revert_stack_to_marker(),
restore("continue"),
〈evaluate the return expression and store the result in val〉
go_to(reg("continue")), // "return"-linkage code

Unless a function enters an infinite loop, it will end by executing the above return
code, resulting from either a return statement in the program or one inserted by
compile_lambda_body to return undefined.45

Straightforward code for a compiled-function application with a given target and
linkage would set up continue to make the function return to a local label instead
of to the final linkage, to copy the function value from val to the target register if
necessary. It would look like this if the linkage is a label:

assign("continue", label("fun_return")), // where function should return to
save("continue"), // will be restored by the function
push_marker_to_stack(), // allows the function to revert stack to find fun_return
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")), // eventually reverts stack, restores and jumps to continue

"fun_return", // the function returns to here
assign(target, reg("val")), // included if target is not val
go_to(label(linkage)), // linkage code

45. Because the execution of a function body always ends with a return, there is no need here
for a mechanism like the return_undefined entry point from section 5.4.2.

542 Chapter 5 Computing with Register Machines

or like this—saving the caller’s continuation at the start in order to restore and go
to it at the end—if the linkage is "return" (that is, if the application is in a return
statement and its value is the result to be returned):

save("continue"), // save the caller's continuation
assign("continue", label("fun_return")), // where function should return to
save("continue"), // will be restored by the function
push_marker_to_stack(), // allows the function to revert stack to find fun_return
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")), // eventually reverts stack, restores and jumps to continue

"fun_return", // the function returns to here
assign(target, reg("val")), // included if target is not val
restore("continue"), // restore the caller's continuation
go_to(reg("continue")), // linkage code

This code sets up continue so that the function will return to a label fun_return
and jumps to the function’s entry point. The code at fun_return transfers the
function’s result from val to the target register (if necessary) and then jumps to
the location specified by the linkage. (The linkage is always "return" or a label,
because compile_function_call replaces a "next" linkage for the compound-
function branch by an after_call label.) Before jumping to the function’s entry
point, we save continue and execute push_marker_to_stack() to enable the
function to return to the intended location in the program with the expected stack.
Matching revert_stack_to_marker() and restore("continue") instructions
are generated by compile_return_statement for each return statement in the
body of the function.46

In fact, if the target is not val, the above is exactly the code our compiler will
generate.47 Usually, however, the target is val (the only time the compiler specifies
a different register is when targeting the evaluation of a function expression to fun),
so the function result is put directly into the target register and there is no need to
jump to a special location that copies it. Instead we simplify the code by setting up
continue so that the called function will “return” directly to the place specified by
the caller’s linkage:

46. Elsewhere in the compiler, all saves and restores of registers are generated by preserving
to preserve a register’s value across a sequence of instructions by saving it before those instruc-
tions and restoring it after—for example over the evaluation of the predicate of a conditional.
But this mechanism cannot generate instructions to save and restore continue for a function
application and the corresponding return, because these are compiled separately and are not con-
tiguous. Instead, these saves and restores must be explicitly generated by compile_fun_appl
and compile_return_statement.

47. Actually, we signal an error when the target is not val and the linkage is "return", since
the only place we request a "return" linkage is in compiling return expressions, and our
convention is that functions return their values in val.

5.5.3 Compiling Applications and Return Statements 543

〈set up continue for linkage and push the marker〉
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

If the linkage is a label, we set up continue so that the function will continue at
that label. (That is, the go_to(reg("continue")) the called function ends with
becomes equivalent to the go_to(label(linkage)) at fun_return above.)

assign("continue", label(linkage)),
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

If the linkage is "return", we don’t need to assign continue: It already holds
the desired location. (That is, the go_to(reg("continue")) the called function
ends with goes directly to the place where the go_to(reg("continue")) at fun_
return would have gone.)

save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

With this implementation of the "return" linkage, the compiler generates tail-
recursive code. A function call in a return statement whose value is the result to
be returned does a direct transfer, without saving unnecessary information on the
stack.

Suppose instead that we had handled the case of a function call with a linkage of
"return" and a target of val in the same way as for a non-val target. This would
destroy tail recursion. Our system would still return the same value for any function
call. But each time we called a function, we would save continue and return after
the call to undo the (useless) save. These extra saves would accumulate during a nest
of function calls.48

48. Making a compiler generate tail-recursive code is desirable, especially in the functional
paradigm. However, compilers for common languages, including C and C++, do not always do
this, and therefore these languages cannot represent iterative processes in terms of function call
alone. The difficulty with tail recursion in these languages is that their implementations use the
stack to store function arguments and local names as well as return addresses. The JavaScript
implementations described in this book store arguments and names in memory to be garbage-
collected. The reason for using the stack for names and arguments is that it avoids the need for
garbage collection in languages that would not otherwise require it, and is generally believed
to be more efficient. Sophisticated compilers can, in fact, use the stack for arguments without
destroying tail recursion. (See Hanson 1990 for a description.) There is also some debate about
whether stack allocation is actually more efficient than garbage collection in the first place, but
the details seem to hinge on fine points of computer architecture. (See Appel 1987 and Miller
and Rozas 1994 for opposing views on this issue.)

544 Chapter 5 Computing with Register Machines

The function compile_fun_appl generates the above function-application code
by considering four cases, depending on whether the target for the call is val and
whether the linkage is "return". Observe that the instruction sequences are de-
clared to modify all the registers, since executing the function body can change the
registers in arbitrary ways.49

function compile_fun_appl(target, linkage) {
const fun_return = make_label("fun_return");
return target === "val" && linkage !== "return"

? make_instruction_sequence(list("fun"), all_regs,
list(assign("continue", label(linkage)),

save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"),

reg("fun"))),
go_to(reg("val"))))

: target !== "val" && linkage !== "return"
? make_instruction_sequence(list("fun"), all_regs,

list(assign("continue", label(fun_return)),
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"),

reg("fun"))),
go_to(reg("val")),
fun_return,
assign(target, reg("val")),
go_to(label(linkage))))

: target === "val" && linkage === "return"
? make_instruction_sequence(list("fun", "continue"),

all_regs,
list(save("continue"),

push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"),

reg("fun"))),
go_to(reg("val"))))

: // target !== "val" && linkage === "return"
error(target, "return linkage, target not val -- compile");

}

We have shown how to generate tail-recursive linkage code for a function ap-
plication when the linkage is "return"—that is, when the application is in a
return statement and its value is the result to be returned. Similarly, as explained
in section 5.4.2, the stack-marker mechanism used here (and in the explicit-control
evaluator) for the call and return produces tail-recursive behavior only in that situ-
ation. These two aspects of the code generated for function application combine to
ensure that when a function ends by returning the value of a function call, no stack
accumulates.

49. The constant all_regs is bound to the list of names of all the registers:
const all_regs = list("env", "fun", "val", "argl", "continue");

5.5.4 Combining Instruction Sequences 545

Compiling return statements
The code for a return statement takes the following form, regardless of the given
linkage and target:

revert_stack_to_marker(),
restore("continue"), // saved by compile_fun_appl
〈evaluate the return expression and store the result in val〉
go_to(reg("continue")) // "return"-linkage code

The instructions to revert the stack using the marker and then restore continue
correspond to the instructions generated by compile_fun_appl to save continue
and mark the stack. The final jump to continue is generated by the use of the
"return" linkage when compiling the return expression. The function compile_
return_statement is different from all other code generators in that it ignores the
target and linkage arguments—it always compiles the return expression with target
val and linkage "return".

function compile_return_statement(stmt, target, linkage) {
return append_instruction_sequences(

make_instruction_sequence(null, list("continue"),
list(revert_stack_to_marker(),

restore("continue"))),
compile(return_expression(stmt), "val", "return"));

}

5.5.4 Combining Instruction Sequences
This section describes the details on how instruction sequences are represented and
combined. Recall from section 5.5.1 that an instruction sequence is represented as
a list of the registers needed, the registers modified, and the actual instructions. We
will also consider a label (string) to be a degenerate case of an instruction sequence,
which doesn’t need or modify any registers. So to determine the registers needed
and modified by instruction sequences we use the selectors

function registers_needed(s) {
return is_string(s) ? null : head(s);

}
function registers_modified(s) {

return is_string(s) ? null : head(tail(s));
}
function instructions(s) {

return is_string(s) ? list(s) : head(tail(tail(s)));
}

and to determine whether a given sequence needs or modifies a given register we
use the predicates

function needs_register(seq, reg) {
return ! is_null(member(reg, registers_needed(seq)));

}
function modifies_register(seq, reg) {

return ! is_null(member(reg, registers_modified(seq)));
}

546 Chapter 5 Computing with Register Machines

In terms of these predicates and selectors, we can implement the various instruction
sequence combiners used throughout the compiler.

The basic combiner is append_instruction_sequences. This takes as argu-
ments two instruction sequences that are to be executed sequentially and returns
an instruction sequence whose statements are the statements of the two sequences
appended together. The subtle point is to determine the registers that are needed
and modified by the resulting sequence. It modifies those registers that are modified
by either sequence; it needs those registers that must be initialized before the first
sequence can be run (the registers needed by the first sequence), together with those
registers needed by the second sequence that are not initialized (modified) by the
first sequence.

The function append_instruction_sequences is given two instruction se-
quences seq1 and seq2 and returns the instruction sequence whose instructions
are the instructions of seq1 followed by the instructions of seq2, whose modified
registers are those registers that are modified by either seq1 or seq2, and whose
needed registers are the registers needed by seq1 together with those registers
needed by seq2 that are not modified by seq1. (In terms of set operations, the new
set of needed registers is the union of the set of registers needed by seq1 with the
set difference of the registers needed by seq2 and the registers modified by seq1.)
Thus, append_instruction_sequences is implemented as follows:

function append_instruction_sequences(seq1, seq2) {
return make_instruction_sequence(

list_union(registers_needed(seq1),
list_difference(registers_needed(seq2),

registers_modified(seq1))),
list_union(registers_modified(seq1),

registers_modified(seq2)),
append(instructions(seq1), instructions(seq2)));

}

This function uses some simple operations for manipulating sets represented as
lists, similar to the (unordered) set representation described in section 2.3.3:

function list_union(s1, s2) {
return is_null(s1)

? s2
: is_null(member(head(s1), s2))
? pair(head(s1), list_union(tail(s1), s2))
: list_union(tail(s1), s2);

}
function list_difference(s1, s2) {

return is_null(s1)
? null
: is_null(member(head(s1), s2))
? pair(head(s1), list_difference(tail(s1), s2))
: list_difference(tail(s1), s2);

}

The function preserving, the second major instruction sequence combiner,
takes a list of registers regs and two instruction sequences seq1 and seq2 that are

5.5.4 Combining Instruction Sequences 547

to be executed sequentially. It returns an instruction sequence whose instructions
are the instructions of seq1 followed by the instructions of seq2, with appropriate
save and restore instructions around seq1 to protect the registers in regs that are
modified by seq1 but needed by seq2. To accomplish this, preserving first creates
a sequence that has the required saves followed by the instructions of seq1 fol-
lowed by the required restores. This sequence needs the registers being saved and
restored in addition to the registers needed by seq1, and modifies the registers modi-
fied by seq1 except for the ones being saved and restored. This augmented sequence
and seq2 are then appended in the usual way. The following function implements
this strategy recursively, walking down the list of registers to be preserved:

function preserving(regs, seq1, seq2) {
if (is_null(regs)) {

return append_instruction_sequences(seq1, seq2);
} else {

const first_reg = head(regs);
return needs_register(seq2, first_reg) &&

modifies_register(seq1, first_reg)
? preserving(tail(regs),

make_instruction_sequence(
list_union(list(first_reg),

registers_needed(seq1)),
list_difference(registers_modified(seq1),

list(first_reg)),
append(list(save(first_reg)),

append(instructions(seq1),
list(restore(first_reg))))),

seq2)
: preserving(tail(regs), seq1, seq2);

}
}

Another sequence combiner, tack_on_instruction_sequence, is used by
compile_lambda_expression to append a function body to another sequence.
Because the function body is not “in line” to be executed as part of the combined
sequence, its register use has no impact on the register use of the sequence in which
it is embedded. We thus ignore the function body’s sets of needed and modified
registers when we tack it onto the other sequence.

function tack_on_instruction_sequence(seq, body_seq) {
return make_instruction_sequence(

registers_needed(seq),
registers_modified(seq),
append(instructions(seq), instructions(body_seq)));

}

The functions compile_conditional and compile_function_call use a
special combiner called parallel_instruction_sequences to append the two
alternative branches that follow a test. The two branches will never be executed
sequentially; for any particular evaluation of the test, one branch or the other will be
entered. Because of this, the registers needed by the second branch are still needed
by the combined sequence, even if these are modified by the first branch.

548 Chapter 5 Computing with Register Machines

function parallel_instruction_sequences(seq1, seq2) {
return make_instruction_sequence(

list_union(registers_needed(seq1),
registers_needed(seq2)),

list_union(registers_modified(seq1),
registers_modified(seq2)),

append(instructions(seq1), instructions(seq2)));
}

5.5.5 An Example of Compiled Code
Now that we have seen all the elements of the compiler, let us examine an example
of compiled code to see how things fit together. We will compile the declaration of
a recursive factorial function by passing as first argument to compile the result
of applying parse to a string representation of the program (here using back quotes
`. . .`, which work like single and double quotation marks but allow the string to
span multiple lines):

compile(parse(`
function factorial(n) {

return n === 1
? 1
: factorial(n - 1) * n;

}
`),

"val",
"next");

We have specified that the value of the declaration should be placed in the val
register. We don’t care what the compiled code does after executing the declaration,
so our choice of "next" as the linkage descriptor is arbitrary.

The function compile determines that it was given a function declaration, so it
transforms it to a constant declaration and then calls compile_declaration. This
compiles code to compute the value to be assigned (targeted to val), followed by
code to install the declaration, followed by code to put the value of the declaration
(which is the value undefined) into the target register, followed finally by the link-
age code. The env register is preserved around the computation of the value, because
it is needed in order to install the declaration. Because the linkage is "next", there
is no linkage code in this case. The skeleton of the compiled code is thus

〈save env if modified by code to compute value〉
〈compilation of declaration value, target val, linkage "next"〉
〈restore env if saved above〉
perform(list(op("assign_symbol_value"),

constant("factorial"),
reg("val"),
reg("env"))),

assign("val", constant(undefined))

The expression that is compiled to produce the value for the name factorial
is a lambda expression whose value is the function that computes factorials. The
function compile handles this by calling compile_lambda_expression, which

5.5.5 An Example of Compiled Code 549

compiles the function body, labels it as a new entry point, and generates the instruc-
tion that will combine the function body at the new entry point with the runtime
environment and assign the result to val. The sequence then skips around the
compiled function code, which is inserted at this point. The function code itself
begins by extending the function’s declaration environment by a frame that binds the
parameter n to the function argument. Then comes the actual function body. Since
this code for the value of the name doesn’t modify the env register, the optional
save and restore shown above aren’t generated. (The function code at entry1
isn’t executed at this point, so its use of env is irrelevant.) Therefore, the skeleton
for the compiled code becomes

assign("val", list(op("make_compiled_function"),
label("entry1"),
reg("env"))),

go_to(label("after_lambda2")),
"entry1",
assign("env", list(op("compiled_function_env"), reg("fun"))),
assign("env", list(op("extend_environment"),

constant(list("n")),
reg("argl"),
reg("env"))),

〈compilation of function body〉
"after_lambda2",
perform(list(op("assign_symbol_value"),

constant("factorial"),
reg("val"),
reg("env"))),

assign("val", constant(undefined))

A function body is always compiled (by compile_lambda_body) with tar-
get val and linkage "next". The body in this case consists of a single return
statement:50

return n === 1
? 1
: factorial(n - 1) * n;

The function compile_return_statement generates code to revert the stack us-
ing the marker and to restore the continue register, and then compiles the return
expression with target val and linkage "return", because its value is to be returned
from the function. The return expression is a conditional expression, for which
compile_conditional generates code that first computes the predicate (targeted
to val), then checks the result and branches around the true branch if the predicate
is false. Registers env and continue are preserved around the predicate code, since
they may be needed for the rest of the conditional expression. The true and false
branches are both compiled with target val and linkage "return". (That is, the

50. Because of the append_return_undefined in compile_lambda_body, the body actually
consists of a sequence with two return statements. However, the dead-code check in compile_
sequence will stop after the compilation of the first return statement, so the body effectively
consists of only a single return statement.

550 Chapter 5 Computing with Register Machines

value of the conditional, which is the value computed by either of its branches, is
the value of the function.)

revert_stack_to_marker(),
restore("continue"),
〈save continue, env if modified by predicate and needed by branches〉
〈compilation of predicate, target val, linkage "next"〉
〈restore continue, env if saved above〉
test(list(op("is_falsy"), reg("val"))),
branch(label("false_branch4")),

"true_branch3",
〈compilation of true branch, target val, linkage "return"〉

"false_branch4",
〈compilation of false branch, target val, linkage "return"〉

"after_cond5",

The predicate n === 1 is a function application (after transformation of the op-
erator combination). This looks up the function expression (the symbol "===") and
places this value in fun. It then assembles the arguments 1 and the value of n into
argl. Then it tests whether fun contains a primitive or a compound function, and
dispatches to a primitive branch or a compound branch accordingly. Both branches
resume at the after_call label. The compound branch must set up continue to
jump past the primitive branch and push a marker to the stack to match the revert
operation in the compiled return statement of the function. The requirements to
preserve registers around the evaluation of the function and argument expressions
don’t result in any saving of registers, because in this case those evaluations don’t
modify the registers in question.

assign("fun", list(op("lookup_symbol_value"),
constant("==="), reg("env"))),

assign("val", constant(1)),
assign("argl", list(op("list"), reg("val"))),
assign("val", list(op("lookup_symbol_value"),

constant("n"), reg("env"))),
assign("argl", list(op("pair"), reg("val"), reg("argl"))),
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch6")),

"compiled_branch7",
assign("continue", label("after_call8")),
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch6",
assign("val", list(op("apply_primitive_function"),

reg("fun"),
reg("argl"))),

"after_call8",

The true branch, which is the constant 1, compiles (with target val and linkage
"return") to

assign("val", constant(1)),
go_to(reg("continue")),

5.5.5 An Example of Compiled Code 551

The code for the false branch is another function call, where the function is the value
of the symbol "*", and the arguments are n and the result of another function call (a
call to factorial). Each of these calls sets up fun and argl and its own primitive
and compound branches. Figure 5.17 shows the complete compilation of the dec-
laration of the factorial function. Notice that the possible save and restore of
continue and env around the predicate, shown above, are in fact generated, because
these registers are modified by the function call in the predicate and needed for the
function call and the "return" linkage in the branches.

Exercise 5.36
Consider the following declaration of a factorial function, which is slightly different from
the one given above:

function factorial_alt(n) {
return n === 1

? 1
: n * factorial_alt(n - 1);

}

Compile this function and compare the resulting code with that produced for factorial.
Explain any differences you find. Does either program execute more efficiently than the
other?

Exercise 5.37
Compile the iterative factorial function

function factorial(n) {
function iter(product, counter) {

return counter > n
? product
: iter(product * counter, counter + 1);

}
return iter(1, 1);

}

Annotate the resulting code, showing the essential difference between the code for iterative
and recursive versions of factorial that makes one process build up stack space and the
other run in constant stack space.

Exercise 5.38
What program was compiled to produce the code shown in figure 5.18?

Exercise 5.39
What order of evaluation does our compiler produce for arguments of an application? Is
it left-to-right (as mandated by the ECMAScript specification), right-to-left, or some other
order? Where in the compiler is this order determined? Modify the compiler so that it
produces some other order of evaluation. (See the discussion of order of evaluation for
the explicit-control evaluator in section 5.4.1.) How does changing the order of argument
evaluation affect the efficiency of the code that constructs the argument list?

552 Chapter 5 Computing with Register Machines

// construct the function and skip over the code for the function body
assign("val", list(op("make_compiled_function"),

label("entry1"), reg("env"))),
go_to(label("after_lambda2")),

"entry1", // calls to factorial will enter here
assign("env", list(op("compiled_function_env"), reg("fun"))),
assign("env", list(op("extend_environment"), constant(list("n")),

reg("argl"), reg("env"))),
// begin actual function body

revert_stack_to_marker(), // starts with a return statement
restore("continue"),
save("continue"), // preserve registers across predicate
save("env"),

// compute n === 1
assign("fun", list(op("lookup_symbol_value"), constant("==="), reg("env"))),
assign("val", constant(1)),
assign("argl", list(op("list"), reg("val"))),
assign("val", list(op("lookup_symbol_value"), constant("n"), reg("env"))),
assign("argl", list(op("pair"), reg("val"), reg("argl"))),
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch6")),

"compiled_branch7",
assign("continue", label("after_call8")),
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch6",
assign("val", list(op("apply_primitive_function"), reg("fun"), reg("argl"))),

"after_call8", // val now contains result of n === 1
restore("env"),
restore("continue"),
test(list(op("is_falsy"), reg("val"))),
branch(label("false_branch4")),

"true_branch3", // return 1
assign("val", constant(1)),
go_to(reg("continue")),

"false_branch4",
// compute and return factorial(n - 1) * n

assign("fun", list(op("lookup_symbol_value"), constant("*"), reg("env"))),
save("continue"),
save("fun"), // save * function
assign("val", list(op("lookup_symbol_value"), constant("n"), reg("env"))),
assign("argl", list(op("list"), reg("val"))),
save("argl"), // save partial argument list for *

// compute factorial(n - 1) which is the other argument for *
assign("fun", list(op("lookup_symbol_value"),

constant("factorial"), reg("env"))),
save("fun"), // save factorial function

Figure 5.17 Compilation of the declaration of the factorial function (continued on
next page).

5.5.5 An Example of Compiled Code 553

// compute n - 1 which is the argument for factorial
assign("fun", list(op("lookup_symbol_value"), constant("-"), reg("env"))),
assign("val", constant(1)),
assign("argl", list(op("list"), reg("val"))),
assign("val", list(op("lookup_symbol_value"), constant("n"), reg("env"))),
assign("argl", list(op("pair"), reg("val"), reg("argl"))),
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch10")),

"compiled_branch11",
assign("continue", label("after_call12")),
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch10",
assign("val", list(op("apply_primitive_function"), reg("fun"), reg("argl"))),

"after_call12", // val now contains result of n - 1
assign("argl", list(op("list"), reg("val"))),
restore("fun"), // restore factorial

// apply factorial
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch14")),

"compiled_branch15",
assign("continue", label("after_call16")),
save("continue"), // set up for compiled function –
push_marker_to_stack(), // return in function will restore stack
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch14",
assign("val", list(op("apply_primitive_function"), reg("fun"), reg("argl"))),

"after_call16", // val now contains result of factorial(n - 1)
restore("argl"), // restore partial argument list for *
assign("argl", list(op("pair"), reg("val"), reg("argl"))),
restore("fun"), // restore *
restore("continue"),

// apply * and return its value
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch18")),

"compiled_branch19", // note that a compound function here is called tail-recursively
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch18",
assign("val", list(op("apply_primitive_function"), reg("fun"), reg("argl"))),
go_to(reg("continue")),

"after_call20",
"after_cond5",
"after_lambda2",
// assign the function to the name factorial

perform(list(op("assign_symbol_value"),
constant("factorial"), reg("val"), reg("env"))),

assign("val", constant(undefined))

Figure 5.17 (continued)

554 Chapter 5 Computing with Register Machines

assign("val", list(op("make_compiled_function"),
label("entry1"), reg("env"))),

"entry1"
assign("env", list(op("compiled_function_env"), reg("fun"))),
assign("env", list(op("extend_environment"),

constant(list("x")), reg("argl"), reg("env"))),
revert_stack_to_marker(),
restore("continue"),
assign("fun", list(op("lookup_symbol_value"), constant("+"), reg("env"))),
save("continue"),
save("fun"),
save("env"),
assign("fun", list(op("lookup_symbol_value"), constant("g"), reg("env"))),
save("fun"),
assign("fun", list(op("lookup_symbol_value"), constant("+"), reg("env"))),
assign("val", constant(2)),
assign("argl", list(op("list"), reg("val"))),
assign("val", list(op("lookup_symbol_value"), constant("x"), reg("env"))),
assign("argl", list(op("pair"), reg("val"), reg("argl"))),
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch3")),

"compiled_branch4"
assign("continue", label("after_call5")),
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch3",
assign("val", list(op("apply_primitive_function"), reg("fun"), reg("argl"))),

"after_call5",
assign("argl", list(op("list"), reg("val"))),
restore("fun"),
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch7")),

"compiled_branch8",
assign("continue", label("after_call9")),
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch7",
assign("val", list(op("apply_primitive_function"), reg("fun"), reg("argl"))),

"after_call9",
assign("argl", list(op("list"), reg("val"))),
restore("env"),
assign("val", list(op("lookup_symbol_value"), constant("x"), reg("env"))),
assign("argl", list(op("pair"), reg("val"), reg("argl"))),
restore("fun"),
restore("continue"),
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_branch11")),

Figure 5.18 An example of compiler output (continued on next page). See exer-
cise 5.38.

5.5.5 An Example of Compiled Code 555

"compiled_branch12",
save("continue"),
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

"primitive_branch11",
assign("val", list(op("apply_primitive_function"), reg("fun"), reg("argl"))),
go_to(reg("continue")),

"after_call13",
"after_lambda2",

perform(list(op("assign_symbol_value"),
constant("f"), reg("val"), reg("env"))),

assign("val", constant(undefined))

Figure 5.18 (continued)

Exercise 5.40
One way to understand the compiler’s preserving mechanism for optimizing stack usage
is to see what extra operations would be generated if we did not use this idea. Mod-
ify preserving so that it always generates the save and restore operations. Compile
some simple expressions and identify the unnecessary stack operations that are generated.
Compare the code to that generated with the preserving mechanism intact.

Exercise 5.41
Our compiler is clever about avoiding unnecessary stack operations, but it is not clever at
all when it comes to compiling calls to the primitive functions of the language in terms of
the primitive operations supplied by the machine. For example, consider how much code is
compiled to compute a + 1: The code sets up an argument list in argl, puts the primitive
addition function (which it finds by looking up the symbol "+" in the environment) into fun,
and tests whether the function is primitive or compound. The compiler always generates
code to perform the test, as well as code for primitive and compound branches (only one
of which will be executed). We have not shown the part of the controller that implements
primitives, but we presume that these instructions make use of primitive arithmetic opera-
tions in the machine’s data paths. Consider how much less code would be generated if the
compiler could open-code primitives—that is, if it could generate code to directly use these
primitive machine operations. The expression a + 1 might be compiled into something as
simple as51

assign("val", list(op("lookup_symbol_value"), constant("a"), reg("env"))),
assign("val", list(op("+"), reg("val"), constant(1)))

In this exercise we will extend our compiler to support open coding of selected primitives.
Special-purpose code will be generated for calls to these primitive functions instead of the
general function-application code. In order to support this, we will augment our machine
with special argument registers arg1 and arg2. The primitive arithmetic operations of the

51. We have used the same symbol + here to denote both the source-language function and the
machine operation. In general there will not be a one-to-one correspondence between primitives
of the source language and primitives of the machine.

556 Chapter 5 Computing with Register Machines

machine will take their inputs from arg1 and arg2. The results may be put into val, arg1,
or arg2.

The compiler must be able to recognize the application of an open-coded primitive in
the source program. We will augment the dispatch in the compile function to recognize
the names of these primitives in addition to the syntactic forms it currently recognizes. For
each syntactic form our compiler has a code generator. In this exercise we will construct a
family of code generators for the open-coded primitives.

a. The open-coded primitives, unlike the syntactic forms, all need their argument ex-
pressions evaluated. Write a code generator spread_arguments for use by all the
open-coding code generators. The function spread_arguments should take a list of
argument expressions and compile the given argument expressions targeted to suc-
cessive argument registers. Note that an argument expression may contain a call
to an open-coded primitive, so argument registers will have to be preserved during
argument-expression evaluation.

b. The JavaScript operators ===, *, -, and +, among others, are implemented in the register
machine as primitive functions and are referred to in the global environment with the
symbols "===", "*", "-", and "+". In JavaScript, it is not possible to redeclare these
names, because they do not meet the syntactic restrictions for names. This means it
is safe to open-code them. For each of the primitive functions ===, *, -, and +, write
a code generator that takes an application with a function expression that names that
function, together with a target and a linkage descriptor, and produces code to spread
the arguments into the registers and then perform the operation targeted to the given
target with the given linkage. Make compile dispatch to these code generators.

c. Try your new compiler on the factorial example. Compare the resulting code with
the result produced without open coding.

5.5.6 Lexical Addressing
One of the most common optimizations performed by compilers is the optimization
of name lookup. Our compiler, as we have implemented it so far, generates code that
uses the lookup_symbol_value operation of the evaluator machine. This searches
for a name by comparing it with each name that is currently bound, working frame
by frame outward through the runtime environment. This search can be expensive if
the frames are deeply nested or if there are many names. For example, consider the
problem of looking up the value of x while evaluating the expression x * y * z in
an application of the function of five arguments that is returned by

((x, y) =>
(a, b, c, d, e) =>
((y, z) => x * y * z)(a * b * x, c + d + x))(3, 4)

Each time lookup_symbol_value searches for x, it must determine that the symbol
"x" is not equal to "y" or "z" (in the first frame), nor to "a", "b", "c", "d", or "e"
(in the second frame). Because our language is lexically scoped, the runtime envi-
ronment for any component will have a structure that parallels the lexical structure
of the program in which the component appears. Thus, the compiler can know, when
it analyzes the above expression, that each time the function is applied the binding

5.5.6 Lexical Addressing 557

for x in x * y * z will be found two frames out from the current frame and will be
the first binding in that frame.

We can exploit this fact by inventing a new kind of name-lookup operation,
lexical_address_lookup, that takes as arguments an environment and a lexi-
cal address that consists of two numbers: a frame number, which specifies how
many frames to pass over, and a displacement number, which specifies how many
bindings to pass over in that frame. The operation lexical_address_lookup will
produce the value of the name stored at that lexical address relative to the current
environment. If we add the lexical_address_lookup operation to our machine,
we can make the compiler generate code that references names using this operation,
rather than lookup_symbol_value. Similarly, our compiled code can use a new
lexical_address_assign operation instead of assign_symbol_value. With lex-
ical addressing, there is no need to include any symbolic references to names in the
object code, and frames do not need to include symbols at run time.

In order to generate such code, the compiler must be able to determine the lexical
address of a name it is about to compile a reference to. The lexical address of a name
in a program depends on where one is in the code. For example, in the following
program, the address of x in expression e1 is (2,0)—two frames back and the first
name in the frame. At that point y is at address (0,0) and c is at address (1,2). In
expression e2, x is at (1,0), y is at (1,1), and c is at (0,2).

((x, y) =>
(a, b, c, d, e) =>
((y, z) => e1)(e2, c + d + x))(3, 4);

One way for the compiler to produce code that uses lexical addressing is to main-
tain a data structure called a compile-time environment. This keeps track of which
bindings will be at which positions in which frames in the runtime environment
when a particular name-access operation is executed. The compile-time environment
is a list of frames, each containing a list of symbols. There will be no values associ-
ated with the symbols, since values are not computed at compile time. (Exercise
5.47 will change this, as an optimization for constants.) The compile-time envi-
ronment becomes an additional argument to compile and is passed along to each
code generator. The top-level call to compile uses a compile-time-environment that
includes the names of all primitive functions and primitive values. When the body
of a lambda expression is compiled, compile_lambda_body extends the compile-
time environment by a frame containing the function’s parameters, so that the body
is compiled with that extended environment. Similarly, when the body of a block
is compiled, compile_block extends the compile-time environment by a frame
containing the scanned-out local names of the body. At each point in the compilation,
compile_name and compile_assignment_declaration use the compile-time
environment in order to generate the appropriate lexical addresses.

Exercises 5.42 through 5.45 describe how to complete this sketch of the lexical-
addressing strategy in order to incorporate lexical lookup into the compiler. Exer-
cises 5.46 and 5.47 describe other uses for the compile-time environment.

558 Chapter 5 Computing with Register Machines

Exercise 5.42
Write a function lexical_address_lookup that implements the new lookup operation. It
should take two arguments—a lexical address and a runtime environment—and return the
value of the name stored at the specified lexical address. The function lexical_address_
lookup should signal an error if the value of the name is the string "*unassigned*". Also
write a function lexical_address_assign that implements the operation that changes the
value of the name at a specified lexical address.

Exercise 5.43
Modify the compiler to maintain the compile-time environment as described above. That
is, add a compile-time-environment argument to compile and the various code generators,
and extend it in compile_lambda_body and compile_block.

Exercise 5.44
Write a function find_symbol that takes as arguments a symbol and a compile-time en-
vironment and returns the lexical address of the symbol with respect to that environment.
For example, in the program fragment that is shown above, the compile-time environment
during the compilation of expression e1 is

list(list("y", "z"),
list("a", "b", "c", "d", "e"),
list("x", "y"))

The function find_symbol should produce

find_symbol("c", list(list("y", "z"),
list("a", "b", "c", "d", "e"),
list("x", "y")));

list(1, 2)

find_symbol("x", list(list("y", "z"),
list("a", "b", "c", "d", "e"),
list("x", "y")));

list(2, 0)

find_symbol("w", list(list("y", "z"),
list("a", "b", "c", "d", "e"),
list("x", "y")));

"not found"

Exercise 5.45
Using find_symbol from exercise 5.44, rewrite compile_assignment_declaration and
compile_name to output lexical-address instructions. In cases where find_symbol returns
"not found" (that is, where the name is not in the compile-time environment), you should
report a compile-time error. Test the modified compiler on a few simple cases, such as the
nested lambda combination at the beginning of this section.

5.5.7 Interfacing Compiled Code to the Evaluator 559

Exercise 5.46
In JavaScript, an attempt to assign a new value to a name that is declared as a constant
leads to an error. Exercise 4.11 shows how to detect such errors at run time. With the
techniques presented in this section, we can detect attempts to assign a new value to a
constant at compile time. For this purpose, extend the functions compile_lambda_body
and compile_block to record in the compile-time environment whether a name is declared
as a variable (using let or as a parameter), or as a constant (using const or function).
Modify compile_assignment to report an appropriate error when it detects an assignment
to a constant.

Exercise 5.47
Knowledge about constants at compile time opens the door to many optimizations that
allow us to generate more efficient object code. In addition to the extension of the compile-
time environment in exercise 5.46 to indicate names declared as constants, we may store
the value of a constant if it is known at compile time, or other information that can help us
optimize the code.

a. A constant declaration such as const name = literal; allows us to replace all occur-
rences of name within the scope of the declaration by literal so that name doesn’t
have to be looked up in the runtime environment. This optimization is called constant
propagation. Use an extended compile-time environment to store literal constants, and
modify compile_name to use the stored constant in the generated assign instruction
instead of the lookup_symbol_value operation.

b. Function declaration is a derived component that expands to constant declaration. Let
us assume that the names of primitive functions in the global environment are also
considered constants. If we further extend our compile-time environment to keep track
of which names refer to compiled functions and which ones to primitive functions, we
can move the test that checks whether a function is compiled or primitive from run time
to compile time. This makes the object code more efficient because it replaces a test that
must be performed once per function application in the generated code by one that is
performed by the compiler. Using such an extended compile-time environment, modify
compile_function_call so that if it can be determined at compile time whether the
called function is compiled or primitive, only the instructions in the compiled_branch
or the primitive_branch are generated.

c. Replacing constant names with their literal values as in part (a) paves the way for
another optimization, namely replacing applications of primitive functions to literal val-
ues with the compile-time computed result. This optimization, called constant folding,
replaces expressions such as 40 + 2 by 42 by performing the addition in the compiler.
Extend the compiler to perform constant folding for arithmetic operations on numbers
and for string concatenation.

5.5.7 Interfacing Compiled Code to the Evaluator
We have not yet explained how to load compiled code into the evaluator machine or
how to run it. We will assume that the explicit-control-evaluator machine has been
defined as in section 5.4.4, with the additional operations specified in footnote 43

560 Chapter 5 Computing with Register Machines

(section 5.5.2). We will implement a function compile_and_go that compiles a
JavaScript program, loads the resulting object code into the evaluator machine, and
causes the machine to run the code in the evaluator global environment, print the
result, and enter the evaluator’s driver loop. We will also modify the evaluator so
that interpreted components can call compiled functions as well as interpreted ones.
We can then put a compiled function into the machine and use the evaluator to call it:

compile_and_go(parse(`
function factorial(n) {

return n === 1
? 1
: factorial(n - 1) * n;

}
`));

EC-evaluate value:
undefined

EC-evaluate input:
factorial(5);

EC-evaluate value:
120

To allow the evaluator to handle compiled functions (for example, to evaluate
the call to factorial above), we need to change the code at apply_dispatch (sec-
tion 5.4.2) so that it recognizes compiled functions (as distinct from compound or
primitive functions) and transfers control directly to the entry point of the compiled
code:52

"apply_dispatch",
test(list(op("is_primitive_function"), reg("fun"))),
branch(label("primitive_apply")),
test(list(op("is_compound_function"), reg("fun"))),
branch(label("compound_apply")),
test(list(op("is_compiled_function"), reg("fun"))),
branch(label("compiled_apply")),
go_to(label("unknown_function_type")),

"compiled_apply",
push_marker_to_stack(),
assign("val", list(op("compiled_function_entry"), reg("fun"))),
go_to(reg("val")),

At compiled_apply, as at compound_apply, we push a marker to the stack so that
a return statement in the compiled function can revert the stack to this state. Note that
there is no save of continue at compiled_apply before the marking of the stack,
because the evaluator was arranged so that at apply_dispatch, the continuation
would be at the top of the stack.

52. Of course, compiled functions as well as interpreted functions are compound (nonprimitive).
For compatibility with the terminology used in the explicit-control evaluator, in this section we
will use “compound” to mean interpreted (as opposed to compiled).

5.5.7 Interfacing Compiled Code to the Evaluator 561

To enable us to run some compiled code when we start the evaluator machine, we
add a branch instruction at the beginning of the evaluator machine, which causes
the machine to go to a new entry point if the flag register is set.53

branch(label("external_entry")), // branches if flag is set
"read_evaluate_print_loop",
perform(list(op("initialize_stack"))),
. . .

The code at external_entry assumes that the machine is started with val con-
taining the location of an instruction sequence that puts a result into val and ends
with go_to(reg("continue")). Starting at this entry point jumps to the location
designated by val, but first assigns continue so that execution will return to
print_result, which prints the value in val and then goes to the beginning of
the evaluator’s read-evaluate-print loop.54

"external_entry",
perform(list(op("initialize_stack"))),
assign("env", list(op("get_current_environment"))),
assign("continue", label("print_result")),
go_to(reg("val")),

Now we can use the following function to compile a function declaration,
execute the compiled code, and run the read-evaluate-print loop so we can try
the function. Because we want the compiled code to proceed to the location in
continue with its result in val, we compile the program with a target of val
and a linkage of "return". In order to transform the object code produced by the
compiler into executable instructions for the evaluator register machine, we use the

53. Now that the evaluator machine starts with a branch, we must always initialize the flag
register before starting the evaluator machine. To start the machine at its ordinary read-evaluate-
print loop, we could use
function start_eceval() {

set_register_contents(eceval, "flag", false);
return start(eceval);

}

54. Since a compiled function is an object that the system may try to print, we also modify the
system print operation user_print (from section 4.1.4) so that it will not attempt to print the
components of a compiled function:
function user_print(string, object) {

function prepare(object) {
return is_compound_function(object)

? "< compound function >"
: is_primitive_function(object)
? "< primitive function >"
: is_compiled_function(object)
? "< compiled function >"
: is_pair(object)
? pair(prepare(head(object)),

prepare(tail(object)))
: object;

}
display(string + " " + stringify(prepare(object)));

}

562 Chapter 5 Computing with Register Machines

function assemble from the register-machine simulator (section 5.2.2). For the in-
terpreted program to refer to the names that are declared at top level in the compiled
program, we scan out the top-level names and extend the global environment by
binding these names to "*unassigned*", knowing that the compiled code will
assign them the correct values. We then initialize the val register to point to the
list of instructions, set the flag so that the evaluator will go to external_entry,
and start the evaluator.

function compile_and_go(program) {
const instrs = assemble(instructions(compile(program,

"val", "return")),
eceval);

const toplevel_names = scan_out_declarations(program);
const unassigneds = list_of_unassigned(toplevel_names);
set_current_environment(extend_environment(

toplevel_names,
unassigneds,
the_global_environment));

set_register_contents(eceval, "val", instrs);
set_register_contents(eceval, "flag", true);
return start(eceval);

}

If we have set up stack monitoring, as at the end of section 5.4.4, we can examine
the stack usage of compiled code:

compile_and_go(parse(`
function factorial(n) {

return n === 1
? 1
: factorial(n - 1) * n;

}
`));

total pushes = 0
maximum depth = 0
EC-evaluate value:
undefined

EC-evaluate input:
factorial(5);

total pushes = 36
maximum depth = 14
EC-evaluate value:
120

Compare this example with the evaluation of factorial(5) using the interpreted
version of the same function, shown at the end of section 5.4.4. The interpreted
version required 151 pushes and a maximum stack depth of 28. This illustrates the
optimization that results from our compilation strategy.

5.5.7 Interfacing Compiled Code to the Evaluator 563

Interpretation and compilation
With the programs in this section, we can now experiment with the alternative execu-
tion strategies of interpretation and compilation.55 An interpreter raises the machine
to the level of the user program; a compiler lowers the user program to the level of
the machine language. We can regard the JavaScript language (or any programming
language) as a coherent family of abstractions erected on the machine language.
Interpreters are good for interactive program development and debugging because
the steps of program execution are organized in terms of these abstractions, and are
therefore more intelligible to the programmer. Compiled code can execute faster,
because the steps of program execution are organized in terms of the machine lan-
guage, and the compiler is free to make optimizations that cut across the higher-level
abstractions.56

The alternatives of interpretation and compilation also lead to different strategies
for porting languages to new computers. Suppose that we wish to implement Java-
Script for a new machine. One strategy is to begin with the explicit-control evaluator
of section 5.4 and translate its instructions to instructions for the new machine. A
different strategy is to begin with the compiler and change the code generators so
that they generate code for the new machine. The second strategy allows us to run
any JavaScript program on the new machine by first compiling it with the compiler
running on our original JavaScript system, and linking it with a compiled version
of the runtime library.57 Better yet, we can compile the compiler itself, and run this

55. We can do even better by extending the compiler to allow compiled code to call interpreted
functions. See exercise 5.50.

56. Independent of the strategy of execution, we incur significant overhead if we insist that
errors encountered in execution of a user program be detected and signaled, rather than being
allowed to kill the system or produce wrong answers. For example, an out-of-bounds array
reference can be detected by checking the validity of the reference before performing it. The
overhead of checking, however, can be many times the cost of the array reference itself, and a
programmer should weigh speed against safety in determining whether such a check is desirable.
A good compiler should be able to produce code with such checks, should avoid redundant
checks, and should allow programmers to control the extent and type of error checking in the
compiled code.

Compilers for popular languages, such as C and C++, put hardly any error-checking op-
erations into running code, so as to make things run as fast as possible. As a result, it falls to
programmers to explicitly provide error checking. Unfortunately, people often neglect to do this,
even in critical applications where speed is not a constraint. Their programs lead fast and dan-
gerous lives. For example, the notorious “Worm” that paralyzed the Internet in 1988 exploited
the UNIXTM operating system’s failure to check whether the input buffer has overflowed in the
finger daemon. (See Spafford 1989.)

57. Of course, with either the interpretation or the compilation strategy we must also implement
for the new machine storage allocation, input and output, and all the various operations that we
took as “primitive” in our discussion of the evaluator and compiler. One strategy for minimizing
work here is to write as many of these operations as possible in JavaScript and then compile
them for the new machine. Ultimately, everything reduces to a small kernel (such as garbage
collection and the mechanism for applying actual machine primitives) that is hand-coded for
the new machine.

564 Chapter 5 Computing with Register Machines

on the new machine to compile other JavaScript programs.58 Or we can compile
one of the interpreters of section 4.1 to produce an interpreter that runs on the new
machine.

Exercise 5.48
By comparing the stack operations used by compiled code to the stack operations used by
the evaluator for the same computation, we can determine the extent to which the compiler
optimizes use of the stack, both in speed (reducing the total number of stack operations)
and in space (reducing the maximum stack depth). Comparing this optimized stack use
to the performance of a special-purpose machine for the same computation gives some
indication of the quality of the compiler.

a. Exercise 5.28 asked you to determine, as a function of n, the number of pushes and
the maximum stack depth needed by the evaluator to compute n! using the recursive
factorial function given above. Exercise 5.13 asked you to do the same measurements
for the special-purpose factorial machine shown in figure 5.11. Now perform the same
analysis using the compiled factorial function.

Take the ratio of the number of pushes in the compiled version to the number of
pushes in the interpreted version, and do the same for the maximum stack depth. Since
the number of operations and the stack depth used to compute n! are linear in n, these
ratios should approach constants as n becomes large. What are these constants? Simi-
larly, find the ratios of the stack usage in the special-purpose machine to the usage in
the interpreted version.

Compare the ratios for special-purpose versus interpreted code to the ratios for com-
piled versus interpreted code. You should find that the special-purpose machine is much
more efficient than the compiled code, since the hand-tailored controller code should
be much better than what is produced by our rudimentary general-purpose compiler.

b. Can you suggest improvements to the compiler that would help it generate code that
would come closer in performance to the hand-tailored version?

Exercise 5.49
Carry out an analysis like the one in exercise 5.48 to determine the effectiveness of
compiling the tree-recursive Fibonacci function

function fib(n) {
return n < 2 ? n : fib(n - 1) + fib(n - 2);

}

compared to the effectiveness of using the special-purpose Fibonacci machine of fig-
ure 5.12. (For measurement of the interpreted performance, see exercise 5.30.) For Fi-
bonacci, the time resource used is not linear in n; hence the ratios of stack operations will
not approach a limiting value that is independent of n.

58. This strategy leads to amusing tests of correctness of the compiler, such as checking whether
the compilation of a program on the new machine, using the compiled compiler, is identical with
the compilation of the program on the original JavaScript system. Tracking down the source of
differences is fun but often frustrating, because the results are extremely sensitive to minuscule
details.

5.5.7 Interfacing Compiled Code to the Evaluator 565

Exercise 5.50
This section described how to modify the explicit-control evaluator so that interpreted code
can call compiled functions. Show how to modify the compiler so that compiled functions
can call not only primitive functions and compiled functions, but interpreted functions as
well. This requires modifying compile_function_call to handle the case of compound
(interpreted) functions. Be sure to handle all the same target and linkage combinations
as in compile_fun_appl. To do the actual function application, the code needs to jump
to the evaluator’s compound_apply entry point. This label cannot be directly referenced
in object code (since the assembler requires that all labels referenced by the code it is
assembling be defined there), so we will add a register called compapp to the evaluator
machine to hold this entry point, and add an instruction to initialize it:

assign("compapp", label("compound_apply")),
branch(label("external_entry")), // branches if flag is set

"read_evaluate_print_loop",
. . .

To test your code, start by declaring a function f that calls a function g. Use compile_
and_go to compile the declaration of f and start the evaluator. Now, typing at the evaluator,
declare g and try to call f.

Exercise 5.51
The compile_and_go interface implemented in this section is awkward, since the compiler
can be called only once (when the evaluator machine is started). Augment the compiler–
interpreter interface by providing a compile_and_run primitive that can be called from
within the explicit-control evaluator as follows:

EC-evaluate input:
compile_and_run(parse(`
function factorial(n) {

return n === 1
? 1
: factorial(n - 1) * n;

}
`));

EC-evaluate value:
undefined

EC-evaluate input:
factorial(5)

EC-Eval value:
120

Exercise 5.52
As an alternative to using the explicit-control evaluator’s read-evaluate-print loop, design
a register machine that performs a read-compile-execute-print loop. That is, the machine
should run a loop that reads a program, compiles it, assembles and executes the resulting
code, and prints the result. This is easy to run in our simulated setup, since we can arrange
to call the functions compile and assemble as “register-machine operations.”

566 Chapter 5 Computing with Register Machines

Exercise 5.53
Use the compiler to compile the metacircular evaluator of section 4.1 and run this pro-
gram using the register-machine simulator. Because the parser takes a string as input,
you will need to convert the program into a string. The simplest way to do this is to
use the back quotes (`), as we have done for the example inputs to compile_and_go and
compile_and_run. The resulting interpreter will run very slowly because of the multiple
levels of interpretation, but getting all the details to work is an instructive exercise.

Exercise 5.54
Develop a rudimentary implementation of JavaScript in C (or some other low-level lan-
guage of your choice) by translating the explicit-control evaluator of section 5.4 into C. In
order to run this code you will need to also provide appropriate storage-allocation routines
and other runtime support.

Exercise 5.55
As a counterpoint to exercise 5.54, modify the compiler so that it compiles JavaScript func-
tions into sequences of C instructions. Compile the metacircular evaluator of section 4.1 to
produce a JavaScript interpreter written in C.

References
Abelson, Harold, Andrew Berlin, Jacob Katzenelson, William McAllister, Guillermo Rozas,
Gerald Jay Sussman, and Jack Wisdom. 1992. The Supercomputer Toolkit: A general
framework for special-purpose computing. International Journal of High-Speed Electron-
ics 3(3):337–361.

Allen, John. 1978. Anatomy of Lisp. New York: McGraw-Hill.

Appel, Andrew W. 1987. Garbage collection can be faster than stack allocation. Informa-
tion Processing Letters 25(4):275–279.

Backus, John. 1978. Can programming be liberated from the von Neumann style? Commu-
nications of the ACM 21(8):613–641.

Baker, Henry G., Jr. 1978. List processing in real time on a serial computer. Communica-
tions of the ACM 21(4):280–293.

Batali, John, Neil Mayle, Howard Shrobe, Gerald Jay Sussman, and Daniel Weise. 1982.
The Scheme-81 architecture—System and chip. In Proceedings of the MIT Conference on
Advanced Research in VLSI, edited by Paul Penfield, Jr. Dedham, MA: Artech House.

Borning, Alan. 1977. ThingLab—An object-oriented system for building simulations us-
ing constraints. In Proceedings of the 5th International Joint Conference on Artificial
Intelligence.

Borodin, Alan, and Ian Munro. 1975. The Computational Complexity of Algebraic and
Numeric Problems. New York: American Elsevier.

Chaitin, Gregory J. 1975. Randomness and mathematical proof. Scientific American 232(5):
47–52.

Church, Alonzo. 1941. The Calculi of Lambda-Conversion. Princeton, N.J.: Princeton
University Press.

Clark, Keith L. 1978. Negation as failure. In Logic and Data Bases. New York: Plenum
Press, pp. 293–322.

Clinger, William. 1982. Nondeterministic call by need is neither lazy nor by name. In
Proceedings of the ACM Symposium on Lisp and Functional Programming, pp. 226–234.

Colmerauer A., H. Kanoui, R. Pasero, and P. Roussel. 1973. Un système de communi-
cation homme-machine en français. Technical report, Groupe d’Intelligence Artificielle,
Université d’Aix-Marseille II, Luminy.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2022.
Introduction to Algorithms. 4th edition. Cambridge, MA: MIT Press.

Crockford, Douglas. 2008. JavaScript: The Good Parts. Sebastopol, CA: O’Reilly Media.

Darlington, John, Peter Henderson, and David Turner. 1982. Functional Programming and
Its Applications. New York: Cambridge University Press.

Dijkstra, Edsger W. 1968a. The structure of the “THE” multiprogramming system. Com-
munications of the ACM 11(5):341–346.

Dijkstra, Edsger W. 1968b. Cooperating sequential processes. In Programming Languages,
edited by F. Genuys. New York: Academic Press, pp. 43–112.

568 Chapter 5 References

Dinesman, Howard P. 1968. Superior Mathematical Puzzles. New York: Simon and Schus-
ter.

de Kleer, Johan, Jon Doyle, Guy Steele, and Gerald J. Sussman. 1977. AMORD: Explicit
control of reasoning. In Proceedings of the ACM Symposium on Artificial Intelligence and
Programming Languages, pp. 116–125.

Doyle, Jon. 1979. A truth maintenance system. Artificial Intelligence 12:231–272.

ECMA. 1997. ECMAScript: A general purpose, cross-platform programming language.
1st edition, edited by Guy L. Steele Jr. Ecma International.

ECMA. 2015. ECMAScript: A general purpose, cross-platform programming language.
6th edition, edited by Allen Wirfs-Brock. Ecma International.

ECMA. 2020. ECMAScript: A general purpose, cross-platform programming language.
11th edition, edited by Jordan Harband. Ecma International.

Edwards, A. W. F. 2019. Pascal’s Arithmetical Triangle. Mineola, New York: Dover
Publications.

Feeley, Marc. 1986. Deux approches à l’implantation du language Scheme. Masters thesis,
Université de Montréal.

Feeley, Marc and Guy Lapalme. 1987. Using closures for code generation. Journal of
Computer Languages 12(1):47–66.

Feigenbaum, Edward, and Howard Shrobe. 1993. The Japanese National Fifth Generation
Project: Introduction, survey, and evaluation. In Future Generation Computer Systems, vol.
9, pp. 105–117.

Feller, William. 1957. An Introduction to Probability Theory and Its Applications, volume
1. New York: John Wiley & Sons.

Fenichel, R., and J. Yochelson. 1969. A Lisp garbage collector for virtual memory com-
puter systems. Communications of the ACM 12(11):611–612.

Floyd, Robert. 1967. Nondeterministic algorithms. JACM, 14(4):636–644.

Forbus, Kenneth D., and Johan de Kleer. 1993. Building Problem Solvers. Cambridge, MA:
MIT Press.

Friedman, Daniel P., and David S. Wise. 1976. CONS should not evaluate its arguments.
In Automata, Languages, and Programming: Third International Colloquium, edited by S.
Michaelson and R. Milner, pp. 257–284.

Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes. 1992. Essentials of
Programming Languages. Cambridge, MA: MIT Press/McGraw-Hill.

Gabriel, Richard P. 1988. The Why of Y. Lisp Pointers 2(2):15–25.

Goldberg, Adele, and David Robson. 1983. Smalltalk-80: The Language and Its Implemen-
tation. Reading, MA: Addison-Wesley.

Gordon, Michael, Robin Milner, and Christopher Wadsworth. 1979. Edinburgh LCF. Lec-
ture Notes in Computer Science, volume 78. New York: Springer-Verlag.

Gray, Jim, and Andreas Reuter. 1993. Transaction Processing: Concepts and Models. San
Mateo, CA: Morgan-Kaufman.

Green, Cordell. 1969. Application of theorem proving to problem solving. In Proceedings
of the International Joint Conference on Artificial Intelligence, pp. 219–240.

569

Green, Cordell, and Bertram Raphael. 1968. The use of theorem-proving techniques
in question-answering systems. In Proceedings of the ACM National Conference, pp.
169–181.

Guttag, John V. 1977. Abstract data types and the development of data structures. Commu-
nications of the ACM 20(6):397–404.

Hamming, Richard W. 1980. Coding and Information Theory. Englewood Cliffs, N.J.:
Prentice-Hall.

Hanson, Christopher P. 1990. Efficient stack allocation for tail-recursive languages. In
Proceedings of ACM Conference on Lisp and Functional Programming, pp. 106–118.

Hanson, Christopher P. 1991. A syntactic closures macro facility. Lisp Pointers, 4(4):9–16.

Hardy, Godfrey H. 1921. Srinivasa Ramanujan. Proceedings of the London Mathematical
Society XIX(2).

Hardy, Godfrey H., and E. M. Wright. 1960. An Introduction to the Theory of Numbers.
4th edition. New York: Oxford University Press.

Havender, J. 1968. Avoiding deadlocks in multi-tasking systems. IBM Systems Journal
7(2):74–84.

Henderson, Peter. 1980. Functional Programming: Application and Implementation. En-
glewood Cliffs, N.J.: Prentice-Hall.

Henderson. Peter. 1982. Functional Geometry. In Conference Record of the 1982 ACM
Symposium on Lisp and Functional Programming, pp. 179–187.

Hewitt, Carl E. 1969. PLANNER: A language for proving theorems in robots. In Proceed-
ings of the International Joint Conference on Artificial Intelligence, pp. 295–301.

Hewitt, Carl E. 1977. Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence 8(3):323–364.

Hoare, C. A. R. 1972. Proof of correctness of data representations. Acta Informatica
1(1):271–281.

Hodges, Andrew. 1983. Alan Turing: The Enigma. New York: Simon and Schuster.

Hofstadter, Douglas R. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. New York:
Basic Books.

Hughes, R. J. M. 1990. Why functional programming matters. In Research Topics in
Functional Programming, edited by David Turner. Reading, MA: Addison-Wesley, pp.
17–42.

IEEE Std 1178-1990. 1990. IEEE Standard for the Scheme Programming Language.

Ingerman, Peter, Edgar Irons, Kirk Sattley, and Wallace Feurzeig; assisted by M. Lind,
Herbert Kanner, and Robert Floyd. 1960. THUNKS: A way of compiling procedure state-
ments, with some comments on procedure declarations. Unpublished manuscript. (Also,
private communication from Wallace Feurzeig.)

Jaffar, Joxan, and Peter J. Stuckey. 1986. Semantics of infinite tree logic programming.
Theoretical Computer Science 46:141–158.

Kaldewaij, Anne. 1990. Programming: The Derivation of Algorithms. New York: Prentice-
Hall.

570 Chapter 5 References

Knuth, Donald E. 1997a. Fundamental Algorithms. Volume 1 of The Art of Computer
Programming. 3rd edition. Reading, MA: Addison-Wesley.

Knuth, Donald E. 1997b. Seminumerical Algorithms. Volume 2 of The Art of Computer
Programming. 3rd edition. Reading, MA: Addison-Wesley.

Konopasek, Milos, and Sundaresan Jayaraman. 1984. The TK!Solver Book: A Guide
to Problem-Solving in Science, Engineering, Business, and Education. Berkeley, CA:
Osborne/McGraw-Hill.

Kowalski, Robert. 1973. Predicate logic as a programming language. Technical report
70, Department of Computational Logic, School of Artificial Intelligence, University of
Edinburgh.

Kowalski, Robert. 1979. Logic for Problem Solving. New York: North-Holland.

Lamport, Leslie. 1978. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7):558–565.

Lampson, Butler, J. J. Horning, R. London, J. G. Mitchell, and G. K. Popek. 1981. Re-
port on the programming language Euclid. Technical report, Computer Systems Research
Group, University of Toronto.

Landin, Peter. 1965. A correspondence between Algol 60 and Church’s lambda notation:
Part I. Communications of the ACM 8(2):89–101.

Lieberman, Henry, and Carl E. Hewitt. 1983. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM 26(6):419–429.

Liskov, Barbara H., and Stephen N. Zilles. 1975. Specification techniques for data abstrac-
tions. IEEE Transactions on Software Engineering 1(1):7–19.

McAllester, David Allen. 1978. A three-valued truth-maintenance system. Memo 473, MIT
Artificial Intelligence Laboratory.

McAllester, David Allen. 1980. An outlook on truth maintenance. Memo 551, MIT
Artificial Intelligence Laboratory.

McCarthy, John. 1967. A basis for a mathematical theory of computation. In Computer
Programing and Formal Systems, edited by P. Braffort and D. Hirschberg. North-Holland,
pp. 33–70.

McDermott, Drew, and Gerald Jay Sussman. 1972. Conniver reference manual. Memo 259,
MIT Artificial Intelligence Laboratory.

Miller, Gary L. 1976. Riemann’s Hypothesis and tests for primality. Journal of Computer
and System Sciences 13(3):300–317.

Miller, James S., and Guillermo J. Rozas. 1994. Garbage collection is fast, but a stack is
faster. Memo 1462, MIT Artificial Intelligence Laboratory.

Moon, David. 1978. MacLisp reference manual, Version 0. Technical report, MIT Labora-
tory for Computer Science.

Morris, J. H., Eric Schmidt, and Philip Wadler. 1980. Experience with an applicative
string processing language. In Proceedings of the 7th Annual ACM SIGACT/SIGPLAN
Symposium on the Principles of Programming Languages.

Phillips, Hubert. 1934. The Sphinx Problem Book. London: Faber and Faber.

571

Phillips, Hubert. 1961. My Best Puzzles in Logic and Reasoning. New York: Dover
Publications.

Rabin, Michael O. 1980. Probabilistic algorithm for testing primality. Journal of Number
Theory 12:128–138.

Raymond, Eric. 1996. The New Hacker’s Dictionary. 3rd edition. Cambridge, MA: MIT
Press.

Raynal, Michel. 1986. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press.

Rees, Jonathan A., and Norman I. Adams IV. 1982. T: A dialect of Lisp or, lambda: The
ultimate software tool. In Conference Record of the 1982 ACM Symposium on Lisp and
Functional Programming, pp. 114–122.

Rivest, Ronald L., Adi Shamir, and Leonard M. Adleman. 1978. A method for ob-
taining digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126.

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal
of the ACM 12(1):23.

Robinson, J. A. 1983. Logic programming—Past, present, and future. New Generation
Computing 1:107–124.

Spafford, Eugene H. 1989. The Internet Worm: Crisis and aftermath. Communications of
the ACM 32(6):678–688.

Steele, Guy Lewis, Jr. 1977. Debunking the “expensive procedure call” myth. In Proceed-
ings of the National Conference of the ACM, pp. 153–162.

Steele, Guy Lewis, Jr., and Gerald Jay Sussman. 1975. Scheme: An interpreter for the
extended lambda calculus. Memo 349, MIT Artificial Intelligence Laboratory.

Steele, Guy Lewis, Jr., Donald R. Woods, Raphael A. Finkel, Mark R. Crispin, Richard M.
Stallman, and Geoffrey S. Goodfellow. 1983. The Hacker’s Dictionary. New York: Harper
& Row.

Stoy, Joseph E. 1977. Denotational Semantics. Cambridge, MA: MIT Press.

Sussman, Gerald Jay, and Richard M. Stallman. 1975. Heuristic techniques in computer-
aided circuit analysis. IEEE Transactions on Circuits and Systems CAS-22(11):857–865.

Sussman, Gerald Jay, and Guy Lewis Steele Jr. 1980. Constraints—A language for express-
ing almost-hierarchical descriptions. AI Journal 14:1–39.

Sussman, Gerald Jay, and Jack Wisdom. 1992. Chaotic evolution of the solar system.
Science 257:256–262.

Sussman, Gerald Jay, Terry Winograd, and Eugene Charniak. 1971. Microplanner refer-
ence manual. Memo 203A, MIT Artificial Intelligence Laboratory.

Sutherland, Ivan E. 1963. SKETCHPAD: A man-machine graphical communication sys-
tem. Technical report 296, MIT Lincoln Laboratory.

Thatcher, James W., Eric G. Wagner, and Jesse B. Wright. 1978. Data type specification:
Parameterization and the power of specification techniques. In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing, pp. 119–132.

572 Chapter 5 References

Turner, David. 1981. The future of applicative languages. In Proceedings of the 3rd Euro-
pean Conference on Informatics, Lecture Notes in Computer Science, volume 123. New
York: Springer-Verlag, pp. 334–348.

Wand, Mitchell. 1980. Continuation-based program transformation strategies. Journal of
the ACM 27(1):164–180.

Waters, Richard C. 1979. A method for analyzing loop programs. IEEE Transactions on
Software Engineering 5(3):237–247.

Winston, Patrick. 1992. Artificial Intelligence. 3rd edition. Reading, MA: Addison-Wesley.

Zabih, Ramin, David McAllester, and David Chapman. 1987. Non-deterministic Lisp with
dependency-directed backtracking. AAAI-87, pp. 59–64.

Zippel, Richard. 1979. Probabilistic algorithms for sparse polynomials. Ph.D. dissertation,
Department of Electrical Engineering and Computer Science, MIT.

Zippel, Richard. 1993. Effective Polynomial Computation. Boston, MA: Kluwer Academic
Publishers.

Index

Page numbers for JavaScript declarations are in italics.
Page numbers followed by n indicate footnotes.

" (double quote), 124, 125 (ex. 2.55)
' (single quote), 126 (ex. 2.55)
` (back quote), 546
+

as numeric addition operator, 4
as string concatenation operator, 75

-
as numeric negation operator, 15
as numeric subtraction operator, 5

* (multiplication operator), 4
/ (division operator), 4
% (remainder operator), 39
&& (logical conjunction), 15

as derived component, 336 (ex. 4.4)
evaluation of, 15
implementing in metacircular evaluator,

336 (ex. 4.4)
parsing of, 336 (ex. 4.4)
why a syntactic form, 15

|| (logical disjunction), 15
as derived component, 336 (ex. 4.4)
evaluation of, 15
implementing in metacircular evaluator,

336 (ex. 4.4)
parsing of, 336 (ex. 4.4)
why a syntactic form, 15

? :, 14, see also conditional expression
! (logical negation operator), 15
!==

as numeric comparison operator, 15
as string comparison operator, 124

=, 192, see also assignment
===

as equality of pointers, 228, 489
as general comparison operator, 228
as numeric equality operator, 15, 490 n
as string comparison operator, 124, 490

> (numeric comparison operator), 15
>= (numeric comparison operator), 14
< (numeric comparison operator), 15
<= (numeric comparison operator), 15
=>, 54, see also lambda expression

7→ notation for mathematical function,
61 n

[,] (box notation for pairs), 86
;, see semicolon
... (rest parameter and spread syntax),

276
$, pattern variables starting with, 403
// (for comments in programs), 108 n
θ (f (n)) (theta of f (n)), 37
λ calculus (lambda calculus), 55 n
π , see pi
Σ (sigma) notation, 50

abs, 14
absolute value, 13
abstract data, 72, see also data abstraction
abstraction, see also data abstraction;

higher-order functions; means of
abstraction

common pattern and, 50
functional, 22
metalinguistic, 318
in register-machine design, 456–457
of search in nondeterministic

programming, 378
abstraction barriers, 71, 76–78, 147

in complex-number system, 148
in generic arithmetic system, 164
in query language, 437
in representing JavaScript syntax, 329

abstract models for data, 78 n
abstract syntax

in metacircular evaluator, 322
in query interpreter, 425

accelerated_sequence, 297
accumulate, 53 (ex. 1.32), 100

same as fold_right, 105 (ex. 2.38)
accumulate_n, 104 (ex. 2.36)
accumulator, 100, 196 (ex. 3.1)
Ackermann’s function, 31 (ex. 1.10)
acquire a mutex, 276
actions, in register machine, 454–455

574 Index

actual_value, 364
Ada, 411 (ex. 4.61)
Adams, Norman I., IV, 356 n
add (generic), 165

used for polynomial coefficients, 179,
180

add_action, 244, 247
add_complex, 150
add_complex_to_javascript_num, 169
addend, 128
adder (primitive constraint), 256
adder

full, 243
half, 242
ripple-carry, 245 (ex. 3.30)

add_interval, 81
additivity, 72, 147, 156–162, 166
add_lists, 371
add_poly, 178
add_rat, 73
address, 488
address arithmetic, 488
add_rule_or_assertion, 434
add_streams, 290
add_terms, 179
add_to_agenda, 248, 251
add_vect, 118 (ex. 2.46)
adjoin_arg, 505 n
adjoining to a list with pair, 88
adjoin_set, 131

binary-tree representation, 136
ordered-list representation, 135 (ex.

2.61)
unordered-list representation, 132
for weighted sets, 145

adjoin_term, 179, 182
Adleman, Leonard, 46 n
administrative assistant, importance of,

403
advance_pc, 479
after_delay, 244, 248
agenda, see digital-circuit simulation
A’h-mose, 40 n
algebra, symbolic, see symbolic algebra
algebraic expression, 176

differentiating, 126–131
representing, 128–131
simplifying, 129–130

algebraic specification for data, 79 n

Algol
block structure, 26
call-by-name argument passing, 286 n,

363 n
thunks, 286 n, 363 n

algorithm
optimal, 104 n
probabilistic, 45–46, 188 n

aliasing, 204 n
Al-Karaji, 36 n
Allen, John, 494 n
all_regs (compiler), 542 n
alternative

of conditional expression, 14
of conditional statement, 57

always_true, 428
amb, 374
amb evaluator, see nondeterministic

evaluator
ambeval, 388
analog computer, 306 (fig. 3.34)
analyze

metacircular, 356
nondeterministic, 387

analyze_...
metacircular, 356–359, 360 (ex. 4.21)
nondeterministic, 389–392

analyze_amb, 394
analyzing evaluator, 355–360

as basis for nondeterministic evaluator,
386

and (query language), 405
evaluation of, 413, 426, 446 (ex. 4.73)

and-gate, 241
and_gate, 245

an_element_of, 375
angle

data-directed, 160
polar representation, 152
rectangular representation, 151
with tagged data, 154

angle_polar, 154
angle_rectangular, 153
an_integer_starting_from, 375
Appel, Andrew W., 541 n
append, 88, 225 (ex. 3.12)

as accumulation, 103 (ex. 2.33)
append_mutator vs., 225 (ex. 3.12)
as register machine, 492 (ex. 5.21)
“what is” (rules) vs. “how to”

(function), 399–400

Index 575

append_instruction_sequences, 524,
544

append_mutator, 225 (ex. 3.12)
as register machine, 492 (ex. 5.21)

append_to_form (rules), 410
applicative-order evaluation, 13

in JavaScript, 13
normal order vs., 17 (ex. 1.5), 43 (ex.

1.20), 361–362
apply (lazy), 364
apply (metacircular), 324

tail recursion and, 324 n
apply (primitive method), 346 n
apply_a_rule, 430
apply_dispatch, 507

modified for compiled code, 558
apply_generic, 160

with coercion, 171, 174 (ex. 2.81)
with coercion by raising, 175 (ex. 2.84)
with coercion of multiple arguments,

175 (ex. 2.82)
with coercion to simplify, 176 (ex.

2.85)
with message passing, 163
with tower of types, 173

apply_in_underlying_javascript,
159 n, 346 n

apply_primitive_function, 324, 340,
346

apply_rules, 430
arbiter, 278 n
arctangent, 151 n
arg_expressions, 331
argl register, 500
argument(s), 9

arbitrary number of, 276
delayed, 306

argument passing, see call-by-name
argument passing; call-by-need
argument passing

Aristotle’s De caelo (Buridan’s
commentary on), 278 n

arithmetic
address arithmetic, 488
generic, 163, see also generic

arithmetic operations
on complex numbers, 148
on intervals, 81–84
on polynomials, see polynomial

arithmetic
on power series, 294 (ex. 3.60), 295

(ex. 3.62)

on rational numbers, 72–76
operators for, 4

array, see vector (data structure)
arrow function, see lambda expression
articles, 381
ASCII code, 140
assemble, 474, 475 n
assembler, 470, 474–477
assert (query interpreter), 419
assertion, 401

implicit, 407
assertion_body, 443
assign (in register machine), 453

instruction constructor, 478
simulating, 478
storing label in register, 459

assignment, 190–206
assignment expression, 192
assignment operation, 190
benefits of, 197–200
bugs associated with, 204 n, 205
constant/variable declaration vs., 192 n
costs of, 200–206
equality test vs., 192 n
evaluation of, 210
parsing of, 333
value of, 192 n

assignment_symbol, 333
assignment_value_expression, 333
assign_reg_name, 478
assign_symbol_value, 341, 342
assign_value_exp, 478
assoc, 236
associativity

of conditional expression, 14
of operators, 5

atomic operations supported in hardware,
278 n

atomic requirement for test_and_set, 277
attach_tag, 152

using JavaScript data types, 168 (ex.
2.78)

augend, 128
automagically, 376
automatic search, 373, see also search

history of, 376 n
automatic storage allocation, 487
average, 19
average_damp, 63
average damping, 61
averager (constraint), 261 (ex. 3.33)

576 Index

back quotes, 546
backtracking, 376, see also

nondeterministic computing
Backus, John, 314 n
Baker, Henry G., Jr., 494 n
balanced binary tree, 137, see also binary

tree
balanced mobile, 96 (ex. 2.29)
bank account, 190, 220 (ex. 3.11)

exchanging balances, 272
joint, 203, 205 (ex. 3.7)
joint, modeled with streams, 315 (fig.

3.38)
joint, with concurrent access, 264
password-protected, 196 (ex. 3.3)
serialized, 269
stream model, 313
transferring money, 274 (ex. 3.44)

barrier synchronization, 279 n
Barth, John, 317
Batali, John Dean, 499 n
below, 112, 122 (ex. 2.51)
Bertrand’s Hypothesis, 292 n
beside, 112, 122
Bhaskara, 36 n
bignum, 490
binary numbers, addition of, see adder
binary operator, 15
binary search, 135
binary tree, 135

balanced, 137
converting a list to a, 137 (ex. 2.64)
converting to a list, 137 (ex. 2.63)
for Huffman encoding, 141
represented with lists, 136
set represented as, 135–138
table structured as, 240 (ex. 3.26)

bind, 23
binding, 206

deep, 343 n
binding_in_frame, 444
binding_value, 444
binding_variable, 444
binomial coefficients, 36 n
black box, 22
block, 25

empty, 251 n
parsing of, 333

block_body, 333
blocked process, 277 n
block structure, 25–26, 351–355

in environment model, 218–222
in query language, 447 (ex. 4.76)

body of a function, 9
boolean values (true, false), 14
Borning, Alan, 252 n
Borodin, Alan, 104 n
bound name, 23
box-and-pointer notation, 84

end-of-list marker, 85
box notation for pairs, 86
branch (in register machine), 452

instruction constructor, 480
simulating, 479

branch_dest, 480
branch of a tree, 7
break (keyword), 338 (ex. 4.7), see also

while loop
breakpoint, 486 (ex. 5.18)
broken heart, 495
B-tree, 137 n
bug, 1

capturing a free name, 24
order of assignments, 205
side effect with aliasing, 204 n

bureaucracy, 419
Buridan, Jean, 278 n
busy-waiting, 277 n

C
compiling JavaScript into, 564 (ex.

5.55)
error handling, 561 n
JavaScript interpreter written in, 564

(ex. 5.54), 564 (ex. 5.55)
recursive functions in, 30

cache-coherence protocols, 265 n
calculator, fixed points with, 61 n
call-by-name argument passing, 286 n,

363 n
call-by-need argument passing, 286 n,

363 n
memoization and, 293 n

call_each, 247
camel case, 10 n
canonical form, for polynomials, 184

Index 577

capturing a free name, 24
Carmichael numbers, 45 n, 48 (ex. 1.27)
case analysis, 13, see also conditional

expression
data-directed programming vs., 323
general, 14
as sequence of clauses, 15

cell, in serializer implementation, 276
celsius_fahrenheit_converter, 254

expression-oriented, 262 (ex. 3.37)
center, 83
Chaitin, Gregory, 197 n
Chandah-sutra, 40 n
change and sameness

meaning of, 202–204
shared data and, 226

changing money, see counting change
Chapman, David, 376 n
character, ASCII encoding, 140
Charniak, Eugene, 376 n
Chebyshev, Pafnutii L’vovich, 292 n
check_an_assertion, 428
chess, eight-queens puzzle, 108 (ex. 2.42),

380 (ex. 4.42)
chip implementation of Scheme, 499
chronological backtracking, 376
Church, Alonzo, 55 n, 80 (ex. 2.6)
Church numerals, 80 (ex. 2.6)
Church–Turing thesis, 349 n
circuit

digital, see digital-circuit simulation
modeled with streams, 303 (ex. 3.73),

308 (ex. 3.80)
Clark, Keith L., 422 n
clause of a case analysis, 15
Clinger, William, 363 n
closed world assumption, 422
closure, 71

in abstract algebra, 85 n
closure property of picture-language

operations, 110, 113
closure property of pair, 84

coal, bituminous, 112 n
code

ASCII, 140
fixed-length, 140
Huffman, see Huffman code
Morse, 140
prefix, 140
variable-length, 140

code generator, 523
arguments of, 523
value of, 524

coeff, 179, 182
coercion, 170–176

function, 170
in algebraic manipulation, 184
in polynomial arithmetic, 180
table, 170

Colmerauer, Alain, 399 n
combination, 4, see also function

application; operator combination
combination, means of, 3, see also

closure
comments in programs, 108 n
comp register, 500
compacting garbage collector, 494 n
compilation, see compiler
compile, 523
compile_and_go, 558, 560
compile_and_run, 563 (ex. 5.51)
compile_application, 536
compile_assignment, 529
compile_block, 532
compile_conditional, 530
compiled_apply, 558
compile_declaration, 529
compiled_function_entry, 532 n
compiled_function_env, 532 n
compile_fun_appl, 542
compile_function_call, 538
compile_lambda_body, 534
compile_lambda_expression, 533
compile_linkage, 527
compile_literal, 528
compile_name, 528
compiler, 519–521

interpreter vs., 520–521, 561
tail recursion, stack allocation, and

garbage-collection, 541 n
compile_return_statement, 543
compiler for JavaScript, 521–564, see

also code generator; compile-time
environment; instruction sequence;
linkage descriptor; target register

analyzing evaluator vs., 521, 522
assignments, 528
blocks, 531
code generators, see compile_. . .
combinations, 535–542

578 Index

compiler for JavaScript (continued)
conditionals, 529
dead code analysis, 534 (ex. 5.34)
declarations, 528
efficiency, 521–522
example compilation, 546–549
explicit-control evaluator vs., 521–522,

526 (ex. 5.33), 560
expression-syntax functions, 522
function applications, 535–542
interfacing to evaluator, 557–564
label generation, 530 n
lambda expressions, 532
lexical addressing, 554–555
linkage code, 527
literals, 528
machine-operation use, 520 n
monitoring performance (stack use) of

compiled code, 560, 562 (ex. 5.48),
562 (ex. 5.49)

names, 528
open coding of primitives, 553 (ex.

5.41)
order of argument evaluation, 549 (ex.

5.39)
register use, 520 n, 521, 542 n
return statements, 543
running compiled code, 557–564
scanning out internal declarations, 555
sequences of statements, 531
stack usage, 525, 526 (ex. 5.32), 553

(ex. 5.40)
structure of, 522–526
tail-recursive code generated by, 541

compile_sequence, 531
compile-time environment, 555, 556 (ex.

5.43), 556 (ex. 5.44), 557 (ex. 5.47)
complex package, 167
complex-number arithmetic, 148

interfaced to generic arithmetic system,
167

structure of system, 155 (fig. 2.21)
complex numbers

polar representation, 151
rectangular representation, 151
rectangular vs. polar form, 149
represented as tagged data, 152–155

complex_to_complex, 175 (ex. 2.81)
composition of functions, 67 (ex. 1.42)
compound_apply, 508
compound data, need for, 69–71

compound expression, 4, see also
function application; operator
combination; syntactic form

as function expression of application,
17 (ex. 1.4)

compound function, 8, see also function
used like primitive function, 10

compound query, 405–406
processing, 413–415, 426–428, 445 (ex.

4.72), 446 (ex. 4.73), 446 (ex. 4.74)
computability, 349 n, 351 n
computational process, 1, see also

process
computer science, 318, 349 n

mathematics vs., 18, 398
concatenating strings, 75
conclusion, 444
concrete data representation, 72
concurrency, 263–280

correctness of concurrent programs,
266–268

deadlock, 278–279
functional programming and, 314
mechanisms for controlling, 268–280

concurrent_execute, 269
conditional_alternative, 331
conditional_consequent, 331
conditional expression, 14, see also case

analysis
as alternative of conditional expression,

14
evaluation of, 14
non-boolean value as predicate, 14 n
normal-order evaluation of, 17 (ex. 1.5)
as operand of operator combination, 17

(ex. 1.1)
parsing of, 331
precedence of, 17 (ex. 1.1)
right-associativity of, 14
why a syntactic form, 20 (ex. 1.6)

conditional_predicate, 331
conditional statement, 57

alternative statements of, 57
conditional instead of alternative block,

179
consequent statements of, 57
need for, 57
one-armed (without alternative), 251 n
parsing of, 331
predicate, consequent, and alternative

of, 57

Index 579

congruent modulo n, 44
conjoin, 426
conjunction, 15, see also && (logical

conjunction)
connect, 255, 261
connector(s), in constraint system, 253

operations on, 255
representing, 258

Conniver, 376 n
consciousness, expansion of, 325 n
consequent

of clause, 15
of conditional expression, 14
of conditional statement, 57

const (keyword), 5, see also constant
declaration

constant (in register machine), 453, 482
simulating, 482
syntax of, 468

constant (primitive constraint), 258
constant (in JavaScript), 5

detecting assignment to, 343 (ex. 4.11),
557 (ex. 5.46)

value of, 5
constant declaration, 5

parsing of, 333
why a syntactic form, 8

constant_exp_value, 482
constraint(s)

primitive, 253
propagation of, 252–262

constraint network, 253
construct_arglist, 537
constructing a list with pair, 88
constructor, 72

as abstraction barrier, 76
contents, 152, 443

using JavaScript data types, 168 (ex.
2.78)

continuation
in nondeterministic evaluator, 386–388,

see also failure continuation; success
continuation

in register-machine simulator, 475 n
continue (keyword), 338 (ex. 4.7), see

also while loop
continue register, 459

in explicit-control evaluator, 500
recursion and, 464

continued fraction, 62 (ex. 1.37)
e as, 62 (ex. 1.38)
golden ratio as, 62 (ex. 1.37)
tangent as, 63 (ex. 1.39)

controller for register machine, 450–452,
see also register-machine language

controller diagram, 451
control structure, 419
conventional interface, 71

sequence as, 98–110
convert, 440
convert_to_query_syntax, 438
Cormen, Thomas H., 137 n
corner_split, 115
correctness of a program, 18 n
cosine

fixed point of, 61
power series for, 294 (ex. 3.59)

cosmic radiation, 45 n
count_change, 35
counting change, 34–35, 89 (ex. 2.19)
count_leaves, 93, 94

as accumulation, 104 (ex. 2.35)
as register machine, 492 (ex. 5.20)

count_pairs, 229 (ex. 3.16)
credit-card accounts, international, 280 n
Cressey, David, 495 n
Crockford, Douglas, 339 n
cross-type operations, 169
cryptography, 46 n
cube, 38 (ex. 1.15), 48, 65
cube_root, 64
cube root

as fixed point, 64
by Newton’s method, 21 (ex. 1.8)

current_time, 248, 250
current time, for simulation agenda, 250
Curry, Haskell Brooks, 90 (ex. 2.20)
currying, 90 (ex. 2.20)
cycle in list, 226 (ex. 3.13)

detecting, 229 (ex. 3.18)

Darlington, John, 314 n
data, 1, 3

abstract, 72, see also data abstraction
abstract models for, 78 n
algebraic specification for, 79 n
compound, 69–71
concrete representation of, 72
functional representation of, 78–80

580 Index

data (continued)
hierarchical, 85, 93–96
list-structured, 74
meaning of, 78–80
mutable, see mutable data objects
numerical, 3
as program, 348–350
shared, 226–229
symbolic, 124
tagged, 152–155, 489 n

data abstraction, 70, 72, 147, 149, 329,
see also metacircular evaluator

for queue, 231
data base

data-directed programming and, 162
(ex. 2.74)

Gargle personnel, 401–403
indexing, 413 n, 434
Insatiable Enterprises personnel, 161

(ex. 2.74)
logic programming and, 401
as set of records, 139

data-directed programming, 148,
156–162

case analysis vs., 323
in metacircular evaluator, 336 (ex. 4.3)
in query interpreter, 425

data-directed recursion, 180
data paths for register machine, 450–452

data-path diagram, 450
data types

in JavaScript, 168 (ex. 2.78)
in statically typed languages, 310 n

deadlock, 278–279
avoidance, 278
recovery, 279 n

debug, 1
declaration, see also internal declaration

of constant (const), 5
environment model of, 208
of function (function), 8
use of name before, 56 n, 222
of variable (let), 191

declaration_symbol, 333
declaration_value_expression, 333
declarative vs. imperative knowledge, 18,

398
logic programming and, 399–400, 419
nondeterministic computing and, 373 n

decode, 144

decomposition of program into parts, 22
deep binding, 343 n
deep_reverse, 95 (ex. 2.27)
deferred operations, 29
definite integral, 51–52

estimated with Monte Carlo simulation,
200 (ex. 3.5), 312 (ex. 3.82)

de Kleer, Johan, 376 n, 421 n
delay, in digital circuit, 241
delayed argument, 306
delayed evaluation, 190, 281

assignment and, 288 (ex. 3.52)
explicit vs. automatic, 372
in lazy evaluator, 360–372
normal-order evaluation and, 310
printing and, 287 n
streams and, 305–309

delayed expression, 283
explicit, 306
explicit vs. automatic, 372
lazy evaluation and, 370
memoized, 286, 293 n

delay_it, 366
delete_queue, 232, 234
denom, 72, 74

axiom for, 78
reducing to lowest terms, 77

dense polynomial, 181
dependency-directed backtracking, 376 n
depends_on, 433
deposit message for bank account, 194
deposit, with external serializer, 274
depth-first search, 376
deque, 235 (ex. 3.23)
deriv (numerical), 65
deriv (symbolic), 127

data-directed, 161 (ex. 2.73)
derivative of a function, 64
derived component, 335

adding to explicit-control evaluator,
513 (ex. 5.25)

derived components in evaluator,
334–335

function declaration, 334
operator combination, 335

design, stratified, 123
differential equation, 306, see also solve

second-order, 308 (ex. 3.78), 308 (ex.
3.79)

Index 581

differentiation
numerical, 64
rules for, 126, 130 (ex. 2.56)
symbolic, 126–131, 160 (ex. 2.73)

diffusion, simulation of, 267
digital-circuit simulation, 241–252

agenda, 247–248
agenda implementation, 250–252
primitive function boxes, 244–245
representing wires, 246–247
sample simulation, 248–249

digital signal, 241
Dijkstra, Edsger Wybe, 276 n
Dinesman, Howard P., 378
Diophantus’s Arithmetic, Fermat’s copy

of, 44 n
Dirichlet, Peter Gustav Lejeune, 198 n
dirichlet_stream, 312
dirichlet_test, 198
disjoin, 427

without delayed expression, 444 (ex.
4.68)

disjunction, 15, see also || (logical
disjunction)

dispatching
comparing different styles, 163 (ex.

2.76)
on type, 156, see also data-directed

programming
display (primitive function), 46 (ex.

1.22), 75 n
display operation in register machine,

455
display_stream, 284
distinct, 379 n
div (generic), 165
div_complex, 150
divides, 43
div_interval, 82

division by zero, 82 (ex. 2.10)
div_poly, 183 (ex. 2.91)
div_rat, 73
div_series, 295 (ex. 3.62)
div_terms, 183 (ex. 2.91)
dog, perfectly rational behavior of, 278 n
dot_product, 105 (ex. 2.37)
Doyle, Jon, 376 n
draw_line, 119

driver_loop
for lazy evaluator, 365
for metacircular evaluator, 347
for nondeterministic evaluator, 395

driver loop
in explicit-control evaluator, 514
in lazy evaluator, 365
in metacircular evaluator, 346
in nondeterministic evaluator, 377, 394
in query interpreter, 418, 424

duplicate parameters, 336 (ex. 4.5)

e
as continued fraction, 62 (ex. 1.38)
as solution to differential equation, 307

ex, power series for, 294 (ex. 3.59)
Earth, measuring circumference of, 289 n
eceval, 515
ECMAScript, 2

Math object, 10 n
edge1_frame, 117
edge2_frame, 117
Edwards, Anthony William Fairbank,

36 n
efficiency, see also order of growth

of compilation, 521
of data-base access, 413 n
of evaluation, 355
of query processing, 414
of tree-recursive process, 35

Eich, Brendan, 2
EIEIO, 279 n
eight-queens puzzle, 108 (ex. 2.42), 380

(ex. 4.42)
electrical circuits, modeled with streams,

303 (ex. 3.73), 308 (ex. 3.80)
element_expressions, 442
else (keyword), 57, see also conditional

statement
embedded language, language design

using, 360
empty_arglist, 505 n
empty list, 87, see also null

recognizing with is_null, 87
empty stream, 283
encapsulated name, 193 n
enclosing_environment, 341
enclosing environment, 206

582 Index

encode, 145 (ex. 2.68)
end-of-list marker, 85
end_segment, 77 (ex. 2.2), 120 (ex. 2.48)
end_with_linkage, 527
engineering vs. mathematics, 45 n
entry, 136
enumerate_interval, 101
enumerate_tree, 101
enumerator, 99
env register, 500
environment, 6, 206

compile-time, see compile-time
environment

as context for evaluation, 7
enclosing, 206
global, see global environment
lexical scoping and, 25 n
program, see program environment
in query interpreter, 447 (ex. 4.76)
renaming vs., 447 (ex. 4.76)

environment model of evaluation, 190,
206–222

environment structure, 207 (fig. 3.1)
function application, 207
function-application example, 210–213
internal declarations, 218–222
local state, 213–218
message passing, 220 (ex. 3.11)
metacircular evaluator and, 320
rules for evaluation, 207–210
tail recursion and, 213 n

equal, 125 (ex. 2.54)
equality

in generic arithmetic system, 169 (ex.
2.79)

of lists, 125 (ex. 2.54)
of numbers, 15, 125 (ex. 2.54), 490 n
referential transparency and, 203
of strings, 124, 125 (ex. 2.54), 490

equal_rat, 73
equation, solving, see half-interval

method; Newton’s method; solve
Eratosthenes, 289 n
error (primitive function), 60 n

optional second argument, 79 n
error handling

in compiled code, 561 n
in explicit-control evaluator, 515, 518

(ex. 5.31)
Escher, Maurits Cornelis, 110 n
estimate_integral, 200 (ex. 3.5)

estimate_pi, 198, 199
Euclid’s Algorithm, 41–42, 450, see also

greatest common divisor
order of growth, 42
for polynomials, 185 n

Euclid’s Elements, 42 n
Euclid’s proof of infinite number of

primes, 292 n
Euclidean ring, 185 n
Euler, Leonhard, 62 (ex. 1.38)

proof of Fermat’s Little Theorem, 44 n
series accelerator, 297

euler_transform, 297
eval (primitive function in JavaScript),

350
eval_assignment, 327
eval_block, 326
eval_conditional (lazy), 365
eval_conditional (metacircular), 325
eval_declaration, 328
eval_dispatch, 501
eval_return_statement, 327
eval_sequence, 326
evaluate (lazy), 363
evaluate (metacircular), 323

analyzing version, 356
data-directed, 336 (ex. 4.3)

evaluate_query, 418, 426
evaluation

applicative-order, see applicative-order
evaluation

delayed, see delayed evaluation
environment model of, see

environment model of evaluation
models of, 513
normal-order, see normal-order

evaluation
of &&, 15
of ||, 15
of conditional expression, 14
of function application, 9
of operator combination, 6–8
of primitive expression, 7
order of subexpression evaluation, see

order of evaluation
substitution model of, see substitution

model of function application
evaluator, 318, see also interpreter

as abstract machine, 349
metacircular, 320
as universal machine, 349

Index 583

evaluators, see metacircular evaluator;
analyzing evaluator; lazy evaluator;
nondeterministic evaluator; query
interpreter; explicit-control evaluator

ev_application, 505
ev_assignment, 512
ev_block, 512
ev_conditional, 502
ev_declaration, 513
even_fibs, 99, 102
event-driven simulation, 241
ev_function_declaration, 513
ev_lambda, 501
evlis tail recursion, 506 n
ev_literal, 501
ev_name, 501
ev_operator_combination, 505
ev_return, 509
ev_sequence, 503
exchange, 272
execute, 472
execute_application

metacircular, 357
nondeterministic, 393

execution function
in analyzing evaluator, 356
in nondeterministic evaluator, 386, 388
in register-machine simulator, 472,

477–484
explicit-control evaluator for JavaScript,

499–519
argument evaluation, 505–507
assignments, 512
blocks, 512
combinations, 504–509
compound functions, 508
conditionals, 502
controller, 500–515
data paths, 500
declarations, 512
derived components, 513 (ex. 5.25)
driver loop, 514
error handling, 515, 518 (ex. 5.31)
expressions with no subexpressions to

evaluate, 501
function application, 504–509
as machine-language program, 520
machine model, 515
modified for compiled code, 557–559
monitoring performance (stack use),

516–518
normal-order evaluation, 513 (ex. 5.26)

operations, 500
optimizations (additional), 526 (ex.

5.33)
primitive functions, 507
registers, 500
return statements, 508–511
running, 513–516
sequences of statements, 502–504
stack usage, 504
syntactic forms (additional), 513 (ex.

5.25)
tail recursion, 511 (ex. 5.22), 509–511,

517 (ex. 5.27), 518 (ex. 5.29)
as universal machine, 519

expmod, 44, 47 (ex. 1.25), 47 (ex. 1.26)
exponential growth, 37

of tree-recursive Fibonacci-number
computation, 33

exponentiation, 38–40
modulo n, 44

expression, 3, see also compound
expression; primitive expression

algebraic, see algebraic expressions
literal, 322
primitive boolean, 14
symbolic, 71, see also string(s);

symbol(s)
expression-oriented vs. imperative

programming style, 262 n
expression statement, 3

parsing of, 331
expt

linear iterative version, 38
linear recursive version, 38
register machine for, 466 (ex. 5.4)

extend, 444
extend_environment, 341, 341
extend_if_consistent, 429
extend_if_possible, 433
external_entry, 559
extract_labels, 475, 475 n

factorial
as an abstract machine, 349
compilation of, 546–549
environment structure in evaluating,

212 (ex. 3.9)
linear iterative version, 28
linear recursive version, 27
register machine for (iterative), 452 (ex.

5.1), 454 (ex. 5.2)
(continued)

584 Index

factorial (continued)
register machine for (recursive),

462–464, 465 (fig. 5.11)
stack usage, compiled, 562 (ex. 5.48)
stack usage, interpreted, 517 (ex. 5.27),

517 (ex. 5.28)
stack usage, register machine, 486 (ex.

5.13)
with assignment, 205
with higher-order functions, 52 (ex.

1.31)
with while loop, 338 (ex. 4.7)

factorial, 27, see also factorial
without declaration or assignment, 353

(ex. 4.18)
infinite stream, 292 (ex. 3.54)

failure, in nondeterministic computation,
374

bug vs., 389
searching and, 376

failure continuation (nondeterministic
evaluator), 386, 388

constructed by amb, 394
constructed by assignment, 390
constructed by driver loop, 394

false (keyword), 14
falsiness, 339 n
fast_expt, 39
fast_is_prime, 45
feedback loop, modeled with streams,

305
Feeley, Marc, 356 n
Feigenbaum, Edward, 400 n
Fenichel, Robert, 494 n
Fermat, Pierre de, 44 n
Fermat’s Little Theorem, 44

alternate form, 48 (ex. 1.28)
proof, 44 n

fermat_test, 45
Fermat test for primality, 44–45

variant of, 48 (ex. 1.28)
fetch_assertions, 434
fetch_rules, 434
fib

linear iterative version, 33
logarithmic version, 40 (ex. 1.19)
register machine for (tree-recursive),

466, 467 (fig. 5.12)
stack usage, compiled, 562 (ex. 5.49)

stack usage, interpreted, 518 (ex. 5.30)
tree-recursive version, 32, 518 (ex.

5.30)
with memoization, 240 (ex. 3.27)

Fibonacci numbers, 32, see also fib
Euclid’s GCD algorithm and, 42
infinite stream of, see fibs

fibs (infinite stream), 289
implicit definition, 291

FIFO buffer, 231
filter, 100
filter, 53 (ex. 1.33), 100
filtered_accumulate, 53 (ex. 1.33)
find_assertions, 428
find_divisor, 43
first_agenda_item, 248, 252
first-class elements in language, 67
first_conjunct, 443
first_disjunct, 443
first_frame, 341
first_segment, 250
first_statement, 332
first_term, 179, 182
fixed-length code, 140
fixed_point, 60

as iterative improvement, 68 (ex. 1.46)
fixed point, 60–61

computing with calculator, 61 n
of cosine, 61
cube root as, 64
fourth root as, 68 (ex. 1.45)
golden ratio as, 62 (ex. 1.35)
as iterative improvement, 68 (ex. 1.46)
in Newton’s method, 64
nth root as, 68 (ex. 1.45)
square root as, 61, 63, 66
of transformed function, 66
unification and, 432 n

fixed_point_of_transform, 66
flag register, 472
flatmap, 107
flatten_stream, 436
flip_horiz, 112, 122 (ex. 2.50)
flipped_pairs, 114, 117, 117 n
flip_vert, 112, 121
Floyd, Robert, 376 n
fold_left, 106 (ex. 2.38)
fold_right, 105 (ex. 2.38)
Forbus, Kenneth D., 376 n

Index 585

force_it, 366
memoized version, 367

forcing
tail of stream, 283
of thunk, 363

for_each, 92 (ex. 2.23), 369 (ex. 4.28)
for_each_except, 260
forget_value, 255, 261
formal parameters, see parameters
Fortran, 103 n

inventor of, 314 n
forwarding address, 495
fourth root, as fixed point, 68 (ex. 1.45)
fraction, see rational number(s)
frame (environment model), 206

as repository of local state, 213–218
global, 206

frame (picture language), 110, 117
coordinate map, 117

frame (query interpreter), 412, see also
pattern matching; unification

representation, 444
frame_coord_map, 118
framed-stack discipline, 504 n
frame_symbols, 341
frame_values, 341
free register, 491, 495
free list, 491 n
free name, 23

capturing, 24
in internal declaration, 25

Friedman, Daniel P., 286 n, 319 n
fringe, 95 (ex. 2.28)

as a tree enumeration, 101 n
front_ptr, 232
front_queue, 231, 233
full-adder, 243

full_adder, 243
fun register, 500
function (keyword), 8, see also function

declaration
function (JavaScript), 3, 8

anonymous, 54
as argument, 49–53
as black box, 22–23
body of, 9
compound, 8
creating with function declaration, 8
creating with lambda expression, 54,

208, 210

declaration of, 8–9
first-class, 67
as general method, 58–63
generic, 143, 148
higher-order, see higher-order function
mathematical function vs., 18
memoized, 240 (ex. 3.27)
monitored, 196 (ex. 3.2)
name of, 9
naming (with function declaration), 8
parameters of, 9
as pattern for local evolution of a

process, 26
primitive, 10
as returned value, 63–68
returning multiple values, 475 n
scope of parameters, 24
syntactic form vs., 362 (ex. 4.24)
with any number of arguments, 276

function (mathematical)
7→ notation for, 61 n
Ackermann’s, 31 (ex. 1.10)
composition of, 67 (ex. 1.42)
derivative of, 64
fixed point of, 60–61
JavaScript function vs., 18
rational, 184–188
repeated application of, 68 (ex. 1.43)
smoothing of, 68 (ex. 1.44)

functional abstraction, 22
functional programming, 200, 311–315

concurrency and, 314
functional programming languages,

314
time and, 313–315

functional representation of data, 78–80
mutable data, 229–230

function application
compound expression as function

expression of, 17 (ex. 1.4)
environment model of, 207, 210–213
evaluation of, 9
as function expression of application,

63 n
parsing of, 331
substitution model of, see substitution

model of function application
function_body, 340
function box, in digital circuit, 241

586 Index

function declaration, 8
as derived component, 334
hoisting of, 54 n, 352 (ex. 4.17)
lambda expression vs., 54
parsing of, 334

function_declaration_body, 334
function_declaration_name, 334
function_declaration_parameters,

334
function_decl_to_constant_decl,

334
function_environment, 340
function_expression, 331
function expression, 9

application as, 63 n
compound expression as, 17 (ex. 1.4)
lambda expression as, 55

function_parameters, 340

Gabriel, Richard P., 353 n
garbage collection, 493–498

memoization and, 366 n
mutation and, 223 n
tail recursion and, 541 n

garbage collector
compacting, 494 n
mark-sweep, 494 n
stop-and-copy, 493–498

Gargle, 378, 401
GCD, see greatest common divisor
gcd, 42

register machine for, 450–452, 469
gcd_machine, 469
gcd_terms, 186
general-purpose computer, as universal

machine, 519
generate_huffman_tree, 146 (ex. 2.69)
generating sentences, 385 (ex. 4.47)
generic arithmetic operations, 164–169

structure of system, 164 (fig. 2.23)
generic function, 143, 148

generic selector, 154, 155
generic operation, 71
generic types, see polymorphic types
Genesis, 411 (ex. 4.61)
get, 157, 239
get_contents, 471
get_current_environment, 514
get_register, 472

get_register_contents, 469, 472
get_signal, 244, 247
get_time (primitive function), 46 (ex.

1.22)
get_value, 255, 261
global environment, 207

in metacircular evaluator, 344
global frame, 206
Goguen, Joseph, 78 n
golden ratio, 33

as continued fraction, 62 (ex. 1.37)
as fixed point, 62 (ex. 1.35)

good parts of JavaScript, 339 n
Gordon, Michael, 310 n
go_to (in register machine), 452

destination in register, 459
instruction constructor, 480
simulating, 480

go_to_dest, 480
grammar, 381
graphics, see picture language
Gray, Jim, 279 n
greatest common divisor, 41–42, see also

gcd
generic, 186 (ex. 2.94)
of polynomials, 185
used to estimate π , 198
used in rational-number arithmetic, 75

Green, Cordell, 399 n
Guttag, John Vogel, 79 n

half-adder, 242
half_adder, 243
simulation of, 248–249

half-interval method, 58–60
half_interval_method, 60
Newton’s method vs., 64 n

halting problem, 350 (ex. 4.15)
Halting Theorem, 351 n
Hamming, Richard Wesley, 142 n, 292

(ex. 3.56)
Hanson, Christopher P., 541 n
Hardy, Godfrey Harold, 292 n, 302 n
Haskell, 90 (ex. 2.20), 310 n
Hassle, 362 n
has_value, 255, 261
Havender, J., 279 n
Haynes, Christopher T., 319 n

Index 587

head (primitive function), 73
axiom for, 79
functional implementation of, 79, 80

(ex. 2.4), 229, 230, 371
implemented with vectors, 490
as list operation, 86

headed list, 235, 250 n
Henderson, Peter, 110 n, 290 n, 314 n

Henderson diagram, 290
Henz, Martin, children of, 124
Heraclitus, 189
Heron of Alexandria, 19 n
Hewitt, Carl Eddie, 30 n, 376 n, 399 n,

494 n
hiding principle, 193 n
hierarchical data structures, 85, 93–96
hierarchy of types, 172–176

inadequacy of, 173
in symbolic algebra, 184

higher-order functions, 49
function as argument, 49–53
function as general method, 58–63
function as returned value, 63–68
in metacircular evaluator, 325 n
static typing and, 310 n

high-level language, machine language
vs., 318

Hilfinger, Paul, 138 n
Hoare, Charles Antony Richard, 78 n
Hodges, Andrew, 349 n
Hofstadter, Douglas R., 350 n
hoisting of function declarations, 54 n,

352 (ex. 4.17)
Horner, W. G., 104 n
Horner’s rule, 103 (ex. 2.34)
“how to” vs. “what is” description, see

imperative vs. declarative knowledge
Huffman, David, 141
Huffman code, 140–147

optimality of, 142
order of growth of encoding, 147 (ex.

2.72)
Hughes, R. J. M., 371 n

identity, 50
if (keyword), 57, see also conditional

statement
imag_part

data-directed, 160
polar representation, 152

rectangular representation, 151
with tagged data, 154

imag_part_polar, 154
imag_part_rectangular, 153
immediately invoked lambda expression,

217 (ex. 3.10)
imperative programming, 204
imperative vs. declarative knowledge, 18,

398
logic programming and, 399–400, 419
nondeterministic computing and, 373 n

imperative vs. expression-oriented
programming style, 262 n

inc, 50
incremental development of programs, 6
indentation, 335 (ex. 4.2)
indeterminate of a polynomial, 177
indexing a data base, 413 n, 434
inference, method of, 419
infinite series, 432 n
infinite stream(s), 288–295

merging, 293 (ex. 3.56), 300, 302 (ex.
3.70), 315

merging as a relation, 315 n
of factorials, 292 (ex. 3.54)
of Fibonacci numbers, see fibs
of integers, see integers
of pairs, 299–302
of prime numbers, see primes
of random numbers, 312
representing power series, 294 (ex.

3.59)
to model signals, 302–305
to sum a series, 296

infix notation, 4
prefix notation vs., 131 (ex. 2.58)

infix operator, 4
inform_about_no_value, 256
inform_about_value, 256
information retrieval, see data base
Ingerman, Peter, 363 n
initialize_stack operation in register

machine, 472, 484
insert

in one-dimensional table, 237
in two-dimensional table, 238

insert_queue, 231, 233
install_complex_package, 167
install_javascript_number_package,

165

588 Index

install_polar_package, 159
install_polynomial_package, 178
install_rational_package, 166
install_rectangular_package, 158
instantiate a pattern, 404
instantiate_expression, 425, 439
instantiate_term, 440
inst_controller_instruction, 476
inst_execution_fun, 476
instruction counting, 486 (ex. 5.14)
instruction execution function, 472
instructions, 543
instruction sequence, 524–526, 543–546
instruction tracing, 486 (ex. 5.15)
integer(s), 3 n
integerizing factor, 187
integers (infinite stream), 288

implicit definition, 290
lazy-list version, 371

integers_starting_from, 288
integral, 51, 303, 307 (ex. 3.77)

with delayed argument, 307
with lambda expression, 54
lazy-list version, 372
need for delayed evaluation, 305

integral, see also definite integral; Monte
Carlo integration

of a power series, 294 (ex. 3.59)
integrated-circuit implementation of

Scheme, 499
integrate_series, 294 (ex. 3.59)
integrator, for signals, 303
interleave, 301
interleave_delayed, 435
internal declaration, 25–26

in environment model, 218–222
free name in, 25
names distinct from parameters, 336

(ex. 4.5)
in nondeterministic evaluator, 391 n
position of, 26 n
restrictions on, 354
scanning out, 352
scope of name, 351–355

Internet “Worm”, 561 n
interning strings, 490
interpreter, 2, see also evaluator

compiler vs., 520–521, 561
read-evaluate-print loop, 5

intersection_set, 131
binary-tree representation, 138 (ex.

2.65)
ordered-list representation, 134
unordered-list representation, 132

interval arithmetic, 81–84
invariant quantity of an iterative process,

40 (ex. 1.16)
inverter, 241

inverter, 244
is_, in predicate names, 20 n
is_amb, 387
is_application, 331
is_assertion, 443
is_assignment, 333
is_block, 333
is_boolean, 339 n
is_compiled_function, 532 n
is_compound_function, 340
is_conditional, 331
is_constant_exp, 482
is_declaration, 334
is_divisible, 288
is_element_of_set, 131

binary-tree representation, 136
ordered-list representation, 134
unordered-list representation, 132

is_empty_agenda, 248, 250
is_empty_conjunction, 443
is_empty_disjunction, 443
is_empty_queue, 231, 232
is_empty_sequence, 332
is_empty_termlist, 179, 182
is_equal (generic predicate), 169 (ex.

2.79)
is_equal_to_zero (generic), 169 (ex.

2.80)
for polynomials, 182 (ex. 2.87)

is_even, 39
is_falsy, 340

full JavaScript version, 339 n
why used in explicit-control evaluator,

502 n
is_function_declaration, 334
is_label_exp, 482
is_lambda_expression, 332
is_last_argument_expression, 505 n
is_last_statement, 332
is_leaf, 143

Index 589

is_list_construction, 442
is_literal, 330
is_name, 331
is_null (primitive function), 87

implemented with typed pointers, 491
is_number (primitive function), 127

data types and, 168 (ex. 2.78)
implemented with typed pointers, 491

is_operation_exp, 483
is_pair (primitive function), 94

implemented with typed pointers, 491
is_polar, 153
is_prime, 43, 291
is_primitive_function, 340, 345
is_product, 128
is_rectangular, 153
is_register_exp, 482
is_return_statement, 333
is_return_value, 340
is_rule, 444
is_same_variable, 128, 178
is_sequence, 332
is_string (primitive function), 128

data types and, 168 (ex. 2.78)
implemented with typed pointers, 491

is_sum, 128
is_tagged_list, 330
is_truthy, 325, 340

full JavaScript version, 339 n
is_undefined (primitive function), 157
is_variable

for algebraic expressions, 128
in query system, 437

iteration contructs, see looping constructs
iterative improvement, 68 (ex. 1.46)
iterative process, 29

as a stream process, 295–299
design of algorithm, 40 (ex. 1.16)
implemented by function call, 20, 30,

511, see also tail recursion
linear, 29, 37
recursive process vs., 27–30, 212 (ex.

3.9), 462, 549 (ex. 5.37)
register machine for, 462

Jaffar, Joxan, 432 n
Java, recursive functions in, 30
JavaScript

applicative-order evaluation in, 13
eval in, 350

first-class functions in, 67
good parts, 339 n
history of, 2
internal type system, 168 (ex. 2.78)
tail recursion in, 30 n

JavaScript environment used in this book,
10

javascript_number package, 165
javascript_number_to_complex, 170
javascript_number_to_javascript_

number, 175 (ex. 2.81)
JavaScript package sicp, 10 n
javascript_predicate (query

interpreter), 427
javascript_predicate (query

language), 406, 422
evaluation of, 415, 427, 446 (ex. 4.74)

javascript_predicate_expression,
443

Jayaraman, Sundaresan, 252 n

Kaldewaij, Anne, 41 n
Karr, Alphonse, 189
Kepler, Johannes, 449
key, 139
key of a record

in a data base, 139
in a table, 235
testing equality of, 240 (ex. 3.24)

keyword, 8
keywords

break, 338 (ex. 4.7)
const, 5
continue, 338 (ex. 4.7)
else, 57
false, 14
function, 8
if, 57
let, 191
null, 85
return, 9
true, 14
while, 337 (ex. 4.7)

Knuth, Donald E., 40 n, 42 n, 104 n, 197,
198 n

Kolmogorov, A. N., 197 n
Konopasek, Milos, 252 n
Kowalski, Robert, 399 n
KRC, 106 n, 300 n

590 Index

label (in register machine), 452, 482
simulating, 482

label_exp_label, 482
Lagrange interpolation formula, 177 n
λ calculus (lambda calculus), 55 n
lambda_body, 332
lambda expression, 54

block as body of, 116 n
as function expression of application,

55
function declaration vs., 54
immediately invoked, 217 (ex. 3.10)
lazy evaluation and, 370
parsing of, 332
precedence of, 55
value of, 210

lambda_parameter_symbols, 332
Lambert, J.H., 63 (ex. 1.39)
Lamé, Gabriel, 42 n
Lamé’s Theorem, 42
Lamport, Leslie, 280 n
Lampson, Butler, 204 n
Landin, Peter, 15 n, 286 n
language, see parsing natural language;

programming language
Lapalme, Guy, 356 n
last_pair, 89 (ex. 2.17), 225 (ex. 3.12)

rules, 411 (ex. 4.60)
lazy evaluation, 361
lazy evaluator, 360–370
lazy list, 370–372
lazy pair, 370–372
lazy tree, 371 n
least commitment, principle of, 152
left-associative, 5
left_branch, 136, 143
Leibniz, Baron Gottfried Wilhelm von

proof of Fermat’s Little Theorem, 44 n
series for π , 49 n, 296

Leiserson, Charles E., 137 n, 302 n
length, 87

as accumulation, 103 (ex. 2.33)
iterative version, 88
recursive version, 88

let (keyword), 191, see also variable,
declaration

let* (Scheme variant of let), 336 (ex.
4.6)

lexical_address_assign, 555, 556 (ex.
5.42)

lexical addressing, 554–555
lexical address, 555

lexical_address_lookup, 555, 556 (ex.
5.42)

lexical scoping, 25, see also scope of a
name

environment structure and, 554
Lieberman, Henry, 494 n
LIFO buffer, see stack
linear growth, 29, 37
linear iterative process, 29

order of growth, 37
linear recursive process, 29

order of growth, 37
line segment

represented as pair of points, 77 (ex.
2.2)

represented as pair of vectors, 120 (ex.
2.48)

linkage descriptor, 523
Liskov, Barbara Huberman, 79 n
Lisp, see also Scheme

as ancestor of JavaScript, 2
on DEC PDP-1, 494 n
efficiency of, 5 n
MDL dialect of, 495 n

list (primitive function), 86
list(s), 86, see also list structure

adjoining to with pair, 88
combining with append, 88
constructing with pair, 88
converting a binary tree to a, 137 (ex.

2.63)
converting to a binary tree, 137 (ex.

2.64)
empty, see empty list
equality of, 125 (ex. 2.54)
headed, 235, 250 n
last pair of, 89 (ex. 2.17)
lazy, 370–372
length of, 87
list structure vs., 86 n
manipulation with head, tail, and

pair, 86
mapping over, 90–92
nth element of, 87
operations on, 87–90
printed representation of, 86
reversing, 89 (ex. 2.18)
techniques for manipulating, 87–90
walking down with tail, 87

Index 591

list_difference, 544
list notation for data, 87
list_of_arg_values, 364
list_of_delayed_args, 364
list_of_values, 325

without higher-order functions, 325 n
list_ref, 87, 371
list structure, 74, see also list(s)

list vs., 86 n
mutable, 222–226
represented using vectors, 488–492

list-structured memory, 487–498
list_to_tree, 138 (ex. 2.64)
list_union, 544
literal expression, 322

parsing of, 330
literal_value, 330
lives_near (rule), 407, 409 (ex. 4.58)
local evolution of a process, 26
local name, 23–24, 55–56
local state, 190–206

maintained in frames, 213–218
local state variable, 190–197
location, 488
Locke, John, 1
logarithm, approximating ln 2, 299 (ex.

3.65)
logarithmic growth, 37, 39, 135 n
logical and (digital logic), 241
logical conjunction, 15, see also &&

(logical conjunction)
logical disjunction, 15, see also ||

(logical disjunction)
logical_not, 244
logical or (digital logic), 241
logic programming, 398–400, see also

query interpreter; query language
computers for, 400 n
history of, 398 n, 400 n
in Japan, 400 n
logic programming languages, 400
mathematical logic vs., 419–424

logic puzzles, 378–380
lookup

in one-dimensional table, 236
in set of records, 139
in two-dimensional table, 237

lookup_label, 476
lookup_prim, 483

lookup_symbol_value, 341, 342
for scanned-out declarations, 344 (ex.

4.12)
looping constructs, 20, 30, see also while

loop
lower_bound, 82 (ex. 2.7)

machine language, 520
high-level language vs., 318

magician, see numerical analyst
magnitude

data-directed, 160
polar representation, 152
rectangular representation, 151
with tagged data, 154

magnitude_polar, 154
magnitude_rectangular, 153
make_account, 195

in environment model, 220 (ex. 3.11)
with serialization, 270, 271 (ex. 3.41),

272 (ex. 3.42)
make_account_and_serializer, 273
make_accumulator, 196 (ex. 3.1)
make_agenda, 248, 250
make_application, 331
make_assign_ef, 478
make_binding, 444
make_branch_ef, 480
make_center_percent, 83 (ex. 2.12)
make_center_width, 83
make_code_tree, 143
make_compiled_function, 532 n
make_complex_from_mag_ang, 167
make_complex_from_real_imag, 167
make_connector, 259
make_constant_declaration, 334
make_cycle, 226 (ex. 3.13)
make_decrementer, 201
make_execution_function, 477
make_frame, 117, 119 (ex. 2.47), 341
make_from_mag_ang, 155, 160

message-passing, 163 (ex. 2.75)
polar representation, 152
rectangular representation, 151

make_from_mag_ang_polar, 154
make_from_mag_ang_rectangular, 153
make_from_real_imag, 155, 160

message-passing, 162
polar representation, 152
rectangular representation, 151

592 Index

make_from_real_imag_polar, 154
make_from_real_imag_rectangular,

153
make_function, 340
make_go_to_ef, 480
make_inst, 476
make_instruction_sequence, 526
make_interval, 81, 82 (ex. 2.7)
make_javascript_number, 165
make_joint, 205 (ex. 3.7)
make_label, 530 n
make_label_entry, 476
make_lambda_expression, 332
make_leaf, 143
make_leaf_set, 145
make_literal, 330
make_machine, 468, 470
make_monitored, 196 (ex. 3.2)
make_mutex, 277
make_name, 331
make_new_machine, 473 (fig. 5.13)
make_new_variable, 438
make_operation_exp_ef, 482
make_perform_ef, 481
make_point, 77 (ex. 2.2)
make_poly, 178
make_polynomial, 182
make_primitive_exp_ef, 482
make_product, 128, 130
make_queue, 231, 233
make_rat, 72, 74, 77

axiom for, 78
reducing to lowest terms, 75

make_rational, 166
make_register, 470
make_restore_ef, 481
make_return_value, 340
make_save_ef, 481
make_segment, 77 (ex. 2.2), 120 (ex.

2.48)
make_serializer, 276
make_simplified_withdraw, 201, 313
make_stack, 471

with monitored stack, 485
make_sum, 128, 129
make_table

message-passing implementation, 239
one-dimensional table, 237

make_tableau, 297

make_term, 179, 182
make_test_ef, 479
make_time_segment, 250
make_tree, 136
make_vect, 118 (ex. 2.46)
make_wire, 242, 246, 249 (ex. 3.31)
make_withdraw, 194

in environment model, 213–218
using immediately invoked lambda

expression, 217 (ex. 3.10)
making change, see counting change
map, 91, 371

as accumulation, 103 (ex. 2.33)
mapping

over lists, 90–92
nested, 106–110, 299–302
as a transducer, 100
over trees, 96–98

map_successive_pairs, 312
mark-sweep garbage collector, 494 n
math_atan2 (primitive function), 151 n
math_cos (primitive function), 61
mathematical function, see function

(mathematical)
mathematics

computer science vs., 18, 398
engineering vs., 45 n

math_floor (primitive function), 45
math_log (primitive function), 10, 62 (ex.

1.36)
math_max (primitive function), 81
math_min (primitive function), 81
math_random (primitive function), 44

assignment needed for, 191 n
math_round (primitive function), 176 n
math_sin (primitive function), 61
math_trunc (primitive function), 293 (ex.

3.58)
matrix, represented as sequence, 105 (ex.

2.37)
matrix_times_matrix, 105 (ex. 2.37)
matrix_times_vector, 105 (ex. 2.37)
McAllester, David Allen, 376 n
McCarthy, John, 374 n
McDermott, Drew, 376 n
MDL, 495 n
means of abstraction, 3

constant declaration as, 6
means of combination, 3, see also closure

Index 593

measure in a Euclidean ring, 185 n
member, 125

extended to use pointer equality, 260 n
memo, 286
memo_fib, 240 (ex. 3.27)
memoization, 35 n, 240 (ex. 3.27)

call-by-need and, 293 n
garbage collection and, 366 n
in stream tail, 286
of thunks, 363

memoize, 241 (ex. 3.27)
memory

in 1965, 375 n
list-structured, 487–498

merge, 293 (ex. 3.56)
merge_weighted, 302 (ex. 3.70)
merging infinite streams, see infinite

stream(s)
message passing, 80, 162–164

environment model and, 220 (ex. 3.11)
in bank account, 195
in digital-circuit simulation, 246
tail recursion and, 30 n

metacircular evaluator, 320
metacircular evaluator for JavaScript,

319–351
&& (logical conjunction), 336 (ex. 4.4)
|| (logical disjunction), 336 (ex. 4.4)
analyzing version, 355–360
compilation of, 564 (ex. 5.53), 564 (ex.

5.55)
component representation, 322,

328–335
data abstraction in, 321, 322, 342
data-directed evaluate, 336 (ex. 4.3)
derived components, 334–335
driver loop, 346
efficiency of, 355
environment model of evaluation in,

320
environment operations, 341
evaluate and apply, 321–328
evaluate–apply cycle, 320, 321 (fig.

4.1)
global environment, 344
higher-order functions in, 325 n
implemented language

vs. implementation language, 325
job of, 320 n

let* (Scheme variant of let), 336 (ex.
4.6)

order of argument evaluation, 328 (ex.
4.1)

parameters distinct from local names,
336 (ex. 4.5)

preventing duplicate parameters, 336
(ex. 4.5)

primitive functions, 344–346
representation of environments,

341–343
representation of functions, 340
representation of true and false, 339
return value, 324
running, 344–348
symbolic differentiation and, 329
syntactic forms (additional), 336 (ex.

4.4), 336 (ex. 4.6), 337 (ex. 4.7)
syntactic forms as derived components,

334–335
syntax of evaluated language, 328–335
tail recursion and, 324 n, 327 n, 509
undefined, 344
value of program at top level, 338 (ex.

4.8)
while loop, 337 (ex. 4.7)

metalinguistic abstraction, 318
MicroPlanner, 376 n
midpoint_segment, 77 (ex. 2.2)
Miller, Gary L., 48 (ex. 1.28)
Miller, James S., 541 n
Miller–Rabin test for primality, 48 (ex.

1.28)
Milner, Robin, 310 n
Minsky, Marvin Lee, xxiv, 494 n
Miranda, 106 n
MIT, 399 n

early history of, 112 n
Research Laboratory of Electronics,

494 n
ML, 310 n
mobile, 96 (ex. 2.29)
Mocha, 2
modeling

as a design strategy, 189
in science and engineering, 12

models of evaluation, 513
modified registers, see instruction

sequence
modifies_register, 543

594 Index

modularity, 102, 189
along object boundaries, 315 n
functional programs vs. objects,

311–315
hiding principle, 193 n
streams and, 295
through dispatching on type, 156
through infinite streams, 312
through modeling with objects, 197

modulo n, 44
modus ponens, 419 n
money, changing, see counting change
monitored function, 196 (ex. 3.2)
monte_carlo, 198

infinite stream, 312
Monte Carlo integration, 200 (ex. 3.5)

stream formulation, 312 (ex. 3.82)
Monte Carlo simulation, 198

stream formulation, 311
Moon, David A., 494 n
Morris, J. H., 204 n
Morse code, 140
Mouse, Minnie and Mickey, 420
mul (generic), 165

used for polynomial coefficients, 180
mul_complex, 150
mul_interval, 81

more efficient version, 82 (ex. 2.11)
mul_poly, 178
mul_rat, 73
mul_series, 294 (ex. 3.60)
mul_streams, 292 (ex. 3.54)
mul_terms, 180
Multics time-sharing system, 494 n
multiplicand, 129
multiplication by Russian peasant

method, 40 n
multiplier

primitive constraint, 257
selector, 129

Munro, Ian, 104 n
mutable data objects, 222–230, see also

queue; table
functional representation of, 229–230
implemented with assignment,

229–230
list structure, 222–226
pairs, 222–226
shared data, 228

mutator, 222

mutex, 276
mutual exclusion, 276 n
mutual recursion, 221
mystery, 226 (ex. 3.14)

name, see constant; local name; variable
bound, 23
encapsulated, 193 n
free, 23
of a function, 9
of a parameter, 23
parsing of, 330
scope of, 23, see also scope of a name
unbound, 206
value of, 206

naming
of computational objects, 5
of functions, 8

naming conventions
$ for pattern variables, 403
is_ for predicates, 20 n
snake case, 10 n

NaN, not a typo, 339 n
native language of machine, 520
natural language parsing, see parsing

natural language
needed registers, see instruction sequence
needs_register, 543
negate, 427
negated_query, 443
negation

logical (!), 15
numeric (-), 15

negation as failure, 422 n
nested declaration(s), see internal

declaration
nested mapping(s), see mapping
nested operator combinations, 4
Netscape Communications Corporation, 2
Netscape Navigator, 2
new register, 496
new_heads register, 494
new_tails register, 494
Newton’s method

for cube roots, 21 (ex. 1.8)
for differentiable functions, 64–65
half-interval method vs., 64 n
for square roots, 18–20, 65, 66

newtons_method, 65
newton_transform, 65

Index 595

new_withdraw, 193
next (linkage descriptor), 523
next_to_in (rules), 410 (ex. 4.59)
node of a tree, 7
noncomputable, 351 n
nondeterminism, in behavior of

concurrent programs, 267 n, 315 n
nondeterministic choice point, 375
nondeterministic computing, 373–385
nondeterministic evaluator, 386–398

order of argument evaluation, 385 (ex.
4.44)

nondeterministic programming
vs. JavaScript programming, 373,
380 (ex. 4.39), 380 (ex. 4.42)

nondeterministic programs
logic puzzles, 378–380
pairs with prime sums, 373
parsing natural language, 381–384
Pythagorean triples, 377 (ex. 4.33), 378

(ex. 4.34), 378 (ex. 4.35)
non-strict, 362
normal-order evaluation, 13

applicative order vs., 17 (ex. 1.5), 43
(ex. 1.20), 361–362

of conditional expressions, 17 (ex. 1.5)
delayed evaluation and, 310
in explicit-control evaluator, 513 (ex.

5.26)
normal-order evaluator, see lazy evaluator
not (query language), 406, 421

evaluation of, 415, 427, 446 (ex. 4.74)
notation in this book

box notation for data, 86
italic symbols in expression syntax, 9 n
list notation for data, 87
slanted characters for interpreter

response, 4 n
nouns, 381
nth root, as fixed point, 68 (ex. 1.45)
null (keyword)

as empty list, 87
as end-of-list marker, 85
recognizing with is_null, 87

number(s)
bignum, 490
comparison of, 14
equality of, 14, 125 (ex. 2.54), 490 n
in generic arithmetic system, 165
integer vs. real number, 3 n
in JavaScript, 3

number_equal, 130
number theory, 44 n
numer, 72, 74

axiom for, 78
reducing to lowest terms, 77

numerical analysis, 3 n
numerical analyst, 59 n
numerical data, 3

object(s), 189
benefits of modeling with, 197
with time-varying state, 190

object-oriented programming languages,
174 n

object program, 520
Ocaml, 90 (ex. 2.20)
office_move, 379
old register, 496
oldht register, 497
ones (infinite stream), 290

lazy-list version, 371
op (in register machine), 453

simulating, 482, 483
open coding of primitives, 553 (ex. 5.41)
operands of a combination, 4
operation

cross-type, 169
generic, 71
in register machine, 450–452

operation-and-type table, 157
assignment needed for, 191 n
implementing, 239

operation_exp_op, 483
operation_exp_operands, 483
operator combination, 4

as function application, 335
as derived component, 335
evaluation of, 6–8
parsing of, 334
as a tree, 7

operator_combination_to_
application, 335

operator of a combination, 4
operator precedence, see precedence
operators (ECMAScript may allow

additional operand type
combinations)

+ (for numeric addition), 4
+ (for string concatenation), 75
- (numeric negation operator), 15
- (numeric subtraction operator), 5

596 Index

operators (continued)
* (multiplication), 4
/ (division), 4
% (remainder), 39
! (logical negation), 15
!== (for numeric comparison), 15
!== (for string comparison), 124
=== (for nonprimitive values), 228
=== (for numeric comparison), 15
=== (for string comparison), 124
< (numeric comparison), 15
<= (numeric comparison), 15
> (numeric comparison), 15
>= (numeric comparison), 14

optimality
of Horner’s rule, 104 n
of Huffman code, 142

or (query language), 405
evaluation of, 414, 427

Oracle Corporation, 2
order, 179, 182
ordered-list representation of sets,

133–135
order notation, 37
order of evaluation

assignment and, 206 (ex. 3.8)
in compiler, 549 (ex. 5.39)
in explicit-control evaluator, 506
in metacircular evaluator, 507 n
in JavaScript, 206 (ex. 3.8), 207 n
in metacircular evaluator, 328 (ex. 4.1)

order of events
decoupling apparent from actual, 286
indeterminacy in concurrent systems,

264
order of growth, 36–37

linear iterative process, 37
linear recursive process, 37
logarithmic, 39
tree-recursive process, 37

order of subexpression evaluation, see
order of evaluation

ordinary numbers (in generic arithmetic
system), 165

or-gate, 241
or_gate, 245 (ex. 3.28), 245 (ex. 3.29)

origin_frame, 117
Ostrowski, A. M., 104 n
outranked_by (rule), 408, 422 (ex. 4.62)
overloaded operator +, 75

P operation on semaphore, 276 n
package, 157

complex-number, 167
JavaScript-number, 165
polar representation, 159
polynomial, 178
rational-number, 166
rectangular representation, 157

painter(s), 110
higher-order operations, 115
operations, 112
represented as functions, 119
transforming and combining, 120

pair (primitive function), 73
axiom for, 79
closure property of, 84
functional implementation of, 79, 80

(ex. 2.4), 229, 230, 371
implemented with mutators, 224, 225
implemented with vectors, 491
as list operation, 86

pair(s), 73
axiomatic definition of, 79
box-and-pointer notation for, 84
box notation for, 86
functional representation of, 79–80,

229–230, 370
infinite stream of, 299–302
lazy, 370–372
mutable, 222–226
represented using vectors, 488–492
used to represent sequence, 85
used to represent tree, 93–96

pairs, 301
Pan, V. Y., 104 n
parallel_instruction_sequences,

546
parameter passing, see call-by-name

argument passing; call-by-need
argument passing

parameters, 9
distinct from local names, 336 (ex. 4.5)
duplicate, 336 (ex. 4.5)
names of, 23
scope of, 24
as variables, 192, 194

parentheses
in function declaration, 9
to group operator combinations, 4
around lambda expression, 55

Index 597

around parameters of lambda
expression, 54

around predicate of conditional
statement, 57

parse, 328, see also parsing JavaScript
in query interpreter, 425

parse_..., 381–383
parsing JavaScript, 328–329

&& (logical conjunction), 336 (ex. 4.4)
|| (logical disjunction), 336 (ex. 4.4)
assignment, 333
block, 333
conditional expression, 331
conditional statement, 331
constant declaration, 333
expression statement, 331
function application, 331
function declaration, 334
lambda expression, 332
literal expression, 330
name, 330
operator combination, 334
return statement, 333
sequence of statements, 332
variable declaration, 333

parsing natural language, 381–385
real language understanding vs. toy

parser, 385 n
partial_sums, 292 (ex. 3.55)
Pascal, Blaise, 36 n
Pascal’s triangle, 36 (ex. 1.12)
Pascal, lack of higher-order functions in,

310 n
password-protected bank account, 196

(ex. 3.3)
pattern, 403–404
pattern_match, 429
pattern matching, 412

implementation, 428–429
unification vs., 416, 418 n

pattern variable, 403
representation of, 437

pc register, 472
perform (in register machine), 455

instruction constructor, 481
simulating, 481

perform_action, 481
Perlis, Alan J., xxiii

quips by, 5 n, 30 n
permutations of a set, 108

permutations, 108

Peter, Paul and Mary, 267 (ex. 3.38)
Phillips, Hubert, 380 (ex. 4.40), 380 (ex.

4.41)
π (pi)

approximation with half-interval
method, 60

approximation with Monte Carlo
integration, 200 (ex. 3.5), 312 (ex.
3.82)

Dirichlet estimate for, 198, 311
Leibniz’s series for, 49 n, 296
stream of approximations, 296–298
Wallis’s formula for, 52 (ex. 1.31)

picture language, 110–123
Pingala, Áchárya, 40 n
pipelining, 263 n
pi_stream, 296
pi_sum, 49

with higher-order functions, 51
with lambda expression, 54

Planner, 376 n
point, represented as a pair, 77 (ex. 2.2)
pointer

in box-and-pointer notation, 84
typed, 489

polar package, 159
poly, 177
polymorphic types, 310 n
polynomial package, 178
polynomial(s), 177–188

canonical form, 184
dense, 181
evaluating with Horner’s rule, 103 (ex.

2.34)
hierarchy of types, 184
indeterminate of, 177
sparse, 181
univariate, 177

polynomial arithmetic, 177–188
addition, 178–181
division, 183 (ex. 2.91)
Euclid’s Algorithm, 185 n
greatest common divisor, 185–187,

188 n
interfaced to generic arithmetic system,

178
multiplication, 178–181
probabilistic algorithm for GCD, 188 n
rational functions, 184–188
subtraction, 182 (ex. 2.88)

pop, 471

598 Index

porting a language, 561
PowerPC, 279 n
power series, as stream, 294 (ex. 3.59)

adding, 294 (ex. 3.60)
dividing, 295 (ex. 3.62)
integrating, 294 (ex. 3.59)
multiplying, 294 (ex. 3.60)

precedence
of conditional expression, 17 (ex. 1.1)
of lambda expression, 55
of operators, 5
of unary operators, 16

predicate, 14
of clause, 15
of conditional expression, 14
of conditional statement, 57
naming convention for, 20 n

prefix code, 140
prefix notation, 128

infix notation vs., 131 (ex. 2.58)
prefix operator, 15
prepositions, 382
preserving, 524, 526 (ex. 5.32), 545,

553 (ex. 5.40)
pretty-printing, 335 (ex. 4.2)
prime number(s), 43–46

cryptography and, 46 n
Eratosthenes’s sieve for, 289
Fermat test for, 44–45
infinite stream of, see primes
Miller–Rabin test for, 48 (ex. 1.28)
testing for, 43–48

primes (infinite stream), 289
implicit definition, 291

prime_sum_pair, 373
prime_sum_pairs, 107

infinite stream, 299
primitive_apply, 507
primitive constraints, 253
primitive expression, 3

evaluation of, 7
name of constant, 5
number, 3

primitive function, 10
primitive_function_objects, 345
primitive functions (ECMAScript

equivalent in parentheses; those
marked ns are not in the
ECMAScript standard)

apply (apply), 346 n
display (ns), 75 n

error (ns), 60 n
eval, 350
get_time (new Date().getTime),

46 (ex. 1.22)
head (ns), 73
is_null (ns), 87
is_number (ns), 127
is_pair (ns), 94
is_string (ns), 128
is_undefined, 157
list (ns), 86
math_atan2 (Math.atan2), 151 n
math_cos (Math.cos), 61
math_floor (Math.floor), 45
math_log (Math.log), 10, 62 (ex.

1.36)
math_max (Math.max), 81
math_min (Math.min), 81
math_random (Math.random), 44
math_round (Math.round), 176 n
math_sin (Math.sin), 61
math_trunc (Math.trunc), 293 (ex.

3.58)
pair (ns), 73
prompt (ns), 347
set_head (ns), 223
set_tail (ns), 223
stringify (JSON.stringify), 75
tail (ns), 73
vector_ref (ns), 488
vector_set (ns), 488

primitive_function_symbols, 345
primitive_implementation, 345
primitive query, see simple query
principle of least commitment, 152
print_point, 78 (ex. 2.2)
print_queue, 234 (ex. 3.21)
print_rat, 75
print_result, 514

monitored-stack version, 516
print_stack_statistics operation in

register machine, 484
probabilistic algorithm, 45–46, 188 n,

289 n
probe

in constraint system, 258
in digital-circuit simulator, 248

process, 1
iterative, 29
linear iterative, 29
linear recursive, 29

Index 599

local evolution of, 26
order of growth of, 36
recursive, 29
resources required by, 36
shape of, 28
tree-recursive, 32–35

product, 52 (ex. 1.31)
as accumulation, 53 (ex. 1.32)

program, 1
as abstract machine, 348
comments in, 108 n
as data, 348–350
incremental development of, 6
structured with subroutines, 349 n
structure of, 6, 22, 24–26, see also

abstraction barriers
value of, 338 (ex. 4.8)

program counter, 472
program environment, 6, 207, 221
programming

data-directed, see data-directed
programming

demand-driven, 286
elements of, 3
functional, see functional programming
imperative, 204
odious style, 287 n

programming language, 1
design of, 360
functional, 314
logic, 400
object-oriented, 174 n
statically typed, 310 n
very high-level, 18 n

Prolog, 376 n, 399 n
promise to evaluate, 283

lazy evaluation and, 370
prompt (primitive function), 347
prompt operation in register machine,

454
prompts, 346

explicit-control evaluator, 514
lazy evaluator, 365
metacircular evaluator, 346
nondeterministic evaluator, 395
query interpreter, 425

propagate, 248
propagation of constraints, 252–262
proving programs correct, 18 n
pseudodivision of polynomials, 187

pseudo-random sequence, 197 n
pseudoremainder of polynomials, 187
push, 471
push_marker_to_stack (in register

machine), 508, 511 (ex. 5.24)
put, 157, 239
puzzles

eight-queens puzzle, 108 (ex. 2.42),
380 (ex. 4.42)

logic puzzles, 378–380
Pythagorean triples

with nondeterministic programs, 377
(ex. 4.33), 378 (ex. 4.34), 378 (ex.
4.35)

with streams, 301 (ex. 3.69)
Python, recursive functions in, 30

quantum mechanics, 315 n
queens, 109 (ex. 2.42)
query, 400, see also compound query;

simple query
query_driver_loop, 425
query interpreter, 400

adding rule or assertion, 419
compound query, see compound query
data base, 434–435
driver loop, 418, 424–425
environment structure in, 447 (ex. 4.76)
frame, 412, 444
improvements to, 423 (ex. 4.65), 446

(ex. 4.73), 446 (ex. 4.74)
infinite loops, 420–421, 423 (ex. 4.65)
instantiation, 425, 439–441
JavaScript interpreter vs., 417, 418,

447 (ex. 4.76)
as nondeterministic program, 447 (ex.

4.75)
overview, 411–419
pattern matching, 412, 428–429
pattern-variable representation, 437
problems with not and

javascript_predicate, 421–422,
446 (ex. 4.74)

query evaluator, 418, 425–428
rule, see rule
simple query, see simple query
stream operations, 435–436
streams of frames, 412, 419 n
syntax of query language, 436–444
unification, 415–417, 431–433

600 Index

query language, 400–411
abstraction in, 407
compound query, see compound query
data base, 401–403
equality testing in, 406 n
extensions to, 423 (ex. 4.64), 445 (ex.

4.72)
logical deductions, 409–411
mathematical logic vs., 419–424
rule, see rule
simple query, see simple query

query-language-specific representation,
436–444

transforming JavaScript syntax into,
438

queue, 231–235
double-ended, 235 (ex. 3.23)
front of, 231
functional implementation of, 235 (ex.

3.22)
operations on, 231
rear of, 231
in simulation agenda, 250

quotation marks
back quotes, 546
double, 124
single, 126 (ex. 2.55)

Rabin, Michael O., 48 (ex. 1.28)
radicand, 19
Ramanujan, Srinivasa, 302 n
Ramanujan numbers, 302 (ex. 3.71)
rand, 197

with reset, 200 (ex. 3.6)
random_in_range, 200 (ex. 3.5)
random-number generator, 191 n, 197

in Monte Carlo simulation, 198
in primality testing, 44
with reset, 200 (ex. 3.6)
with reset, stream version, 312 (ex.

3.81)
random_numbers (infinite stream), 312
Raphael, Bertram, 399 n
rational package, 166
rational function, 184–188

reducing to lowest terms, 187–188
rational number(s)

arithmetic operations on, 72–76
printing, 75
reducing to lowest terms, 75, 77
represented as pairs, 74

rational-number arithmetic, 72–76
interfaced to generic arithmetic system,

166
need for compound data, 69

rational tree, 432 n
Raymond, Eric, 361 n, 376 n
RC circuit, 303 (ex. 3.73)
read_evaluate_print_loop, 514
read-evaluate-print loop, 5, see also

driver loop
real number, 3 n
real_part

data-directed, 160
polar representation, 152
rectangular representation, 151
with tagged data, 154

real_part_polar, 154
real_part_rectangular, 153
rear_ptr, 232
receive function, 475 n
record, in a data base, 139
rectangle, representing, 78 (ex. 2.3)
rectangular package, 157
recursion, 7

data-directed, 180
expressing complicated process, 7
mutual, 221
in rules, 408
in working with trees, 93

recursion theory, 350 n
recursive function

recursive function declaration, 21
recursive process vs., 30
specifying without declaration, 352 (ex.

4.18)
recursive process, 29

iterative process vs., 27–30, 212 (ex.
3.9), 462, 549 (ex. 5.37)

linear, 29, 37
recursive function vs., 30
register machine for, 462–467
tree, 32–35, 37

red-black tree, 137 n
reducing to lowest terms, 75, 77, 187–188
Rees, Jonathan A., 356 n
referential transparency, 203
reg (in register machine), 453, 482

simulating, 482
register(s), 449

representing, 470
tracing, 486 (ex. 5.17)

Index 601

register_exp_reg, 482
register machine, 449

actions, 454–455
controller, 450–452
controller diagram, 451
data-path diagram, 450
data paths, 450–452
design of, 450–468
language for describing, 452–455
monitoring performance, 484–487
simulator, 468–487
stack, 462–467
subroutine, 457–460
test operation, 451

register-machine language, 468
assign, 453, 468, 478
branch, 452, 468, 480
constant, 453, 468, 482
entry point, 452
go_to, 452, 468, 480
instructions, 452, 468, 477–484
label, 452, 468, 482
label, 452
op, 453, 468, 483
perform, 455, 468, 481
push_marker_to_stack, 508, 511 (ex.

5.24)
reg, 453, 468, 482
restore, 464, 468, 481
revert_stack_to_marker, 508, 511

(ex. 5.24)
save, 464, 468, 481
test, 452, 468, 479

register-machine simulator, 468–487
registers_modified, 543
registers_needed, 543
register table, in simulator, 472
relations, computing in terms of, 253, 398
relatively prime, 53 (ex. 1.33)
relativity, theory of, 280
release a mutex, 276
remainder

after integer division, 39
modulo n, 44

remainder_terms, 186 (ex. 2.94)
remove, 108
remove_first_agenda_item, 248, 251
rename_variables_in, 431
require, 375

as a syntactic form, 397 (ex. 4.52)

resistance
formula for parallel resistors, 81, 83
tolerance of resistors, 81

resolution, Horn-clause, 399 n
resolution principle, 398 n
rest_conjuncts, 443
rest_disjuncts, 443
restore (in register machine), 464, 483

(ex. 5.10)
implementing, 491
instruction constructor, 481
simulating, 481

rest parameter and spread syntax, 276
rest_segments, 250
rest_statements, 332
rest_terms, 179, 182
retry, 377
return (linkage descriptor), 523
return (keyword), 9, see also return

statement
return_expression, 333
returning multiple values, 475 n
return statement, 9

handling in compiler, 543
handling in explicit-control evaluator,

509
handling in metacircular evaluator, 327
parsing of, 333
tail recursion and, 509, 541, 542

return_undefined, 509
return value, 9

representation in metacircular
evaluator, 324, 340

undefined as, 324, 509, 534, 539
return_value_content, 340
Reuter, Andreas, 279 n
reverse, 89 (ex. 2.18)

as folding, 106 (ex. 2.39)
rules, 424 (ex. 4.66)

revert_stack_to_marker (in register
machine), 508, 511 (ex. 5.24)

Rhind Papyrus, 40 n
right-associative, 14
right_branch, 136, 143
right_split, 115
ripple-carry adder, 245 (ex. 3.30)
Rivest, Ronald L., 46 n, 137 n
RLC circuit, 308 (ex. 3.80)
Robinson, J. A., 399 n
robustness, 123

602 Index

rock songs, 1950s, 146 (ex. 2.70)
Rogers, William Barton, 112 n
root register, 494
roots of equation, see half-interval

method; Newton’s method
rotate90, 121
roundoff error, 3 n, 149 n
Rozas, Guillermo Juan, 541 n
RSA algorithm, 46 n
rule (query language), 407–411

applying, 417–418, 430–431, 447 (ex.
4.76)

without body, 407 n, 410, 428
rule_body, 444
Runkle, John Daniel, 112 n
Russian peasant method of multiplication,

40 n

same (rule), 407
sameness and change

meaning of, 202–204
shared data and, 226

satisfy a compound query, 405–406
satisfy a pattern (simple query), 404
save (in register machine), 464, 483 (ex.

5.10)
implementing, 491
instruction constructor, 481
simulating, 481

scale_list, 90, 91, 371
scale_stream, 291
scale_tree, 97
scale_vect, 119 (ex. 2.46)
scan register, 495
scanning out declarations

in compiler, 532, 560
in explicit-control evaluator, 512
in metacircular evaluator, 326, 352
sequential declaration processing vs.,

353–354
scan_out_declarations, 327
Scheme

evaluators written in, 319 n
integrated-circuit implementation of,

499
as JavaScript precursor, 2
let* in, 336 (ex. 4.6)
nondeterministic extension of, 376 n
tail recursion in, 30 n

use of “lambda” in, 55 n
Y operator written in, 353 n

Scheme chip, 499
Schmidt, Eric, 204 n
scope of a name, 23, see also lexical

scoping
function’s parameters, 24
internal declaration, 351–355

search, 59
search

of binary tree, 135
depth-first, 376
systematic, 376

segment_queue, 250
segments, 250
segments_to_painter, 119
segment_time, 250
selector, 72

as abstraction barrier, 76
generic, 154, 155

Self, 2
semaphore, 276 n

of size n, 278 (ex. 3.47)
semicolon (;)

cancer of, 30 n
ending statement, 3, 5, 9

separator code, 140
sequence(s), 85

as conventional interface, 98–110
as source of modularity, 102
operations on, 100–106
represented by pairs, 85

sequence accelerator, 296
sequence of statements, 192

in block, 192 n
in conditional statement, 57
in function body, 9 n
as body of lambda expression, 116 n
parsing of, 332

sequential declaration processing
vs. scanning out, 353–354

serialized_exchange, 274
with deadlock avoidance, 279 (ex.

3.48)
serializer, 268–272

implementing, 276–278
with multiple shared resources,

272–275

Index 603

series, summation of, 50
accelerating sequence of

approximations, 296
with streams, 296

set, 131
data base as, 139
operations on, 131–132
permutations of, 108
represented as binary tree, 135–138
represented as ordered list, 133–135
represented as unordered list, 132–133
subsets of, 98 (ex. 2.32)

set_contents, 471
set_current_environment, 514
set_current_time, 250
set_front_ptr, 232
set_head (primitive function), 223

functional implementation of, 230
implemented with vectors, 491
value of, 223 n

set_inst_execution_fun, 476
set_rear_ptr, 232
set_register_contents, 468, 472
set_segments, 250
set_signal, 244, 247
set_tail (primitive function), 223

functional implementation of, 230
implemented with vectors, 491
value of, 223 n

setup_environment, 345
set_value, 255, 261
shadow a binding, 207
Shamir, Adi, 46 n
shape of a process, 28
shared data, 226–229
shared resources, 272–275
shared state, 265
shrink_to_upper_right, 121
Shrobe, Howard E., 400 n
SICP, xxi
sicp JavaScript package, 10 n
SICP JS, xxi
side-effect bug, 204 n
sieve of Eratosthenes, 289

sieve, 289
Σ (sigma) notation, 50
signal, digital, 241
signal_error, 515

signal-flow diagram, 99, 305 (fig. 3.33)
signal processing

smoothing a function, 68 (ex. 1.44)
smoothing a signal, 304 (ex. 3.75), 305

(ex. 3.76)
stream model of, 302–305
zero crossings of a signal, 304 (ex.

3.74), 304 (ex. 3.75), 305 (ex. 3.76)
signal-processing view of computation,

99
simple_query, 426

without delayed expression, 444 (ex.
4.68)

simple query, 403–404
processing, 412, 413, 418, 426

simplification of algebraic expressions,
129

Simpson’s Rule for numerical integration,
52 (ex. 1.29)

simulation
of digital circuit, see digital-circuit

simulation
event-driven, 241
as machine-design tool, 516
for monitoring performance of register

machine, 484
Monte Carlo, see Monte Carlo

simulation
of register machine, 468–487

sine
approximation for small angle, 37 (ex.

1.15)
power series for, 294 (ex. 3.59)

singleton_stream, 436
SKETCHPAD, 252 n
slash (double slash // for comments in

programs), 108 n
smallest_divisor, 43

more efficient version, 47 (ex. 1.23)
Smalltalk, 252 n
smoothing a function, 68 (ex. 1.44)
smoothing a signal, 304 (ex. 3.75), 305

(ex. 3.76)
snake case, 10 n
snarf, 361 n
Solomonoff, Ray, 197 n
solve differential equation, 306, 307

lazy-list version, 372

604 Index

solving equation, see half-interval
method; Newton’s method; solve

source language, 520
source program, 520
Spafford, Eugene H., 561 n
sparse polynomial, 181
split, 117 (ex. 2.45)
spread and rest parameter syntax, 276
sqrt, 20

block structured, 25
in environment model, 218–220
as fixed point, 61, 64–66
as iterative improvement, 68 (ex. 1.46)
with Newton’s method, 65, 66
register machine for, 457 (ex. 5.3)
as stream limit, 299 (ex. 3.64)

sqrt_stream, 296
square, 8

in environment model, 208–209
square_limit, 115, 117, 123 (ex. 2.52)
square_of_four, 116, 123 (ex. 2.52)
squarer (constraint), 261 (ex. 3.34), 261

(ex. 3.35)
square root, 18–20, see also sqrt

stream of approximations, 296
squash_inwards, 121
stack, 29 n

framed, 504 n
for recursion in register machine,

462–467
representing, 471, 491

stack allocation and tail recursion, 541 n
stack_inst_reg_name, 481
Stallman, Richard M., 252 n, 376 n
start register machine, 469, 472
start_eceval, 559 n
start_segment, 77 (ex. 2.2), 120 (ex.

2.48)
state

local, see local state
shared, 265
vanishes in stream formulation, 313

statement, 3
value-producing and

non-value-producing, 338 (ex. 4.8)
statement sequence, see sequence of

statements
state variable, 29, 190

local, 190–197
statically typed language, 310 n

Steele, Guy Lewis Jr., 30 n, 205 n, 252 n,
361 n, 376 n

Stein, Clifford, 137 n
stop-and-copy garbage collector, 493–498
Stoy, Joseph E., 12 n, 41 n, 353 n
Strachey, Christopher, 67 n
stratified design, 123
stream(s), 189, 280–315

delayed evaluation and, 305–309
empty, 283
implemented as delayed lists, 281–283
implemented as lazy lists, 370–372
implicit definition, 290–292
infinite, see infinite streams
used in query interpreter, 412, 419 n

stream_append, 300
stream_append_delayed, 435
stream_enumerate_interval, 284
stream_filter, 285
stream_flatmap, 436, 445 (ex. 4.71)
stream_for_each, 283
stream_limit, 298 (ex. 3.64)
stream_map, 283, 287
stream_map_2, 287 (ex. 3.50)
stream_map_optimized, 287
stream_ref, 283
stream_tail, 283
stream_withdraw, 313
strict, 362
string(s), 124–126

concatenation, 75
equality of, 125 (ex. 2.54)
interning, 490
quotation marks for, see quotation

marks
representation of, 490
typed over multiple lines, 546
uniqueness of, 227 n

stringify (primitive function), 75
string pool, 490
Stuckey, Peter J., 432 n
sub (generic), 165
sub_complex, 150
sub_interval, 82 (ex. 2.8)
sub_rat, 73
subroutine in register machine, 457–460
subsets of a set, 98 (ex. 2.32)
substitution model of function

application, 11–13, 206
inadequacy of, 200–202
shape of process, 27–29

Index 605

subtype, 172
multiple, 173

sub_vect, 119 (ex. 2.46)
success continuation (nondeterministic

evaluator), 386, 388
successive squaring, 38
sum, 50

as accumulation, 53 (ex. 1.32)
iterative version, 52 (ex. 1.30)

sum_cubes, 49
with higher-order functions, 50

sum_integers, 49
with higher-order functions, 50

summation of a series, 50
with streams, 296

sum_odd_squares, 98, 101
sum_of_squares, 10

in environment model, 210–212
sum_primes, 282
supertype, 172

multiple, 173
Sussman, Gerald Jay, 30 n, 252 n, 376 n
Sutherland, Ivan, 252 n
symbol(s)

in environment operations, 341
in global environment, 344
in parsing of names, 330
representing names in metacircular

evaluator, 323
in unparse, 441

symbolic algebra, 176–188
symbolic differentiation, 126–131, 160

(ex. 2.73)
symbolic expression, 71, see also

string(s); symbol(s)
symbol_leaf, 143
symbol_of_name, 331
symbols, 143
SYNC, 279 n
synchronization, see concurrency
syntactic analysis, separated from

execution
in metacircular evaluator, 355–360
in register-machine simulator, 474, 478

syntactic form, 8
as derived component, 334–335
function vs., 362 (ex. 4.24)
need for, 20 (ex. 1.6)

syntactic forms
assignment, 192
block, 25

break statement, 338 (ex. 4.7)
conditional expression, 14
conditional statement, 57
constant declaration, 5
continue statement, 338 (ex. 4.7)
function declaration, 8
lambda expression, 54
logical conjunction (&&), 15
logical disjunction (||), 15
return statement, 9
variable declaration, 191
while loop, 337 (ex. 4.7)

syntactic sugar, 15 n, 30 n
&& and || as, 15
function vs. data as, 247 n
looping constructs as, 30

syntax, see also syntactic form
abstract, see abstract syntax
of expressions, describing, 9 n
of a programming language, 8

syntax interface, 247 n
systematic search, 376

table, 235–241
backbone of, 235
for coercion, 170
for data-directed programming, 157
local, 238–239
n-dimensional, 240 (ex. 3.25)
one-dimensional, 235–237
operation-and-type, see

operation-and-type table
represented as binary tree

vs. unordered list, 240 (ex. 3.26)
testing equality of keys, 240 (ex. 3.24)
two-dimensional, 237–238
used in simulation agenda, 250
used to store computed values, 240 (ex.

3.27)
tableau, 297
tabulation, 35 n, 240 (ex. 3.27)
tack_on_instruction_sequence, 545
tagged architecture, 489 n
tagged data, 152–155, 489 n
tail (primitive function), 73

axiom for, 79
functional implementation of, 79, 80

(ex. 2.4), 229, 230, 371
implemented with vectors, 490
as list operation, 86

606 Index

tail recursion, 30
compiler and, 541
environment model of evaluation and,

213 n
explicit-control evaluator and, 511 (ex.

5.22), 509–511, 517 (ex. 5.27), 518
(ex. 5.29)

garbage collection and, 541 n
in JavaScript, 30 n
metacircular evaluator and, 324 n,

327 n, 509
return statement necessary for, 511,

542
in Scheme, 30 n

tail-recursive evaluator, 509
tangent

as continued fraction, 63 (ex. 1.39)
power series for, 295 (ex. 3.62)

target register, 523
TDZ (temporal dead zone), 222 n, see

also declaration, use of name before
Technological University of Eindhoven,

276 n
temporal dead zone (TDZ), 222 n, see

also declaration, use of name before
terminal node of a tree, 7
term_list, 178
term list of polynomial, 177

representing, 181–183
ternary operator, see conditional

expression
test (in register machine), 452

instruction constructor, 479
simulating, 479

test_and_set, 277
test_condition, 479
test operation in register machine, 451
Thatcher, James W., 79 n
the_empty_environment, 341
the_empty_termlist, 179, 182
the_global_environment, 345, 515
the_heads

register, 490, 494
vector, 488

THE Multiprogramming System, 276 n
theorem proving (automatic), 398 n
θ (f (n)) (theta of f (n)), 37
the_tails

register, 490, 494
vector, 488

thread, 263
thunk, 363

call-by-name, 286 n
call-by-need, 286 n
forcing, 363
implementation of, 366–367
origin of name, 363 n

time
assignment and, 263
communication and, 280
in concurrent systems, 264–268
functional programming and, 313–315
in nondeterministic computing, 374,

375
purpose of, 264 n

timed_prime_test, 46 (ex. 1.22)
time segment, in agenda, 250
time slicing, 277
timing diagram, 265 (fig. 3.29)
TK!Solver, 252 n
tower of types, 172 (fig. 2.25)
tracing

instruction execution, 486 (ex. 5.15)
register assignment, 486 (ex. 5.17)

transform_painter, 121
transparency, referential, 203
transpose a matrix, 105 (ex. 2.37)
tree

binary, 135, see also binary tree
B-tree, 137 n
combination viewed as, 7
counting leaves of, 93
enumerating leaves of, 101
fringe of, 95 (ex. 2.28)
Huffman, 141
lazy, 371 n
mapping over, 96–98
rational, 432 n
red-black, 137 n
represented as pairs, 93–96
reversing at all levels, 95 (ex. 2.27)

tree accumulation, 7
tree_map, 97 (ex. 2.31)
tree-recursive process, 32–35

order of growth, 37
tree_to_list_. . ., 137 (ex. 2.63)
trigonometric relations, 151
true (keyword), 14
truncation error, 3 n
truthiness, 325, 339 n

Index 607

truth maintenance, 376 n
Turing, Alan M., 349 n, 351 n
Turing machine, 349 n
Turner, David, 106 n, 300 n, 314 n
type in query system, 443
type in register machine, 477
type(s)

cross-type operations, 169
dispatching on, 156
hierarchy in symbolic algebra, 184
hierarchy of, 172–176
lowering, 173, 176 (ex. 2.85)
multiple subtype and supertype, 173
polymorphic, 310 n
raising, 173, 175 (ex. 2.83)
subtype, 172
supertype, 172
tower of, 172 (fig. 2.25)

typed pointer, 489
type field, 489 n
type-inferencing mechanism, 310 n
type_tag, 152

using JavaScript data types, 168 (ex.
2.78)

type tag, 148, 152
two-level, 168

unary operator, 15
unbound name, 206
undefined (predeclared name), 157
unev register, 500
unification, 415–417

discovery of algorithm, 398 n
implementation, 431–433
pattern matching vs., 416, 418 n

unify_match, 431
union_set, 131

binary-tree representation, 138 (ex.
2.65)

ordered-list representation, 135 (ex.
2.62)

unordered-list representation, 133 (ex.
2.59)

unique (query language), 445 (ex. 4.72)
unique_pairs, 108 (ex. 2.40)
unit square, 117
univariate polynomial, 177
universal machine, 349

explicit-control evaluator as, 519
general-purpose computer as, 519

University of Edinburgh, 399 n
University of Marseille, 399 n
UNIX, 561 n

epoch, 46 n
unknown_component_type, 515
unknown_function_type, 515
unordered-list representation of sets,

132–133
unparse

as inverse of parse, 335 (ex. 4.2)
in query interpreter, 425, 441

update_insts, 476
upper_bound, 82 (ex. 2.7)
up_split, 115 (ex. 2.44)
upward compatibility, 370 (ex. 4.29)
user_print, 347

modified for compiled code, 559 n
user_read, 347

V operation on semaphore, 276 n
val register, 500
value

of an expression, 4, 5 n
of a program, 338 (ex. 4.8)

value_fun, 478
variable, 178
variable

assignment to, 192
declaration, 191
declaration, parsing of, 333
parameter as, 192

variable-length code, 140
vector (data structure), 488

for arguments of apply, 346 n
used in spread and rest parameter

syntax, 276
vector (mathematical)

operations on, 105 (ex. 2.37), 118 (ex.
2.46)

in picture-language frame, 117
represented as pair, 118 (ex. 2.46)
represented as sequence, 105 (ex. 2.37)

vector_ref (primitive function), 488
vector_set (primitive function), 488
verbs, 381
very high-level language, 18 n

Wadler, Philip, 204 n
Wadsworth, Christopher, 310 n
Wagner, Eric G., 79 n

608 Index

Walker, Francis Amasa, 112 n
walking down a list with tail, 87
Wallis, John, 52 n
Wand, Mitchell, 319 n, 506 n
Waters, Richard C., 103 n
web browser, interpreting JavaScript, 2
weight, 143
weight_leaf, 143
Weyl, Hermann, 69
“what is” vs. “how to” description, see

declarative vs. imperative knowledge
wheel (rule), 407, 423 (ex. 4.63)
while (keyword), 337 (ex. 4.7), see also

while loop
while loop

implementing in analyzing evaluator,
359 (ex. 4.20)

implementing in metacircular evaluator,
337 (ex. 4.7)

whitespace characters, 335 (ex. 4.2)
width, 83
width of an interval, 82 (ex. 2.9)
Wilde, Oscar (Perlis’s paraphrase of), 5 n
Wiles, Andrew, 44 n
Winograd, Terry, 376 n
Winston, Patrick Henry, 376 n, 385 n

wire, in digital circuit, 241
Wise, David S., 286 n
wishful thinking, 72, 127
withdraw, 191

problems in concurrent system, 264
world line of a particle, 281 n, 314 n
Wright, E. M., 292 n
Wright, Jesse B., 79 n
Wrigstad, Tobias, daughter of, 124

xcor_vect, 118 (ex. 2.46)
Xerox Palo Alto Research Center, 252 n

Y operator, 353 n
Yang Hui, 36 n
ycor_vect, 118 (ex. 2.46)
Yochelson, Jerome C., 494 n

Zabih, Ramin, 376 n
zero crossings of a signal, 304 (ex. 3.74),

304 (ex. 3.75), 305 (ex. 3.76)
zero test (generic), 169 (ex. 2.80)

for polynomials, 182 (ex. 2.87)
Zilles, Stephen N., 78 n
Zippel, Richard E., 188 n

List of Exercises

1.1 16
1.2 17
1.3 17
1.4 17
1.5 17
1.6 20
1.7 21
1.8 21
1.9 30
1.10 31

1.11 36
1.12 36
1.13 36
1.14 37
1.15 37
1.16 40
1.17 40
1.18 40
1.19 40
1.20 43

1.21 46
1.22 46
1.23 47
1.24 47
1.25 47
1.26 47
1.27 48
1.28 48
1.29 52
1.30 52

1.31 52
1.32 53
1.33 53
1.34 58
1.35 62
1.36 62
1.37 62
1.38 62
1.39 63
1.40 67

1.41 67
1.42 67
1.43 68
1.44 68
1.45 68
1.46 68

2.1 76
2.2 77
2.3 78
2.4 80
2.5 80
2.6 80
2.7 82
2.8 82
2.9 82
2.10 82
2.11 82
2.12 83
2.13 83
2.14 84
2.15 84
2.16 84
2.17 89
2.18 89
2.19 89
2.20 90

2.21 91
2.22 92
2.23 92
2.24 94
2.25 95
2.26 95
2.27 95
2.28 95
2.29 96
2.30 97
2.31 97
2.32 98
2.33 103
2.34 103
2.35 104
2.36 104
2.37 105
2.38 105
2.39 106
2.40 108

2.41 108
2.42 108
2.43 110
2.44 115
2.45 117
2.46 118
2.47 119
2.48 120
2.49 120
2.50 122
2.51 122
2.52 123
2.53 125
2.54 125
2.55 125
2.56 130
2.57 130
2.58 131
2.59 133
2.60 133

2.61 135
2.62 135
2.63 137
2.64 138
2.65 139
2.66 140
2.67 146
2.68 146
2.69 147
2.70 147
2.71 147
2.72 148
2.73 161
2.74 162
2.75 164
2.76 164
2.77 169
2.78 169
2.79 170
2.80 170

2.81 175
2.82 176
2.83 176
2.84 176
2.85 177
2.86 177
2.87 183
2.88 183
2.89 183
2.90 184
2.91 184
2.92 185
2.93 186
2.94 187
2.95 187
2.96 188
2.97 188

3.1 198
3.2 198
3.3 198
3.4 199
3.5 202
3.6 202
3.7 207
3.8 208
3.9 214
3.10 219

3.11 222
3.12 227
3.13 228
3.14 228
3.15 230
3.16 231
3.17 231
3.18 231
3.19 231
3.20 232

3.21 236
3.22 237
3.23 237
3.24 242
3.25 242
3.26 242
3.27 242
3.28 247
3.29 247
3.30 247

3.31 251
3.32 254
3.33 263
3.34 263
3.35 263
3.36 263
3.37 264
3.38 269
3.39 272
3.40 272

3.41 273
3.42 273
3.43 276
3.44 276
3.45 277
3.46 280
3.47 280
3.48 281
3.49 281
3.50 289

610 List of Exercises

3.51 289
3.52 290
3.53 294
3.54 294
3.55 294
3.56 294
3.57 295

3.58 295
3.59 296
3.60 296
3.61 297
3.62 297
3.63 300
3.64 300

3.65 301
3.66 303
3.67 303
3.68 303
3.69 303
3.70 304
3.71 304

3.72 304
3.73 305
3.74 306
3.75 306
3.76 307
3.77 309
3.78 310

3.79 310
3.80 310
3.81 314
3.82 314

4.1 330
4.2 337
4.3 338
4.4 338
4.5 338
4.6 338
4.7 339
4.8 340
4.9 345
4.10 345
4.11 345
4.12 346
4.13 346
4.14 350
4.15 352
4.16 354

4.17 354
4.18 354
4.19 356
4.20 361
4.21 362
4.22 362
4.23 364
4.24 364
4.25 369
4.26 370
4.27 370
4.28 370
4.29 372
4.30 374
4.31 374
4.32 374

4.33 379
4.34 380
4.35 380
4.36 381
4.37 381
4.38 382
4.39 382
4.40 382
4.41 382
4.42 382
4.43 387
4.44 387
4.45 387
4.46 387
4.47 387
4.48 398

4.49 398
4.50 398
4.51 399
4.52 399
4.53 406
4.54 408
4.55 410
4.56 410
4.57 410
4.58 411
4.59 412
4.60 413
4.61 413
4.62 424
4.63 425
4.64 425

4.65 425
4.66 426
4.67 426
4.68 446
4.69 447
4.70 447
4.71 447
4.72 447
4.73 448
4.74 448
4.75 449
4.76 449

5.1 454
5.2 456
5.3 459
5.4 468
5.5 469
5.6 469
5.7 471
5.8 479
5.9 485
5.10 485
5.11 486

5.12 486
5.13 488
5.14 488
5.15 488
5.16 488
5.17 488
5.18 488
5.19 494
5.20 494
5.21 494
5.22 513

5.23 513
5.24 513
5.25 515
5.26 515
5.27 519
5.28 519
5.29 520
5.30 520
5.31 520
5.32 528
5.33 528

5.34 536
5.35 537
5.36 551
5.37 551
5.38 551
5.39 551
5.40 555
5.41 555
5.42 558
5.43 558
5.44 558

5.45 558
5.46 559
5.47 559
5.48 564
5.49 564
5.50 565
5.51 565
5.52 565
5.53 566
5.54 566
5.55 566

	Foreword
	Foreword to Structure and Interpretation of Computer Programs, 1984
	Preface
	Prefaces to Structure and Interpretation of Computer Programs, 1996&1984
	Acknowledgments
	1 Building Abstractions with Functions
	1.1 The Elements of Programming
	1.1.1 Expressions
	1.1.2 Naming and the Environment
	1.1.3 Evaluating Operator Combinations
	1.1.4 Compound Functions
	1.1.5 The Substitution Model for Function Application
	1.1.6 Conditional Expressions and Predicates
	1.1.7 Example: Square Roots by Newton's Method
	1.1.8 Functions as Black-Box Abstractions

	1.2 Functions and the Processes They Generate
	1.2.1 Linear Recursion and Iteration
	1.2.2 Tree Recursion
	1.2.3 Orders of Growth
	1.2.4 Exponentiation
	1.2.5 Greatest Common Divisors
	1.2.6 Example: Testing for Primality

	1.3 Formulating Abstractions with Higher-Order Functions
	1.3.1 Functions as Arguments
	1.3.2 Constructing Functions using Lambda Expressions
	1.3.3 Functions as General Methods
	1.3.4 Functions as Returned Values

	2 Building Abstractions with Data
	2.1 Introduction to Data Abstraction
	2.1.1 Example: Arithmetic Operations for Rational Numbers
	2.1.2 Abstraction Barriers
	2.1.3 What Is Meant by Data?
	2.1.4 Extended Exercise: Interval Arithmetic

	2.2 Hierarchical Data and the Closure Property
	2.2.1 Representing Sequences
	2.2.2 Hierarchical Structures
	2.2.3 Sequences as Conventional Interfaces
	2.2.4 Example: A Picture Language

	2.3 Symbolic Data
	2.3.1 Strings
	2.3.2 Example: Symbolic Differentiation
	2.3.3 Example: Representing Sets
	2.3.4 Example: Huffman Encoding Trees

	2.4 Multiple Representations for Abstract Data
	2.4.1 Representations for Complex Numbers
	2.4.2 Tagged data
	2.4.3 Data-Directed Programming and Additivity

	2.5 Systems with Generic Operations
	2.5.1 Generic Arithmetic Operations
	2.5.2 Combining Data of Different Types
	2.5.3 Example: Symbolic Algebra

	3 Modularity, Objects, and State
	3.1 Assignment and Local State
	3.1.1 Local State Variables
	3.1.2 The Benefits of Introducing Assignment
	3.1.3 The Costs of Introducing Assignment

	3.2 The Environment Model of Evaluation
	3.2.1 The Rules for Evaluation
	3.2.2 Applying Simple Functions
	3.2.3 Frames as the Repository of Local State
	3.2.4 Internal Declarations

	3.3 Modeling with Mutable Data
	3.3.1 Mutable List Structure
	3.3.2 Representing Queues
	3.3.3 Representing Tables
	3.3.4 A Simulator for Digital Circuits
	3.3.5 Propagation of Constraints

	3.4 Concurrency: Time Is of the Essence
	3.4.1 The Nature of Time in Concurrent Systems
	3.4.2 Mechanisms for Controlling Concurrency

	3.5 Streams
	3.5.1 Streams Are Delayed Lists
	3.5.2 Infinite Streams
	3.5.3 Exploiting the Stream Paradigm
	3.5.4 Streams and Delayed Evaluation
	3.5.5 Modularity of Functional Programs and Modularity of Objects

	4 Metalinguistic Abstraction
	4.1 The Metacircular Evaluator
	4.1.1 The Core of the Evaluator
	4.1.2 Representing Components
	4.1.3 Evaluator Data Structures
	4.1.4 Running the Evaluator as a Program
	4.1.5 Data as Programs
	4.1.6 Internal Declarations
	4.1.7 Separating Syntactic Analysis from Execution

	4.2 Lazy Evaluation
	4.2.1 Normal Order and Applicative Order
	4.2.2 An Interpreter with Lazy Evaluation
	4.2.3 Streams as Lazy Lists

	4.3 Nondeterministic Computing
	4.3.1 Search and [mathescape=false,basicstyle=,keywordstyle=] amb
	4.3.2 Examples of Nondeterministic Programs
	4.3.3 Implementing the [mathescape=false,basicstyle=,keywordstyle=] amb Evaluator

	4.4 Logic Programming
	4.4.1 Deductive Information Retrieval
	4.4.2 How the Query System Works
	4.4.3 Is Logic Programming Mathematical Logic?
	4.4.4 Implementing the Query System
	4.4.4.1 The Driver Loop
	4.4.4.2 The Evaluator
	4.4.4.3 Finding Assertions by Pattern Matching
	4.4.4.4 Rules and Unification
	4.4.4.5 Maintaining the Data Base
	4.4.4.6 Stream Operations
	4.4.4.7 Query Syntax Functions and Instantiation
	4.4.4.8 Frames and Bindings

	5 Computing with Register Machines
	5.1 Designing Register Machines
	5.1.1 A Language for Describing Register Machines
	5.1.2 Abstraction in Machine Design
	5.1.3 Subroutines
	5.1.4 Using a Stack to Implement Recursion
	5.1.5 Instruction Summary

	5.2 A Register-Machine Simulator
	5.2.1 The Machine Model
	5.2.2 The Assembler
	5.2.3 Instructions and Their Execution Functions
	5.2.4 Monitoring Machine Performance

	5.3 Storage Allocation and Garbage Collection
	5.3.1 Memory as Vectors
	5.3.2 Maintaining the Illusion of Infinite Memory

	5.4 The Explicit-Control Evaluator
	5.4.1 The Dispatcher and Basic Evaluation
	5.4.2 Evaluating Function Applications
	5.4.3 Blocks, Assignments, and Declarations
	5.4.4 Running the Evaluator

	5.5 Compilation
	5.5.1 Structure of the Compiler
	5.5.2 Compiling Components
	5.5.3 Compiling Applications and Return Statements
	5.5.4 Combining Instruction Sequences
	5.5.5 An Example of Compiled Code
	5.5.6 Lexical Addressing
	5.5.7 Interfacing Compiled Code to the Evaluator

	References
	Index
	List of Exercises

