Structure and Interpretation of Computer Programs

JavaScript Edition

Structure and Interpretation of Computer Programs
JavaScript Edition

Harold Abelson and Gerald Jay Sussman
adapted to JavaScript by Martin Henz and Tobias Wrigstad

with Julie Sussman

The MIT Press
Cambridge, Massachusetts
London, England

© 2022 Massachusetts Institute of Technology

This book is published by The MIT Press under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

The text of this book is derived from the book Structure and Interpretation of Computer
Programs, Second Edition, 1996, (SICP) and is subject to a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA). A comparison edition available
at http://sicp.sourceacademy.org indicates the changes that were made to the text. The figures
are derived from figures created by Andres Raba in 2015 and are also subject to CC BY-SA.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

The JavaScript programs in this book are derived from the Scheme programs in SICP and are
subject to the GNU General Public License v3.0. To view a copy of this license, visit
https://www.gnu.org/licenses/gpl-3.0.html.

GPLZ

The original image of MIT founder William Barton Rogers in section 2.2.4 is courtesy MIT
Museum.

The cover image is adapted from Le Moyen Age et la Renaissance, Paris, 1848—1851.

This book was set in Times by the authors using the IATEX typesetting system and ancillary
scripts (see https://github.com/source-academy/sicp), and was printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Names: Abelson, Harold, author. | Sussman, Gerald Jay, author. | Henz, Martin, adapter. |
Wrigstad, Tobias, adapter. | Sussman, Julie, other.

Title: Structure and interpretation of computer programs / Harold Abelson and Gerald Jay
Sussman; adapted to JavaScript by Martin Henz and Tobias Wrigstad; with Julie Sussman.

Description: Javascript edition. | Cambridge : The MIT Press, [2022] | Series: MIT electrical
engineering and computer science series | Includes bibliographical references and index.

Identifiers: LCCN 2021047249 | ISBN 9780262543231 (paperback)

Subjects: LCSH: Computer programming. | JavaScript (Computer program language)

Classification: LCC QA76.6 .A255 2022 | DDC 005.13—dc23

LC record available at https://lccn.loc.gov/2021047249

10 9 8 7 6 5 4 3 2 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://sicp.sourceacademy.org
http://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/source-academy/sicp
https://lccn.loc.gov/2021047249

This book is dedicated, in respect and admiration,

to the spirit that lives in the computer.

“I think it’s extraordinarily important that we in computer science keep fun
in computing. When it started out, it was an awful lot of fun. Of course,
the paying customers got shafted every now and then, and after a while we
began to take their complaints seriously. We began to feel as though we
really were responsible for the successful, error-free, perfect use of these
machines. I don’t think we are. I think we’re responsible for stretching them,
setting them off in new directions, and keeping fun in the house. Fun comes
in many ways. Fun comes in making a discovery, proving a theorem, writing
a program, breaking a code. Whatever form or sense it comes in I hope the
field of computer science never loses its sense of fun. Above all, I hope we
don’t become missionaries. What you know about computing other people
will learn. Don’t feel as though the key to successful computing is only in
your hands. What’s in your hands, I think and hope, is intelligence: the ability
to see the machine as more than when you were first led up to it, that you
can make it more.”

—Alan J. Perlis (April 1, 1922-February 7, 1990)

Contents

Foreword

Foreword to Structure and Interpretation of Computer Programs, 1984

Preface

Prefaces to Structure and Interpretation of Computer Programs, 1996 & 1984

Acknowledgments

1 Building Abstractions with Functions

1.1

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8

1.2

1.2.1
1.2.2
123
1.2.4
1.2.5
1.2.6

1.3

1.3.1
1.3.2
1.33
1.34

The Elements of Programming

Expressions

Naming and the Environment

Evaluating Operator Combinations

Compound Functions

The Substitution Model for Function Application
Conditional Expressions and Predicates
Example: Square Roots by Newton’s Method
Functions as Black-Box Abstractions

Functions and the Processes They Generate
Linear Recursion and Iteration

Tree Recursion

Orders of Growth

Exponentiation

Greatest Common Divisors

Example: Testing for Primality

Formulating Abstractions with Higher-Order Functions
Functions as Arguments

Constructing Functions using Lambda Expressions
Functions as General Methods

Functions as Returned Values

2 Building Abstractions with Data

2.1

2.1.1
2.1.2
2.13
2.14

Introduction to Data Abstraction

Example: Arithmetic Operations for Rational Numbers
Abstraction Barriers

What Is Meant by Data?

Extended Exercise: Interval Arithmetic

xiii

XVii

XX1

Xxiii

XXvil

—_— 00 O\ L W W =

—_—

18
21

26
27
32
36
38
41
43

48
49
53
58
63

69

72
72
76
78
81

Contents

2.2 Hierarchical Data and the Closure Property 84
2.2.1 Representing Sequences 85
2.2.2 Hierarchical Structures 93
2.2.3 Sequences as Conventional Interfaces 98
2.2.4 Example: A Picture Language 110
2.3 Symbolic Data 124
2.3.1 Strings 124
2.3.2 Example: Symbolic Differentiation 126
2.3.3 Example: Representing Sets 131
2.3.4 Example: Huffman Encoding Trees 140
2.4 Multiple Representations for Abstract Data 148
2.4.1 Representations for Complex Numbers 150
2.4.2 Tagged data 153
2.4.3 Data-Directed Programming and Additivity 157
2.5 Systems with Generic Operations 164
2.5.1 Generic Arithmetic Operations 165
2.5.2 Combining Data of Different Types 170
2.5.3 Example: Symbolic Algebra 177
Modularity, Objects, and State 191
3.1 Assignment and Local State 192
3.1.1 Local State Variables 192
3.1.2 The Benefits of Introducing Assignment 199
3.1.3 The Costs of Introducing Assignment 202
3.2 The Environment Model of Evaluation 208
3.2.1 The Rules for Evaluation 209
3.2.2 Applying Simple Functions 212
3.2.3 Frames as the Repository of Local State 215
3.2.4 Internal Declarations 220
3.3 Modeling with Mutable Data 224
3.3.1 Mutable List Structure 224
3.3.2 Representing Queues 233
3.3.3 Representing Tables 237
3.3.4 A Simulator for Digital Circuits 243
3.3.5 Propagation of Constraints 254
3.4 Concurrency: Time Is of the Essence 265
3.4.1 The Nature of Time in Concurrent Systems 266
3.4.2 Mechanisms for Controlling Concurrency 270
3.5 Streams 282
3.5.1 Streams Are Delayed Lists 283
3.5.2 Infinite Streams 290
3.5.3 Exploiting the Stream Paradigm 297
3.5.4 Streams and Delayed Evaluation 307

3.5.5 Modularity of Functional Programs and Modularity of Objects 313

Contents

Xi

4

Metalinguistic Abstraction

4.1

4.1.1
4.1.2
413
4.1.4
4.1.5
4.1.6
4.1.7

4.2

4.2.1
422
423

43

4.3.1
432
433

44

441
442
443
4.4.4

The Metacircular Evaluator

The Core of the Evaluator

Representing Components

Evaluator Data Structures

Running the Evaluator as a Program

Data as Programs

Internal Declarations

Separating Syntactic Analysis from Execution

Lazy Evaluation

Normal Order and Applicative Order
An Interpreter with Lazy Evaluation
Streams as Lazy Lists

Nondeterministic Computing

Search and amb

Examples of Nondeterministic Programs
Implementing the amb Evaluator

Logic Programming

Deductive Information Retrieval

How the Query System Works

Is Logic Programming Mathematical Logic?
Implementing the Query System

Computing with Register Machines

5.1

5.1.1
5.12
5.13
5.14
5.1.5

52

5.2.1
522
523
524

53
5.3.1
532

54

54.1
542
543
544

Designing Register Machines

A Language for Describing Register Machines
Abstraction in Machine Design

Subroutines

Using a Stack to Implement Recursion
Instruction Summary

A Register-Machine Simulator

The Machine Model

The Assembler

Instructions and Their Execution Functions
Monitoring Machine Performance

Storage Allocation and Garbage Collection
Memory as Vectors
Maintaining the Illusion of Infinite Memory

The Explicit-Control Evaluator

The Dispatcher and Basic Evaluation
Evaluating Function Applications
Blocks, Assignments, and Declarations
Running the Evaluator

319

321
323
330
341
346
350
353
357

362
363
364
372

375
376
380
388

400
403
413
421
426

451

452
454
458
459
464
470

470
472
476
479
486

489
490
495

501
502
506
514
515

Xii Contents

5.5 Compilation 521
5.5.1 Structure of the Compiler 524
5.5.2 Compiling Components 529
5.5.3 Compiling Applications and Return Statements 537
5.5.4 Combining Instruction Sequences 545
5.5.5 An Example of Compiled Code 548
5.5.6 Lexical Addressing 556
5.5.7 Interfacing Compiled Code to the Evaluator 559
References 567
Index 573

List of Exercises 609

Foreword

I had the pleasure of meeting the amazing Alan Perlis and talking with him a few
times, when I was still a student. He and I had in common a deep love and respect
for two very different programming languages: Lisp and APL. Following in his
footsteps is a daunting task, even though he blazed an excellent trail. Still, I would
like to reexamine one comment he made in the original foreword to this book (and,
please, I suggest that you read his foreword, which immediately follows this one,
before you finish this one). Is it really true that it is better to have 100 functions
operate on one data structure than to have 10 functions operate on 10 data structures?

To answer that question carefully, we first need to ask whether that one data struc-
ture is “universal”: can it conveniently fulfill the roles of those 10 more specialized
data structures?

For that matter, we can also ask: do we really need 100 functions? Is there a
single universal function that can fulfill the roles of all those other functions?

The surprising answer to that last question is “yes”; it is only slightly tricky to
construct a function that accepts (1) a data structure that serves as a description
of some other function, and (2) a list of arguments, and behaves exactly as that
other function would when applied to the given arguments. And it is only slightly
tricky to design a data structure capable of describing any computation whatsoever.
One such data structure (the tagged-list representation of expressions and statements,
paired with environments that associate names with values) and one such universal
function (apply) are described in Chapter 4 of this book. So maybe we need only
one function and one data structure.

That is true in theory. In practice, we find it convenient to draw distinctions that
help us, as human beings constructing descriptions of computations, to organize the
structure of our code so that we can better understand them. I believe that Perlis was
making a remark not about computational capability, but about human abilities and
human limitations.

One thing the human mind seems to do well is to name things; we have powerful
associative memories. Given a name, we can quickly recall some associated thing to
mind. This is why we typically find it easier to work with the lambda calculus than
the combinatory calculus; it is much easier for most people to interpret the Lisp
expression (lambda (x) (lambda (y) (+ x y))) or the JavaScript expression
X => y => x + y than the combinatory expression

(S (S K S)) ((S (S (KS)) ((SKK)) (K+))) (S (KK)) D)) (KD)

even though there is a direct structural correspondence, easily expressed in five lines
of Lisp code.

So while in principle we could get by with just one universal function, we pre-
fer to modularize our code, to give names to the various pieces, and to mention
the names of function descriptions rather than constantly feeding the descriptions
themselves to the universal function.

Xiv Foreword

In my 1998 talk “Growing a Language,” I commented that a good programmer
“does not just write programs. A good programmer builds a working vocabulary.” As
we design and define more and more parts of our programs, we give names to those
parts, and the result is that we have a richer language in which to write the rest.

But we also find it natural to draw distinctions among data structures, and to give
them names.

It may be that nested lists are a universal data structure (and it is worth noting
that many modern and widely used data structures, such as HTML and XML and
JSON, are also parenthetically nested representations, only slightly more elaborate
than Lisp’s bare parentheses). There are also many functions, such as finding the
length of a list or applying a function to every element of a list and getting back a
list of the results, that are useful in a wide variety of situations. And yet, when I am
thinking about a specific computation, I often say to myself, “This list of two things
I expect to be a personal name and a surname, but that list of two things I expect
to be the real and imaginary parts of a complex number, and that other list of two
things I will regard as the numerator and denominator of a fraction.” In other words,
I draw distinctions—and it may be useful to represent those distinctions explicitly in
the data structure, in part to prevent mistakes such as accidentally treating a complex
number as a fraction. (Again, this is a comment about human abilities and human
limitations.)

Since the first edition of this book was written, almost four decades ago, a lot
more ways of organizing data have become relatively standard, in particular the
“object-oriented” approach, and many languages, including JavaScript, support spe-
cialized data structures such as objects and strings and heaps and maps with a variety
of built-in mechanisms and libraries. But in doing so, many languages abandoned
support for more general, universal notions. Java, for example, originally did not sup-
port first-class functions, and has incorporated them only relatively recently, greatly
increasing its expressive power.

APL, likewise, originally did not support first-class functions, and moreover its
original single data structure—arrays of any number of dimensions—was not so
conveniently useful as a universal data structure because arrays could not contain
other arrays as elements. More recent versions of APL do support anonymous
function values and nested arrays, and these have made APL dramatically more
expressive. (The original design of APL did have two very good things going for it:
a comprehensive set of functions applicable to that one data structure, and moreover
an extremely well chosen set of names for those functions. I’'m not talking about
the funny symbols and Greek letters, but the spoken words that APL programmers
use when mentioning them, words like shape, reshape, compress, expand, and
laminate; these are names not for the symbols, but for the functions they repre-
sent. Ken Iverson had a real knack for choosing short, memorable, vivid names for
functions on arrays.)

While JavaScript, like Java, was originally designed with objects and methods
in mind, it also incorporated first-class functions from the beginning, and it is not
difficult to use its objects to define a universal data structure. As a result, JavaScript

Foreword xv

is not as distant from Lisp as you would think, and as this edition of Structure and
Interpretation of Computer Programs demonstrates, it is a good alternate framework
for presenting the key ideas. SICP was never about a programming language; it
presents powerful, general ideas for program organization that ought to be useful in
any language.

What do Lisp and JavaScript have in common? The ability to abstract a compu-
tation (code plus some associated data) for later execution as a function; the ability
to embed references to such functions within data structures; the ability to invoke
functions on arguments; the ability to draw a distinction (conditional execution); a
convenient universal data structure; completely automatic storage management for
that data (which seems like a no-brainer, given everything else, until you realize
that many widely used programming languages don’t have it); a large set of useful
functions for operating on that universal data structure; and standard strategies for
using the universal data structure to represent more specialized data structures.

So maybe the truth is somewhere in between the extremes that Perlis so elo-
quently posited. Maybe the sweet spot is something more like 40 functions general
enough to operate usefully on a universal data structure such as lists, but also 10
sets of 6 functions each that are relevant when we take one of 10 specialized views
of that universal data structure. This is manageable if we give good names to these
functions and specialized views.

As you read this book, please pay attention not only to the programming lan-
guage constructs and how they are used, but also to the names given to functions
and variables and data structures. They are not all as short and vivid as the names
Iverson chose for his APL functions, but they have been chosen in a deliberate and
systematic way to enhance your understanding of the overall program structure.

Primitives, means of combination, functional abstraction, naming, and conven-
tions for using a universal data structure in specialized ways by drawing distinctions:
these are the fundamental building blocks of a good programming language. From
there, imagination and good engineering judgment based on experience can do the
rest.

—Gauy L. Steele Jr., Lexington, Massachusetts, 2021

Foreword to Structure and Interpretation of
Computer Programs, 1984

Educators, generals, dieticians, psychologists, and parents program. Armies, stu-
dents, and some societies are programmed. An assault on large problems employs
a succession of programs, most of which spring into existence en route. These pro-
grams are rife with issues that appear to be particular to the problem at hand. To
appreciate programming as an intellectual activity in its own right you must turn
to computer programming; you must read and write computer programs—many of
them. It doesn’t matter much what the programs are about or what applications they
serve. What does matter is how well they perform and how smoothly they fit with
other programs in the creation of still greater programs. The programmer must seek
both perfection of part and adequacy of collection. In this book the use of “program”
is focused on the creation, execution, and study of programs written in a dialect of
Lisp for execution on a digital computer. Using Lisp we restrict or limit not what we
may program, but only the notation for our program descriptions.

Our traffic with the subject matter of this book involves us with three foci of
phenomena: the human mind, collections of computer programs, and the computer.
Every computer program is a model, hatched in the mind, of a real or mental process.
These processes, arising from human experience and thought, are huge in number,
intricate in detail, and at any time only partially understood. They are modeled to
our permanent satisfaction rarely by our computer programs. Thus even though our
programs are carefully handcrafted discrete collections of symbols, mosaics of in-
terlocking functions, they continually evolve: we change them as our perception
of the model deepens, enlarges, generalizes until the model ultimately attains a
metastable place within still another model with which we struggle. The source of
the exhilaration associated with computer programming is the continual unfolding
within the mind and on the computer of mechanisms expressed as programs and
the explosion of perception they generate. If art interprets our dreams, the computer
executes them in the guise of programs!

For all its power, the computer is a harsh taskmaster. Its programs must be cor-
rect, and what we wish to say must be said accurately in every detail. As in every
other symbolic activity, we become convinced of program truth through argument.
Lisp itself can be assigned a semantics (another model, by the way), and if a pro-
gram’s function can be specified, say, in the predicate calculus, the proof methods
of logic can be used to make an acceptable correctness argument. Unfortunately, as
programs get large and complicated, as they almost always do, the adequacy, con-
sistency, and correctness of the specifications themselves become open to doubt, so
that complete formal arguments of correctness seldom accompany large programs.
Since large programs grow from small ones, it is crucial that we develop an arsenal
of standard program structures of whose correctness we have become sure—we call
them idioms—and learn to combine them into larger structures using organizational
techniques of proven value. These techniques are treated at length in this book, and
understanding them is essential to participation in the Promethean enterprise called

XViil Foreword to SICP, 1984

programming. More than anything else, the uncovering and mastery of powerful or-
ganizational techniques accelerates our ability to create large, significant programs.
Conversely, since writing large programs is very taxing, we are stimulated to invent
new methods of reducing the mass of function and detail to be fitted into large
programs.

Unlike programs, computers must obey the laws of physics. If they wish to per-
form rapidly—a few nanoseconds per state change—they must transmit electrons
only small distances (at most 1% feet). The heat generated by the huge number of
devices so concentrated in space has to be removed. An exquisite engineering art has
been developed balancing between multiplicity of function and density of devices.
In any event, hardware always operates at a level more primitive than that at which
we care to program. The processes that transform our Lisp programs to “machine’
programs are themselves abstract models which we program. Their study and cre-
ation give a great deal of insight into the organizational programs associated with
programming arbitrary models. Of course the computer itself can be so modeled.
Think of it: the behavior of the smallest physical switching element is modeled by
quantum mechanics described by differential equations whose detailed behavior is
captured by numerical approximations represented in computer programs executing
on computers composed of ... !

It is not merely a matter of tactical convenience to separately identify the three
foci. Even though, as they say, it’s all in the head, this logical separation induces
an acceleration of symbolic traffic between these foci whose richness, vitality, and
potential is exceeded in human experience only by the evolution of life itself. At
best, relationships between the foci are metastable. The computers are never large
enough or fast enough. Each breakthrough in hardware technology leads to more
massive programming enterprises, new organizational principles, and an enrichment
of abstract models. Every reader should ask himself periodically “Toward what
end, toward what end?”—but do not ask it too often lest you pass up the fun of
programming for the constipation of bittersweet philosophy.

Among the programs we write, some (but never enough) perform a precise math-
ematical function such as sorting or finding the maximum of a sequence of numbers,
determining primality, or finding the square root. We call such programs algorithms,
and a great deal is known of their optimal behavior, particularly with respect to the
two important parameters of execution time and data storage requirements. A pro-
grammer should acquire good algorithms and idioms. Even though some programs
resist precise specifications, it is the responsibility of the programmer to estimate,
and always to attempt to improve, their performance.

Lisp is a survivor, having been in use for about a quarter of a century. Among the
active programming languages only Fortran has had a longer life. Both languages
have supported the programming needs of important areas of application, Fortran
for scientific and engineering computation and Lisp for artificial intelligence. These
two areas continue to be important, and their programmers are so devoted to these
two languages that Lisp and Fortran may well continue in active use for at least
another quarter-century.

Lisp changes. The Scheme dialect used in this text has evolved from the original
Lisp and differs from the latter in several important ways, including static scoping
for variable binding and permitting functions to yield functions as values. In its

’

Foreword to SICP, 1984 Xix

semantic structure Scheme is as closely akin to Algol 60 as to early Lisps. Algol
60, never to be an active language again, lives on in the genes of Scheme and
Pascal. It would be difficult to find two languages that are the communicating coin of
two more different cultures than those gathered around these two languages. Pascal
is for building pyramids—imposing, breathtaking, static structures built by armies
pushing heavy blocks into place. Lisp is for building organisms—imposing, breath-
taking, dynamic structures built by squads fitting fluctuating myriads of simpler
organisms into place. The organizing principles used are the same in both cases,
except for one extraordinarily important difference: The discretionary exportable
functionality entrusted to the individual Lisp programmer is more than an order
of magnitude greater than that to be found within Pascal enterprises. Lisp programs
inflate libraries with functions whose utility transcends the application that produced
them. The list, Lisp’s native data structure, is largely responsible for such growth of
utility. The simple structure and natural applicability of lists are reflected in func-
tions that are amazingly nonidiosyncratic. In Pascal the plethora of declarable data
structures induces a specialization within functions that inhibits and penalizes casual
cooperation. It is better to have 100 functions operate on one data structure than to
have 10 functions operate on 10 data structures. As a result the pyramid must stand
unchanged for a millennium; the organism must evolve or perish.

To illustrate this difference, compare the treatment of material and exercises
within this book with that in any first-course text using Pascal. Do not labor under
the illusion that this is a text digestible at MIT only, peculiar to the breed found there.
It is precisely what a serious book on programming Lisp must be, no matter who the
student is or where it is used.

Note that this is a text about programming, unlike most Lisp books, which are
used as a preparation for work in artificial intelligence. After all, the critical program-
ming concerns of software engineering and artificial intelligence tend to coalesce
as the systems under investigation become larger. This explains why there is such
growing interest in Lisp outside of artificial intelligence.

As one would expect from its goals, artificial intelligence research generates
many significant programming problems. In other programming cultures this spate
of problems spawns new languages. Indeed, in any very large programming task a
useful organizing principle is to control and isolate traffic within the task modules
via the invention of language. These languages tend to become less primitive as
one approaches the boundaries of the system where we humans interact most often.
As a result, such systems contain complex language-processing functions replicated
many times. Lisp has such a simple syntax and semantics that parsing can be treated
as an elementary task. Thus parsing technology plays almost no role in Lisp pro-
grams, and the construction of language processors is rarely an impediment to the
rate of growth and change of large Lisp systems. Finally, it is this very simplicity
of syntax and semantics that is responsible for the burden and freedom borne by
all Lisp programmers. No Lisp program of any size beyond a few lines can be
written without being saturated with discretionary functions. Invent and fit; have
fits and reinvent! We toast the Lisp programmer who pens his thoughts within nests
of parentheses.

—Alan J. Perlis, New Haven, Connecticut

Preface

The book Structure and Interpretation of Computer Programs (SICP) introduces
the reader to central ideas of computation by establishing a series of mental models
for computation. Chapters 1-3 cover programming concepts that are common to
all modern high-level programming languages. The original first two editions of
SICP use the programming language Scheme in their program examples, whose
minimalist, expression-oriented syntax allows the book to focus on the underlying
ideas rather than the design of the chosen language. Chapters 4 and 5 use Scheme
to formulate language processors for Scheme, deepening the readers’ understanding
of the mental models and exploring language extensions and alternatives.

Since its publication in 1984 and its second edition in 1996, SICP has been
adopted as a textbook by universities and colleges around the world, including the
National University of Singapore (NUS), which introduced the SICP-based introduc-
tory course CS1101S in 1997. In the mid-1990s, the languages Python, JavaScript,
and Ruby emerged, which share central design elements with Scheme, but which em-
ploy a more complex, statement-oriented syntax that uses familiar algebraic (infix)
notation. Their rise in popularity led instructors to adapt their SICP-based courses,
typically by translating the example programs to their language of choice, by adding
material specific to that language, and by omitting the material of chapters 4 and 5.

Adapting SICP to JavaScript

The work on adapting the second edition of SICP to JavaScript (SICP JS) started at
NUS in 2008, and CS1101S switched to JavaScript in 2012. The language standard
ECMAScript 2015 introduced lambda expressions, tail recursion, and block-scoped
variables and constants, which enabled the adaptation to become quite close to the
original. We made substantial changes to SICP only when we felt they were forced
by differences between JavaScript and Scheme. The book covers just a small frac-
tion of JavaScript, so a reader would be ill-advised to use it to learn the language.
For example, the notion of a JavaScript object—considered one of its fundamental
ingredients by any measure—is not even mentioned!

It was straightforward to translate the programs of chapters 1-3 to JavaScript
by adding libraries that mirror Scheme primitives—including support for list struc-
ture—and adapting the text accordingly. However, the switch to JavaScript forced
us to make subtle changes in the interpreters and compiler of chapters 4 and 5 in
order to handle return statements. Scheme’s expression-oriented syntax doesn’t have
return statements, which are a prominent feature of statement-oriented languages.

By using JavaScript, chapters 1-3 introduce the reader to the syntactic style of
most mainstream languages today. However, that same syntactic style gave rise to
significant changes in chapter 4, because the direct representation of programs as
data structures could no longer be taken for granted. This provided us with an op-
portunity to introduce the reader to the notion of program parsing in section 4.1, an
important component of programming-language processors. In section 4.4, the rigid
syntactic structure of JavaScript complicated the implementation of the presented

XXii Preface

logic programming system and exposed the limitations of JavaScript as a tool for
programming language design.

Resources for using SICP JS

The MIT Press web page for SICP JS links to support for users of this book. This
provides all programs from the book and extensive instructor resources, including a
large collection of additional exercises and recommendations on selecting a subset
of SICP JS that can be covered in a typical college semester. The JavaScript pro-
grams in the book run in the recommended strict mode in any JavaScript interpreter
that complies with the ECMAScript 2020 specification of JavaScript (ECMA 2020).
The MIT Press web page includes the JavaScript package sicp, which provides all
JavaScript functions that are considered “primitive” in the book.

To the reader

We sincerely hope that if this book is your first encounter with programming you will
use your newly gained understanding of the structure and interpretation of computer
programs to learn more programming languages, including Scheme and the full
JavaScript language. If you have learned JavaScript prior to picking up SICP JS, you
might gain new insights into the fundamental concepts that underlie the language
and discover how much can be achieved with so little. If you come to SICP JS with
a knowledge of the original SICP, you might enjoy seeing familiar ideas presented
in a new format—and might appreciate the online comparison edition, available at
the book’s web page, where SICP JS and SICP can be viewed side by side.

—NMartin Henz and Tobias Wrigstad

https://mitpress.mit.edu/books/structure-and-interpretation-computer-programs-1

Prefaces to Structure and Interpretation of
Computer Programs, 1996 & 1984

Preface to the Second Edition of SICP, 1996

Is it possible that software is not like anything else, that it is meant to be
discarded: that the whole point is to always see it as a soap bubble?

—Alan J. Perlis

The material in this book has been the basis of MIT’s entry-level computer science
subject since 1980. We had been teaching this material for four years when the first
edition was published, and twelve more years have elapsed until the appearance
of this second edition. We are pleased that our work has been widely adopted and
incorporated into other texts. We have seen our students take the ideas and programs
in this book and build them in as the core of new computer systems and languages. In
literal realization of an ancient Talmudic pun, our students have become our builders.
We are lucky to have such capable students and such accomplished builders.

In preparing this edition, we have incorporated hundreds of clarifications sug-
gested by our own teaching experience and the comments of colleagues at MIT
and elsewhere. We have redesigned most of the major programming systems in the
book, including the generic-arithmetic system, the interpreters, the register-machine
simulator, and the compiler; and we have rewritten all the program examples to
ensure that any Scheme implementation conforming to the IEEE Scheme standard
(IEEE 1990) will be able to run the code.

This edition emphasizes several new themes. The most important of these is
the central role played by different approaches to dealing with time in computa-
tional models: objects with state, concurrent programming, functional programming,
lazy evaluation, and nondeterministic programming. We have included new sections
on concurrency and nondeterminism, and we have tried to integrate this theme
throughout the book.

The first edition of the book closely followed the syllabus of our MIT one-
semester subject. With all the new material in the second edition, it will not be
possible to cover everything in a single semester, so the instructor will have to pick
and choose. In our own teaching, we sometimes skip the section on logic program-
ming (section 4.4), we have students use the register-machine simulator but we do
not cover its implementation (section 5.2), and we give only a cursory overview of
the compiler (section 5.5). Even so, this is still an intense course. Some instructors
may wish to cover only the first three or four chapters, leaving the other material for
subsequent courses.

The World Wide Web site of MIT Press provides support for users of this book.
This includes programs from the book, sample programming assignments, supple-
mentary materials, and downloadable implementations of the Scheme dialect of
Lisp.

—Harold Abelson and Gerald Jay Sussman

https://mitpress.mit.edu/sites/default/files/sicp/index.html

XXiv Prefaces to SICP, 1996 & 1984

Preface to the First Edition of SICP, 1984

A computer is like a violin. You can imagine a novice trying first a
phonograph and then a violin. The latter, he says, sounds terrible. That is the
argument we have heard from our humanists and most of our computer
scientists. Computer programs are good, they say, for particular purposes, but
they aren’t flexible. Neither is a violin, or a typewriter, until you learn how to
use it.

—Marvin Minsky, “Why Programming Is a Good Medium for Expressing
Poorly-Understood and Sloppily-Formulated Ideas”

“The Structure and Interpretation of Computer Programs” is the entry-level subject
in computer science at the Massachusetts Institute of Technology. It is required of
all students at MIT who major in electrical engineering or in computer science, as
one-fourth of the “common core curriculum,” which also includes two subjects on
circuits and linear systems and a subject on the design of digital systems. We have
been involved in the development of this subject since 1978, and we have taught
this material in its present form since the fall of 1980 to between 600 and 700
students each year. Most of these students have had little or no prior formal training
in computation, although many have played with computers a bit and a few have
had extensive programming or hardware-design experience.

Our design of this introductory computer-science subject reflects two major con-
cerns. First, we want to establish the idea that a computer language is not just a
way of getting a computer to perform operations but rather that it is a novel formal
medium for expressing ideas about methodology. Thus, programs must be written
for people to read, and only incidentally for machines to execute. Second, we believe
that the essential material to be addressed by a subject at this level is not the syntax of
particular programming-language constructs, nor clever algorithms for computing
particular functions efficiently, nor even the mathematical analysis of algorithms
and the foundations of computing, but rather the techniques used to control the
intellectual complexity of large software systems.

Our goal is that students who complete this subject should have a good feel
for the elements of style and the aesthetics of programming. They should have
command of the major techniques for controlling complexity in a large system. They
should be capable of reading a 50-page-long program, if it is written in an exemplary
style. They should know what not to read, and what they need not understand at any
moment. They should feel secure about modifying a program, retaining the spirit
and style of the original author.

These skills are by no means unique to computer programming. The techniques
we teach and draw upon are common to all of engineering design. We control
complexity by building abstractions that hide details when appropriate. We control
complexity by establishing conventional interfaces that enable us to construct sys-
tems by combining standard, well-understood pieces in a “mix and match” way. We
control complexity by establishing new languages for describing a design, each of
which emphasizes particular aspects of the design and deemphasizes others.

Underlying our approach to this subject is our conviction that “computer sci-
ence” is not a science and that its significance has little to do with computers. The

Prefaces to SICP, 1996 & 1984 xxv

computer revolution is a revolution in the way we think and in the way we express
what we think. The essence of this change is the emergence of what might best be
called procedural epistemology—the study of the structure of knowledge from an
imperative point of view, as opposed to the more declarative point of view taken
by classical mathematical subjects. Mathematics provides a framework for dealing
precisely with notions of “what is.” Computation provides a framework for dealing
precisely with notions of “how to.”

In teaching our material we use a dialect of the programming language Lisp.
We never formally teach the language, because we don’t have to. We just use it,
and students pick it up in a few days. This is one great advantage of Lisp-like
languages: They have very few ways of forming compound expressions, and almost
no syntactic structure. All of the formal properties can be covered in an hour, like the
rules of chess. After a short time we forget about syntactic details of the language
(because there are none) and get on with the real issues—figuring out what we want
to compute, how we will decompose problems into manageable parts, and how we
will work on the parts. Another advantage of Lisp is that it supports (but does not
enforce) more of the large-scale strategies for modular decomposition of programs
than any other language we know. We can make procedural and data abstractions, we
can use higher-order functions to capture common patterns of usage, we can model
local state using assignment and data mutation, we can link parts of a program with
streams and delayed evaluation, and we can easily implement embedded languages.
All of this is embedded in an interactive environment with excellent support for
incremental program design, construction, testing, and debugging. We thank all the
generations of Lisp wizards, starting with John McCarthy, who have fashioned a
fine tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together the
power and elegance of Lisp and Algol. From Lisp we take the metalinguistic power
that derives from the simple syntax, the uniform representation of programs as data
objects, and the garbage-collected heap-allocated data. From Algol we take lexical
scoping and block structure, which are gifts from the pioneers of programming-
language design who were on the Algol committee. We wish to cite John Reynolds
and Peter Landin for their insights into the relationship of Church’s lambda calculus
to the structure of programming languages. We also recognize our debt to the math-
ematicians who scouted out this territory decades before computers appeared on the
scene. These pioneers include Alonzo Church, Barkley Rosser, Stephen Kleene, and
Haskell Curry.

—Harold Abelson and Gerald Jay Sussman

Acknowledgments

The JavaScript adaptation of Structure and Interpretation of Computer Programs
(SICP JS) was developed at the National University of Singapore (NUS) for the
course CS1101S. The course was co-taught for six years and counting by Low Kok
Lim, whose sound pedagogical judgment was crucial for the success of the course
and this project. The CS1101S teaching team has included many NUS colleagues
and more than 300 undergraduate student assistants. Their continuous feedback over
the past nine years allowed us to resolve countless JavaScript-specific issues and
remove unnecessary complications and yet retain the essential features of both SICP
and JavaScript.

SICP JS is a software project in addition to a book project. We obtained the IATEX
book sources from the original authors in 2008. An early SICP JS tool chain was
developed by Liu Hang and refined by Feng Piaopiao. Chan Ger Hean developed
the first tools for the print edition, based on which Jolyn Tan developed the tools
for the first e-book edition and He Xinyue and Wang Qian repurposed these tools
for the current comparison edition. Samuel Fang designed and developed the online
edition of SICP JS.

The online edition of SICP JS and CS1101S rely heavily on a software sys-
tem called Source Academy, and the JavaScript sublanguages it supports are called
Source. Many dozens of students have contributed to the Source Academy during
the preparation of SICP JS, and the system lists them prominently as “Contribu-
tors.” Since 2020, the students of the NUS course CS4215, Programming Language
Implementation, contributed several programming language implementations that
are used in SICP JS: The concurrent version of Source used in section 3.4 was
developed by Zhengqun Koo and Jonathan Chan; the lazy implementation used in
section 4.2 was developed by Jellouli Ahmed, Tan Kendall Duncan, Cruz Jomari
Evangelista, and Alden Tan; the nondeterministic implementation used in section
4.3 was developed by Arsalan Cheema and Anubhav; and Daryl Tan helped integrate
these implementations into the Academy.

We are grateful to STINT, The Swedish Foundation for International Coopera-
tion in Research and Higher Education, whose sabbatical program connected Martin
and Tobias and allowed Tobias to work as a co-teacher of CS1101S and join the
SICP JS project.

We would like to acknowledge the courageous work of the committee of ECMA-
Script 2015, led by Allen Wirfs-Brock. SICP JS relies heavily on constant and let
declarations and lambda expressions, all of which were added to JavaScript with
ECMAScript 2015. Those additions allowed us to stay close to the original in the
presentation of the most important ideas of SICP. Guy Lewis Steele Jr., who led the
first ECMAScript standardization, provided detailed and useful feedback on some
exercises of chapter 4.

—Martin Henz and Tobias Wrigstad

XXVIIL Acknowledgements

Acknowledgments from the Second Edition of SICP, 1996

We would like to thank the many people who have helped us develop this book and
this curriculum.

Our subject is a clear intellectual descendant of “6.231,” a wonderful subject on
programming linguistics and the lambda calculus taught at MIT in the late 1960s by
Jack Wozencraft and Arthur Evans, Jr.

We owe a great debt to Robert Fano, who reorganized MIT’s introductory cur-
riculum in electrical engineering and computer science to emphasize the principles
of engineering design. He led us in starting out on this enterprise and wrote the first
set of subject notes from which this book evolved.

Much of the style and aesthetics of programming that we try to teach were de-
veloped in conjunction with Guy Lewis Steele Jr., who collaborated with Gerald
Jay Sussman in the initial development of the Scheme language. In addition, David
Turner, Peter Henderson, Dan Friedman, David Wise, and Will Clinger have taught
us many of the techniques of the functional programming community that appear in
this book.

Joel Moses taught us about structuring large systems. His experience with the
Macsyma system for symbolic computation provided the insight that one should
avoid complexities of control and concentrate on organizing the data to reflect the
real structure of the world being modeled.

Marvin Minsky and Seymour Papert formed many of our attitudes about pro-
gramming and its place in our intellectual lives. To them we owe the understanding
that computation provides a means of expression for exploring ideas that would oth-
erwise be too complex to deal with precisely. They emphasize that a student’s ability
to write and modify programs provides a powerful medium in which exploring
becomes a natural activity.

We also strongly agree with Alan Perlis that programming is lots of fun and we
had better be careful to support the joy of programming. Part of this joy derives
from observing great masters at work. We are fortunate to have been apprentice
programmers at the feet of Bill Gosper and Richard Greenblatt.

It is difficult to identify all the people who have contributed to the development
of our curriculum. We thank all the lecturers, recitation instructors, and tutors who
have worked with us over the past fifteen years and put in many extra hours on
our subject, especially Bill Siebert, Albert Meyer, Joe Stoy, Randy Davis, Louis
Braida, Eric Grimson, Rod Brooks, Lynn Stein, and Peter Szolovits. We would like
to specially acknowledge the outstanding teaching contributions of Franklyn Turbak,
now at Wellesley; his work in undergraduate instruction set a standard that we can
all aspire to. We are grateful to Jerry Saltzer and Jim Miller for helping us grapple
with the mysteries of concurrency, and to Peter Szolovits and David McAllester for
their contributions to the exposition of nondeterministic evaluation in chapter 4.

Many people have put in significant effort presenting this material at other uni-
versities. Some of the people we have worked closely with are Jacob Katzenelson
at the Technion, Hardy Mayer at the University of California at Irvine, Joe Stoy at
Oxford, Elisha Sacks at Purdue, and Jan Komorowski at the Norwegian University
of Science and Technology. We are exceptionally proud of our colleagues who have

Acknowledgements XXix

received major teaching awards for their adaptations of this subject at other univer-
sities, including Kenneth Yip at Yale, Brian Harvey at the University of California
at Berkeley, and Dan Huttenlocher at Cornell.

Al Moyé arranged for us to teach this material to engineers at Hewlett-Packard,
and for the production of videotapes of these lectures. We would like to thank the tal-
ented instructors—in particular Jim Miller, Bill Siebert, and Mike Eisenberg—who
have designed continuing education courses incorporating these tapes and taught
them at universities and industry all over the world.

Many educators in other countries have put in significant work translating the
first edition. Michel Briand, Pierre Chamard, and André Pic produced a French
edition; Susanne Daniels-Herold produced a German edition; and Fumio Motoyoshi
produced a Japanese edition. We do not know who produced the Chinese edition,
but we consider it an honor to have been selected as the subject of an “unauthorized”
translation.

It is hard to enumerate all the people who have made technical contributions
to the development of the Scheme systems we use for instructional purposes.
In addition to Guy Steele, principal wizards have included Chris Hanson, Joe
Bowbeer, Jim Miller, Guillermo Rozas, and Stephen Adams. Others who have
put in significant time are Richard Stallman, Alan Bawden, Kent Pitman, Jon
Taft, Neil Mayle, John Lamping, Gwyn Osnos, Tracy Larrabee, George Carrette,
Soma Chaudhuri, Bill Chiarchiaro, Steven Kirsch, Leigh Klotz, Wayne Noss, Todd
Cass, Patrick O’Donnell, Kevin Theobald, Daniel Weise, Kenneth Sinclair, Anthony
Courtemanche, Henry M. Wu, Andrew Berlin, and Ruth Shyu.

Beyond the MIT implementation, we would like to thank the many people who
worked on the IEEE Scheme standard, including William Clinger and Jonathan Rees,
who edited the R*RS, and Chris Haynes, David Bartley, Chris Hanson, and Jim
Miller, who prepared the IEEE standard.

Dan Friedman has been a long-time leader of the Scheme community. The
community’s broader work goes beyond issues of language design to encompass
significant educational innovations, such as the high-school curriculum based on
EdScheme by Schemer’s Inc., and the wonderful books by Mike Eisenberg and by
Brian Harvey and Matthew Wright.

We appreciate the work of those who contributed to making this a real book,
especially Terry Ehling, Larry Cohen, and Paul Bethge at the MIT Press. Ella Mazel
found the wonderful cover image. For the second edition we are particularly grate-
ful to Bernard and Ella Mazel for help with the book design, and to David Jones,
TEX wizard extraordinaire. We also are indebted to those readers who made pene-
trating comments on the new draft: Jacob Katzenelson, Hardy Mayer, Jim Miller,
and especially Brian Harvey, who did unto this book as Julie did unto his book
Simply Scheme.

Finally, we would like to acknowledge the support of the organizations that
have encouraged this work over the years, including support from Hewlett-Packard,
made possible by Ira Goldstein and Joel Birnbaum, and support from DARPA, made
possible by Bob Kahn.

—Harold Abelson and Gerald Jay Sussman

Structure and Interpretation of Computer Programs

JavaScript Edition

1 Building Abstractions with Functions

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly
these three: 1. Combining several simple ideas into one compound one, and
thus all complex ideas are made. 2. The second is bringing two ideas, whether
simple or complex, together, and setting them by one another so as to take a
view of them at once, without uniting them into one, by which it gets all its
ideas of relations. 3. The third is separating them from all other ideas that
accompany them in their real existence: this is called abstraction, and thus all
its general ideas are made.

—John Locke, An Essay Concerning Human Understanding (1690)

We are about to study the idea of a computational process. Computational processes
are abstract beings that inhabit computers. As they evolve, processes manipulate
other abstract things called data. The evolution of a process is directed by a pattern
of rules called a program. People create programs to direct processes. In effect, we
conjure the spirits of the computer with our spells.

A computational process is indeed much like a sorcerer’s idea of a spirit. It
cannot be seen or touched. It is not composed of matter at all. However, it is very
real. It can perform intellectual work. It can answer questions. It can affect the
world by disbursing money at a bank or by controlling a robot arm in a factory.
The programs we use to conjure processes are like a sorcerer’s spells. They are
carefully composed from symbolic expressions in arcane and esoteric programming
languages that prescribe the tasks we want our processes to perform.

A computational process, in a correctly working computer, executes programs
precisely and accurately. Thus, like the sorcerer’s apprentice, novice programmers
must learn to understand and to anticipate the consequences of their conjuring. Even
small errors (usually called bugs) in programs can have complex and unanticipated
consequences.

Fortunately, learning to program is considerably less dangerous than learning
sorcery, because the spirits we deal with are conveniently contained in a secure way.
Real-world programming, however, requires care, expertise, and wisdom. A small
bug in a computer-aided design program, for example, can lead to the catastrophic
collapse of an airplane or a dam or the self-destruction of an industrial robot.

Master software engineers have the ability to organize programs so that they can
be reasonably sure that the resulting processes will perform the tasks intended. They
can visualize the behavior of their systems in advance. They know how to structure
programs so that unanticipated problems do not lead to catastrophic consequences,
and when problems do arise, they can debug their programs. Well-designed compu-
tational systems, like well-designed automobiles or nuclear reactors, are designed
in a modular manner, so that the parts can be constructed, replaced, and debugged
separately.

2 Chapter 1 Building Abstractions with Functions

Programming in JavaScript

We need an appropriate language for describing processes, and we will use for this
purpose the programming language JavaScript. Just as our everyday thoughts are
usually expressed in our natural language (such as English, Swedish, or Chinese),
and descriptions of quantitative phenomena are expressed with mathematical no-
tations, our procedural thoughts will be expressed in JavaScript. JavaScript was
developed in 1995 as a programming language for controlling the behavior of World
Wide Web browsers through scripts that are embedded in web pages. The language
was conceived by Brendan Eich, originally under the name Mocha, which was
later renamed to LiveScript, and finally to JavaScript. The name “JavaScript” is a
trademark of Oracle Corporation.

Despite its inception as a language for scripting the web, JavaScript is a general-
purpose programming language. A JavaScript interpreter is a machine that car-
ries out processes described in the JavaScript language. The first JavaScript inter-
preter was implemented by Eich at Netscape Communications Corporation for the
Netscape Navigator web browser. JavaScript inherited its core features from the
Scheme and Self programming languages. Scheme is a dialect of Lisp, and was used
as the programming language for the original version of this book. From Scheme,
JavaScript inherited its most fundamental design principles, such as lexically scoped
first-class functions and dynamic typing.

JavaScript bears only superficial resemblance to the language Java, after which
it was (eventually) named; both Java and JavaScript use the block structure of the
language C. In contrast with Java and C, which usually employ compilation to lower-
level languages, JavaScript programs were initially interpreted by web browsers.
After Netscape Navigator, other web browsers provided interpreters for the language,
including Microsoft’s Internet Explorer, whose JavaScript version is called JScript.
The popularity of JavaScript for controlling web browsers gave rise to a standard-
ization effort, culminating in ECMAScript. The first edition of the ECMAScript
standard was led by Guy Lewis Steele Jr. and completed in June 1997 (ECMA 1997).
The sixth edition, known as ECMAScript 2015, was led by Allen Wirfs-Brock and
adopted by the General Assembly of ECMA in June 2015 (ECMA 2015).

The practice of embedding JavaScript programs in web pages encouraged the
developers of web browsers to implement JavaScript interpreters. As these programs
became more complex, the interpreters became more efficient in executing them,
eventually using sophisticated implementation techniques such as Just-In-Time (JIT)
compilation. The majority of JavaScript programs as of this writing (2021) are em-
bedded in web pages and interpreted by browsers, but JavaScript is increasingly
used as a general-purpose programming language, using systems such as Node.js.

ECMAScript 2015 possesses a set of features that make it an excellent medium
for studying important programming constructs and data structures and for relat-
ing them to the linguistic features that support them. Its lexically scoped first-class
functions and their syntactic support through lambda expressions provide direct and
concise access to functional abstraction, and dynamic typing allows the adaptation
to remain close to the Scheme original throughout the book. Above and beyond
these considerations, programming in JavaScript is great fun.

1.1 The Elements of Programming 3

1.1 The Elements of Programming

A powerful programming language is more than just a means for instructing a
computer to perform tasks. The language also serves as a framework within which
we organize our ideas about processes. Thus, when we describe a language, we
should pay particular attention to the means that the language provides for combin-
ing simple ideas to form more complex ideas. Every powerful language has three
mechanisms for accomplishing this:

* primitive expressions, which represent the simplest entities the language is con-
cerned with,

* means of combination, by which compound elements are built from simpler ones,
and

* means of abstraction, by which compound elements can be named and manipu-
lated as units.

In programming, we deal with two kinds of elements: functions and data. (Later
we will discover that they are really not so distinct.) Informally, data is “stuff” that
we want to manipulate, and functions are descriptions of the rules for manipulating
the data. Thus, any powerful programming language should be able to describe
primitive data and primitive functions and should have methods for combining and
abstracting functions and data.

In this chapter we will deal only with simple numerical data so that we can focus
on the rules for building functions.! In later chapters we will see that these same
rules allow us to build functions to manipulate compound data as well.

1.1.1 Expressions

One easy way to get started at programming is to examine some typical interac-
tions with an interpreter for the JavaScript language. You type a statement, and the
interpreter responds by displaying the result of its evaluating that statement.

One kind of statement you might type is an expression statement, which consists
of an expression followed by a semicolon. One kind of primitive expression is a
number. (More precisely, the expression that you type consists of the numerals that
represent the number in base 10.) If you present JavaScript with the program

1. The characterization of numbers as “simple data” is a barefaced bluff. In fact, the treatment
of numbers is one of the trickiest and most confusing aspects of any programming language.
Some typical issues involved are these: Some computer systems distinguish integers, such as 2,
from real numbers, such as 2.71. Is the real number 2.00 different from the integer 2? Are the
arithmetic operations used for integers the same as the operations used for real numbers? Does
6 divided by 2 produce 3, or 3.0? How large a number can we represent? How many decimal
places of accuracy can we represent? Is the range of integers the same as the range of real
numbers? Above and beyond these questions, of course, lies a collection of issues concerning
roundoff and truncation errors—the entire science of numerical analysis. Since our focus in this
book is on large-scale program design rather than on numerical techniques, we are going to
ignore these problems. The numerical examples in this chapter will exhibit the usual roundoff
behavior that one observes when using arithmetic operations that preserve a limited number of
decimal places of accuracy in noninteger operations.

4 Chapter 1 Building Abstractions with Functions

486 ;

the interpreter will respond by printing?

486

Expressions representing numbers may be combined with operators (such as +
or *) to form a compound expression that represents the application of a correspond-
ing primitive function to those numbers. For example,

137 + 349;
486

1000 - 334;
666

5 % 99;
495

10 / 4;
2.5

2.7 + 10;
12.7

Expressions such as these, which contain other expressions as components, are
called combinations. Combinations that are formed by an operator symbol in the
middle, and operand expressions to the left and right of it, are called operator com-
binations. The value of an operator combination is obtained by applying the function
specified by the operator to the arguments that are the values of the operands.

The convention of placing the operator between the operands is known as infix
notation. It follows the mathematical notation that you are most likely familiar with
from school and everyday life. As in mathematics, operator combinations can be
nested, that is, they can have operands that themselves are operator combinations:

(8 *) + (10 - 6);
19

As usual, parentheses are used to group operator combinations in order to avoid am-
biguities. JavaScript also follows the usual conventions when parentheses are omit-
ted: multiplication and division bind more strongly than addition and subtraction.
For example,

3 x5+ 10 / 2;
stands for

(83 *5) + (10 / 2);

2. Throughout this book, we distinguish between the input typed by the user and any text
printed by the interpreter by showing the latter in slanted characters.

1.1.2 Naming and the Environment 5

We say that * and / have higher precedence than + and -. Sequences of additions
and subtractions are read from left to right, as are sequences of multiplications and
divisions. Thus,

1-5/2%4+3;

stands for
(1 -5 /2 x4)) +3;

We say that the operators +, —, * and / are left-associative.

There is no limit (in principle) to the depth of such nesting and to the overall
complexity of the expressions that the JavaScript interpreter can evaluate. It is we
humans who might get confused by still relatively simple expressions such as

3*x 2% (3-5+4)+27 /6 % 10;

which the interpreter would readily evaluate to be 57. We can help ourselves by
writing such an expression in the form

3%x 2% (3 -5+ 4)
+
27 / 6 * 10;

to visually separate the major components of the expression.

Even with complex expressions, the interpreter always operates in the same basic
cycle: It reads a statement typed by the user, evaluates the statement, and prints
the result. This mode of operation is often expressed by saying that the interpreter
runs in a read-evaluate-print loop. Observe in particular that it is not necessary to
explicitly instruct the interpreter to print the value of the statement.’

1.1.2 Naming and the Environment

A critical aspect of a programming language is the means it provides for using names
to refer to computational objects, and our first such means are constants. We say that
the name identifies a constant whose value is the object.

In JavaScript, we name constants with constant declarations.

const size = 2;

causes the interpreter to associate the value 2 with the name size.* Once the name
size has been associated with the number 2, we can refer to the value 2 by name:

3. JavaScript obeys the convention that every statement has a value (see exercise 4.8). This
convention, together with the reputation of JavaScript programmers as not caring about effi-
ciency, leads us to paraphrase a quip on Lisp programmers by Alan Perlis (who was himself
paraphrasing Oscar Wilde): JavaScript programmers know the value of everything but the cost
of nothing.

4. In this book, we do not show the interpreter’s response to evaluating programs that end with
declarations, since this might depend on previous statements. See exercise 4.8 for details.

6 Chapter 1 Building Abstractions with Functions

size;
2

5 x size;
10

Here are further examples of the use of const:

const pi = 3.14159;
const radius = 10;

pi * radius * radius;
314.159

const circumference = 2 * pi * radius;

circumference;
62.8318

Constant declaration is our language’s simplest means of abstraction, for it al-
lows us to use simple names to refer to the results of compound operations, such
as the circumference computed above. In general, computational objects may
have very complex structures, and it would be extremely inconvenient to have to
remember and repeat their details each time we want to use them. Indeed, com-
plex programs are constructed by building, step by step, computational objects
of increasing complexity. The interpreter makes this step-by-step program con-
struction particularly convenient because name-object associations can be created
incrementally in successive interactions. This feature encourages the incremental
development and testing of programs and is largely responsible for the fact that a
JavaScript program usually consists of a large number of relatively simple functions.

It should be clear that the possibility of associating values with names and later
retrieving them means that the interpreter must maintain some sort of memory that
keeps track of the name-object pairs. This memory is called the environment (more
precisely the program environment, since we will see later that a computation may
involve a number of different environments).>

1.1.3 Evaluating Operator Combinations

One of our goals in this chapter is to isolate issues about thinking procedurally.
As a case in point, let us consider that, in evaluating operator combinations, the
interpreter is itself following a procedure.

* To evaluate an operator combination, do the following:
1. Evaluate the operand expressions of the combination.

2. Apply the function that is denoted by the operator to the arguments that are
the values of the operands.

5. Chapter 3 will show that this notion of environment is crucial for understanding how the
interpreter works. Chapter 4 will use environments for implementing interpreters.

1.1.3 Evaluating Operator Combinations 7

Figure 1.1 Tree representation, showing the value of each subexpression.

Even this simple rule illustrates some important points about processes in general.
First, observe that the first step dictates that in order to accomplish the evaluation
process for a combination we must first perform the evaluation process on each
operand of the combination. Thus, the evaluation rule is recursive in nature; that is,
it includes, as one of its steps, the need to invoke the rule itself.

Notice how succinctly the idea of recursion can be used to express what, in
the case of a deeply nested combination, would otherwise be viewed as a rather
complicated process. For example, evaluating

(2 +4 x6) x (3+12);

requires that the evaluation rule be applied to four different combinations. We can
obtain a picture of this process by representing the combination in the form of a tree,
as shown in figure 1.1. Each combination is represented by a node with branches
corresponding to the operator and the operands of the combination stemming from
it. The terminal nodes (that is, nodes with no branches stemming from them) rep-
resent either operators or numbers. Viewing evaluation in terms of the tree, we can
imagine that the values of the operands percolate upward, starting from the terminal
nodes and then combining at higher and higher levels. In general, we shall see that
recursion is a very powerful technique for dealing with hierarchical, treelike objects.
In fact, the “percolate values upward” form of the evaluation rule is an example of a
general kind of process known as tree accumulation.

Next, observe that the repeated application of the first step brings us to the point
where we need to evaluate, not combinations, but primitive expressions such as
numerals or names. We take care of the primitive cases by stipulating that

¢ the values of numerals are the numbers that they name, and

* the values of names are the objects associated with those names in the environ-
ment.

The key point to notice is the role of the environment in determining the meaning
of the names in expressions. In an interactive language such as JavaScript, it is
meaningless to speak of the value of an expression such as x + 1 without speci-
fying any information about the environment that would provide a meaning for the
name x. As we shall see in chapter 3, the general notion of the environment as

8 Chapter 1 Building Abstractions with Functions

providing a context in which evaluation takes place will play an important role in
our understanding of program execution.

Notice that the evaluation rule given above does not handle declarations. For
instance, evaluating const x = 3; does not apply an equality operator = to two
arguments, one of which is the value of the name x and the other of which is 3,
since the purpose of the declaration is precisely to associate x with a value. (That is,
const x = 3; is not a combination.)

The letters in const are rendered in bold to indicate that it is a keyword in
JavaScript. Keywords carry a particular meaning, and thus cannot be used as names.
A keyword or a combination of keywords in a statement instructs the JavaScript
interpreter to treat the statement in a special way. Each such syntactic form has its
own evaluation rule. The various kinds of statements and expressions (each with its
associated evaluation rule) constitute the syntax of the programming language.

1.1.4 Compound Functions

We have identified in JavaScript some of the elements that must appear in any
powerful programming language:

* Numbers and arithmetic operations are primitive data and functions.
* Nesting of combinations provides a means of combining operations.

* Constant declarations that associate names with values provide a limited means
of abstraction.

Now we will learn about function declarations, a much more powerful abstraction
technique by which a compound operation can be given a name and then referred to
as a unit.

We begin by examining how to express the idea of “squaring.” We might say,
“To square something, take it times itself.” This is expressed in our language as

function square(x) {
return x * X;

}
We can understand this in the following way:

function square (X) {returnx * x ; }
To square something, take it times itself.

We have here a compound function, which has been given the name square. The
function represents the operation of multiplying something by itself. The thing to be
multiplied is given a local name, x, which plays the same role that a pronoun plays
in natural language. Evaluating the declaration creates this compound function and
associates it with the name square.®

6. Observe that there are two different operations being combined here: we are creating the
function, and we are giving it the name square. It is possible, indeed important, to be able
to separate these two notions—to create functions without naming them, and to give names to
functions that have already been created. We will see how to do this in section 1.3.2.

1.1.4 Compound Functions 9

The simplest form of a function declaration is

function name(parameters) { return expression; }

The name is a symbol to be associated with the function definition in the envi-
ronment.” The parameters are the names used within the body of the function to
refer to the corresponding arguments of the function. The parameters are grouped
within parentheses and separated by commas, as they will be in an application of
the function being declared. In the simplest form, the body of a function declaration
is a single return statement,® which consists of the keyword return followed by
the return expression that will yield the value of the function application, when the
parameters are replaced by the actual arguments to which the function is applied.
Like constant declarations and expression statements, return statements end with a
semicolon.

Having declared square, we can now use it in a function application expression,
which we turn into a statement using a semicolon:

square(21);
441

Function applications are—after operator combinations—the second kind of combi-
nation of expressions into larger expressions that we encounter. The general form of
a function application is

function-expression (argument-expressions)

where the function-expression of the application specifies the function to be applied
to the comma-separated argument-expressions. To evaluate a function application,
the interpreter follows a procedure quite similar to the procedure for operator
combinations described in section 1.1.3.

* To evaluate a function application, do the following:
1. Evaluate the subexpressions of the application, namely the function expression
and the argument expressions.
2. Apply the function that is the value of the function expression to the values of
the argument expressions.

square(2 + 5);
49

Here, the argument expression is itself a compound expression, the operator combi-
nation 2 + 5.

7. Throughout this book, we will describe the general syntax of expressions by using italic
symbols—e.g., name—to denote the “slots” in the expression to be filled in when such an
expression is actually used.

8. More generally, the body of the function can be a sequence of statements. In this case, the
interpreter evaluates each statement in the sequence in turn until a return statement determines
the value of the function application.

10 Chapter 1 Building Abstractions with Functions

square (square(3));
81

Of course function application expressions can also serve as argument expressions.
We can also use square as a building block in defining other functions. For
example, x> + y? can be expressed as

square(x) + square(y)

We can easily declare a function sum_of _squares” that, given any two numbers as
arguments, produces the sum of their squares:

function sum_of_squares(x, y) {
return square(x) + square(y);

}

sum_of_squares(3, 4);
25

Now we can use sum_of_squares as a building block in constructing further
functions:

function f(a) {
return sum_of_squares(a + 1, a * 2);

}

£(5);
136

In addition to compound functions, any JavaScript environment provides prim-
itive functions that are built into the interpreter or loaded from libraries. Besides
the primitive functions provided by the operators, the JavaScript environment used
in this book includes additional primitive functions such as the function math_log,
which computes the natural logarithm of its argument.'” These additional primitive
functions are used in exactly the same way as compound functions; evaluating the
application math_log(1) results in the number 0. Indeed, one could not tell by
looking at the definition of sum_of _squares given above whether square was built
into the interpreter, loaded from a library, or defined as a compound function.

9. The way multi-part names such as sum_of_squares are written affects the readability of
programs, and programming communities differ on this. According to the common JavaScript
convention, called camel case, the name would be sum0fSquares. The convention used in this
book is called snake case, and was chosen for its closer resemblance to the convention used in
the Scheme version of this book, where hyphens play the role of our underscores.

10. Our JavaScript environment includes all functions and constants of ECMAScript’s Math
object, under the names math_.... For example, ECMAScript’s Math.log is available as
math_log. The MIT Press web page for this book includes the JavaScript package sicp that
provides these and all other JavaScript functions that are considered primitive in the book.

https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object

1.1.5 The Substitution Model for Function Application 11

1.1.5 The Substitution Model for Function Application

To evaluate a function application, the interpreter follows the process described in
section 1.1.4. That is, the interpreter evaluates the elements of the application and ap-
plies the function (which is the value of the function expression of the application) to
the arguments (which are the values of the argument expressions of the application).

We can assume that the application of primitive functions is handled by the in-
terpreter or libraries. For compound functions, the application process is as follows:

* To apply a compound function to arguments, evaluate the return expression of the
function with each parameter replaced by the corresponding argument.!!

To illustrate this process, let’s evaluate the application

£(5)

where £ is the function declared in section 1.1.4. We begin by retrieving the return
expression of £:

sum_of_squares(a + 1, a * 2)

Then we replace the parameter a by the argument 5:

sum_of_squares(5 + 1, 5 * 2)

Thus the problem reduces to the evaluation of an application with two arguments and
a function expression sum_of_squares. Evaluating this application involves three
subproblems. We must evaluate the function expression to get the function to be
applied, and we must evaluate the argument expressions to get the arguments. Now
5 + 1 produces 6 and 5 * 2 produces 10, so we must apply the sum_of_squares
function to 6 and 10. These values are substituted for the parameters x and y in the
body of sum_of_squares, reducing the expression to

square(6) + square(10)

If we use the declaration of square, this reduces to
(6 * 6) + (10 * 10)

which reduces by multiplication to

36 + 100

and finally to
136

11. If the body of the function is a sequence of statements, the body is evaluated with the
parameters replaced, and the value of the application is the value of the return expression of the
first return statement encountered.

12 Chapter 1 Building Abstractions with Functions

The process we have just described is called the substitution model for function
application. It can be taken as a model that determines the “meaning” of function
application, insofar as the functions in this chapter are concerned. However, there
are two points that should be stressed:

* The purpose of the substitution is to help us think about function application, not
to provide a description of how the interpreter really works. Typical interpreters
do not evaluate function applications by manipulating the text of a function to sub-
stitute values for the parameters. In practice, the “substitution” is accomplished
by using a local environment for the parameters. We will discuss this more fully in
chapters 3 and 4 when we examine the implementation of an interpreter in detail.

* Over the course of this book, we will present a sequence of increasingly elaborate
models of how interpreters work, culminating with a complete implementation
of an interpreter and compiler in chapter 5. The substitution model is only the
first of these models—a way to get started thinking formally about the evaluation
process. In general, when modeling phenomena in science and engineering, we
begin with simplified, incomplete models. As we examine things in greater detail,
these simple models become inadequate and must be replaced by more refined
models. The substitution model is no exception. In particular, when we address in
chapter 3 the use of functions with “mutable data,” we will see that the substitu-
tion model breaks down and must be replaced by a more complicated model of
function application.!?

Applicative order versus normal order

According to the description of evaluation given in section 1.1.4, the interpreter
first evaluates the function and argument expressions and then applies the resulting
function to the resulting arguments. This is not the only way to perform evaluation.
An alternative evaluation model would not evaluate the arguments until their values
were needed. Instead it would first substitute argument expressions for parameters
until it obtained an expression involving only operators and primitive functions, and
would then perform the evaluation. If we used this method, the evaluation of

£(5)

would proceed according to the sequence of expansions

sum_of_squares(5 + 1, 5 * 2)
square(5 + 1) + square(5 * 2)

(B +1) x (5+1) + (5x*x2) % (5% 2)

12. Despite the simplicity of the substitution idea, it turns out to be surprisingly complicated
to give a rigorous mathematical definition of the substitution process. The problem arises from
the possibility of confusion between the names used for the parameters of a function and the
(possibly identical) names used in the expressions to which the function may be applied. Indeed,
there is a long history of erroneous definitions of substitution in the literature of logic and
programming semantics. See Stoy 1977 for a careful discussion of substitution.

1.1.6 Conditional Expressions and Predicates 13

followed by the reductions

6 * 6 + 10 * 10
36 + 100

136

This gives the same answer as our previous evaluation model, but the process is
different. In particular, the evaluations of 5 + 1 and 5 * 2 are each performed
twice here, corresponding to the reduction of the expression

X ¥ X

with x replaced respectively by 5 + 1and 5 * 2.

This alternative “fully expand and then reduce” evaluation method is known
as normal-order evaluation, in contrast to the “evaluate the arguments and then
apply” method that the interpreter actually uses, which is called applicative-order
evaluation. It can be shown that, for function applications that can be modeled using
substitution (including all the functions in the first two chapters of this book) and
that yield legitimate values, normal-order and applicative-order evaluation produce
the same value. (See exercise 1.5 for an instance of an “illegitimate” value where
normal-order and applicative-order evaluation do not give the same result.)

JavaScript uses applicative-order evaluation, partly because of the additional ef-
ficiency obtained from avoiding multiple evaluations of expressions such as those
illustrated with 5 + 1 and 56 * 2 above and, more significantly, because normal-
order evaluation becomes much more complicated to deal with when we leave the
realm of functions that can be modeled by substitution. On the other hand, normal-
order evaluation can be an extremely valuable tool, and we will investigate some of
its implications in chapters 3 and 4.'3

1.1.6 Conditional Expressions and Predicates

The expressive power of the class of functions that we can define at this point is very
limited, because we have no way to make tests and to perform different operations
depending on the result of a test. For instance, we cannot declare a function that com-
putes the absolute value of a number by testing whether the number is nonnegative
and taking different actions in each case according to the rule

x ifx>0
xl =

—x otherwise

This construct is a case analysis and can be written in JavaScript using a conditional
expression as

13. In chapter 3 we will introduce stream processing, which is a way of handling apparently “in-
finite” data structures by incorporating a limited form of normal-order evaluation. In section 4.2
we will modify the JavaScript interpreter to produce a normal-order variant of JavaScript.

14 Chapter 1 Building Abstractions with Functions

function abs(x) {
return x >= 0 7?7 x : - X;

}

which could be expressed in English as “If x is greater than or equal to zero, return x;
otherwise return —x.” The general form of a conditional expression is

predicate 7 consequent-expression : alternative-expression

Conditional expressions begin with a predicate—that is, an expression whose value
is either true or false, two distinguished boolean values in JavaScript. The primi-
tive boolean expressions true and false trivially evaluate to the boolean values
true and false, respectively. The predicate is followed by a question mark, the
consequent-expression, a colon, and finally the alternative-expression.

To evaluate a conditional expression, the interpreter starts by evaluating the
predicate of the expression. If the predicate evaluates to true, the interpreter eval-
uates the consequent-expression and returns its value as the value of the conditional.
If the predicate evaluates to false, it evaluates the alternative-expression and returns
its value as the value of the conditional.'*

The word predicate is used for operators and functions that return true or false,
as well as for expressions that evaluate to true or false. The absolute-value function
abs makes use of the primitive predicate >=, an operator that takes two numbers as
arguments and tests whether the first number is greater than or equal to the second
number, returning true or false accordingly.

If we prefer to handle the zero case separately, we can specify the function that
computes the absolute value of a number by writing

x ifx>0
xl = 0 ifx=0
—x otherwise

In JavaScript, we express a case analysis with multiple cases by nesting conditional
expressions as alternative expressions inside other conditional expressions:

function abs(x) {
return x > 0

7 x
1 x === 0
7?0
- x;
}
Parentheses are not needed around the alternative expressionx === 0 ? 0 : - x,

because the conditional-expression syntactic form is right-associative. The inter-
preter ignores spaces and line breaks, here inserted for readability to align the 7’s
and :’s under the first predicate of the case analysis. The general form of a case
analysis is

14. Conditionals in full JavaScript accept any value, not just a boolean, as the result of evaluat-
ing the predicate expression (see footnote 14 in section 4.1.3 for details). The programs in this
book use only boolean values as predicates of conditionals.

1.1.6 Conditional Expressions and Predicates 15

P1
7 e

By)
? e

P Pn
? e,
. final-alternative-expression

We call a predicate p; together with its consequent expression e; a clause. A case
analysis can be seen as a sequence of clauses, followed by a final alternative ex-
pression. According to the evaluation of conditional expressions, a case analysis
is evaluated by first evaluating the predicate p;. If its value is false, then p, is
evaluated. If py’s value is also false, then p3 is evaluated. This process continues
until a predicate is found whose value is true, in which case the interpreter returns
the value of the corresponding consequent expression e of the clause as the value of
the case analysis. If none of the p’s is found to be true, the value of the case analysis
is the value of the final alternative expression.

In addition to primitive predicates such as >=, >, <, <=, ===, and !== that are
applied to numbers, ' there are logical composition operations, which enable us to
construct compound predicates. The three most frequently used are these:

* expression| && expressiony
This operation expresses logical conjunction, meaning roughly the same as the
English word “and.” This syntactic form is syntactic sugar!'® for
expression| 7 expressiony : false.

* expression) | | expression
This operation expresses logical disjunction, meaning roughly the same as the
English word “or.” This syntactic form is syntactic sugar for
expression| 7 true : expression;.

e | expression
This operation expresses logical negation, meaning roughly the same as the En-
glish word “not.” The value of the expression is true when expression evaluates to
false, and false when expression evaluates to true.

Notice that && and | | are syntactic forms, not operators; their right-hand expression
is not always evaluated. The operator !, on the other hand, follows the evaluation
rule of section 1.1.3. It is a unary operator, which means that it takes only one
argum